Citation: Sajjad Ali Khan, Kamal Shah, Poom Kumam, Aly Seadawy, Gul Zaman, Zahir Shah. Study of mathematical model of Hepatitis B under Caputo-Fabrizo derivative[J]. AIMS Mathematics, 2021, 6(1): 195-209. doi: 10.3934/math.2021013
[1] | WHO, Hepatitis B Fact Sheet No. 204, The World Health Organisation, Geneva, Switzerland, 2013. Available from: http://www.who.int/mediacentre/factsheets/fs204/en/. |
[2] | W. M. Lee, Hepatitis B virus infection, New Engl. J. Med., 337 (1997), 1733-1745. |
[3] | R. M. Anderson, R. M. May, Infectious disease of humans: dynamics and control, Oxford: Oxford University Press, 1991. |
[4] | G. F. Medley, N. A. Lindop, W. J. Edmunds, D. J. Nokes, Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control, Nat. Med., 7 (2001), 619-624. |
[5] | J. Mann, M. Roberts, Modelling the epidemiology of hepatitis B in New Zealand, J. Theor. Biol., 269 (2011), 266-272. doi: 10.1016/j.jtbi.2010.10.028 |
[6] | S. Thornley, C. Bullen, M. Roberts, Hepatitis B in a high prevalence New Zealand population: A mathematical model applied to infection control policy, J. Theor. Biol., 254 (2008), 599-603. doi: 10.1016/j.jtbi.2008.06.022 |
[7] | S. J. Zhao, Z. Y. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744-752. doi: 10.1093/ije/29.4.744 |
[8] | K. Wang, W. Wang, S. Song, Dynamics of an HBV model with diffusion and delay, J. Theor. Biol., 253 (2008), 36-44. doi: 10.1016/j.jtbi.2007.11.007 |
[9] | A. V. Kamyad, R. Akbari, A. A. Heydari, A. Heydari, Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis B virus, Comput. Math. Methods Med., 2014 (2014), 1-15. |
[10] | H. A. A. El-Saka, The fractional-order SIS epidemic model with variable population size, J. Egypt. Math. Soc., 22 (2014), 50-54. |
[11] | R. Toledo-Hernandez, V. Rico-Ramirez, G. A. Iglesias-Silva, U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chem. Eng. Sci., 117 (2014), 217-228. doi: 10.1016/j.ces.2014.06.034 |
[12] | J. Pang, J. A. Cui, X. Zhou, Dynamical behavior of a hepatitis B virus transmission model with vaccination, J. Theor. Biol., 265 (2010), 572-578. doi: 10.1016/j.jtbi.2010.05.038 |
[13] | E. Jung, S. Lenhart, Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete Cont. Dyn. B, 2 (2002), 473-482. |
[14] | I. Podlubny, Fractional differential equations, mathematics in science and engineering, New York: Academic Press, 1999. |
[15] | A. A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equations, Amsterdam: Elseveir, 2006. |
[16] | S. A. Khan, K. Shah, G. Zaman, F. Jarad, Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative, Chaos, 29 (2019), 013128. doi: 10.1063/1.5079644 |
[17] | F. Haq, K. Shah, G. Rahman, M. Shahzad, Numerical solution of fractional order smoking model via Laplace Adomian decomposition method, Alex. Eng. J., 57 (2018), 1061-1069. doi: 10.1016/j.aej.2017.02.015 |
[18] | A. Ali, K. Shah, R. A. Khan, Numerical treatment for traveling wave solutions of fractional Whitham-Broer-Kaup equations, Alex. Eng. J., 57 (2018), 1991-1998. doi: 10.1016/j.aej.2017.04.012 |
[19] | M. Caputo, M. Fabrizio, A new definition of fractional derivative with out singular kernel, Progr. Fract. Diff. Appl., 1 (2015), 73-85. |
[20] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their 28 discrete versions, Rep. Math. Phys., 80 (2017), 11-27. doi: 10.1016/S0034-4877(17)30059-9 |
[21] | M. Al-Refai, T. Abdeljawad, Analysis of the fractional diffusion equations with fractional 19 derivative of non-singular kernel, Adv. Differ. Equ., 2017 (2017), 315. doi: 10.1186/s13662-017-1356-2 |
[22] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. doi: 10.1186/s13662-017-1285-0 |
[23] | S. J. Liao, Beyond perturbation: Introduction to the homotopy analysis method, Boca Raton: Chapman Hall/CRC Press, 2003. |
[24] | M. Rafei, D. D. Ganji, H. Daniali, Solution of the epidemic model by homotopy perturbation method, Appl. Math. Comput., 187 (2007), 1056-1062. |
[25] | M. Rafei, H. Daniali, D. D. Ganji, Variational iteration method for solving the epidemic model and the prey and predator problem, Appl. Math. Comput., 186 (2007), 1701-1709. |
[26] | F. Awawdeh, A. Adawi, Z. Mustafa, Solutions of the SIR models of epidemics using HAM, Chaos Solit. Frac., 42 (2009), 3047-3052. doi: 10.1016/j.chaos.2009.04.012 |
[27] | O. A. Arqub, A. El-Ajou, Solution of the fractional epidemic model by homotopy analysis method, J. King Saud Univ. Sci., 25 (2013), 73-81. |
[28] | S. Z. Rida, A. A. M. Arafa, Y. A. Gaber, Solution of the fractional epidimic model by LADM, Frac. Calc. Appl., 7 (2016), 189-195. |
[29] | O. Kiymaz, An algorithm for solving initial value problems using Laplace Adomian decomposition method, Appl. Math. Sci., 3 (2009), 1453-1459. |
[30] | A. S. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Appl. Math., 1 (2001), 141-155. doi: 10.1155/S1110757X01000183 |
[31] | A. Shaikh, A. Tassaddiq, K. S. Nisar, D. Baleanu, Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations, Adv. Differ. Equ., 2019 (2019), 178. doi: 10.1186/s13662-019-2115-3 |
[32] | A. Atangana, B. S. Talkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1-6. |