Research article

The existence of a compact global attractor for a class of competition model

  • Received: 10 July 2020 Accepted: 24 September 2020 Published: 09 October 2020
  • MSC : 35A01, 35B41, 35K57, 92D40

  • This paper is concerned with the existence of a compact global attractor for a class of competition model in n?dimensional (n ≥ 1) domains. Using mathematical induction and more detailed interpolation estimates, especially Gagliardo-Nirenberg inequality, we obtain the existence of a compact global attractor, which implies the uniform boundedness of the global solutions. In particular, we get that the Shigesada-Kawasaki-Teramoto competition model has a compact global attractor for n < 10. The result of the S-K-T model extends the existence results of compact global attractor in [21] from n < 8 to n < 10, and extends the uniform boundedness results of the global solutions in [17] to the non-convex domain.

    Citation: Yanxia Wu. The existence of a compact global attractor for a class of competition model[J]. AIMS Mathematics, 2021, 6(1): 210-222. doi: 10.3934/math.2021014

    Related Papers:

  • This paper is concerned with the existence of a compact global attractor for a class of competition model in n?dimensional (n ≥ 1) domains. Using mathematical induction and more detailed interpolation estimates, especially Gagliardo-Nirenberg inequality, we obtain the existence of a compact global attractor, which implies the uniform boundedness of the global solutions. In particular, we get that the Shigesada-Kawasaki-Teramoto competition model has a compact global attractor for n < 10. The result of the S-K-T model extends the existence results of compact global attractor in [21] from n < 8 to n < 10, and extends the uniform boundedness results of the global solutions in [17] to the non-convex domain.


    加载中


    [1] H. Amann, Dynamic theory of quasilinear parabolic equations I. Abstract evolution equations, Nonlinear Anal. Theor., 12 (1988), 895-919. doi: 10.1016/0362-546X(88)90073-9
    [2] H. Amann, Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems, Differ. Integral Equ., 3 (1990), 13-75.
    [3] H. Amann, Dynamic theory of quasilinear parabolic systems III. Global existence, Math. Z., 202 (1989), 219-250. doi: 10.1007/BF01215256
    [4] Y. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak crossdiffusion, Discrete Contin. Dyn. Syst., 9 (2003), 1193-1200. doi: 10.3934/dcds.2003.9.1193
    [5] Y. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730. doi: 10.3934/dcds.2004.10.719
    [6] P. Deuring, An initial-boundary-value problem for a certain density-dependent diffusion system, Math. Z., 194 (1987), 375-396. doi: 10.1007/BF01162244
    [7] L. Hoang, T. Nguyen, P. Tuoc, Gradient estimates and global existence of smooth solutions for a system of cross-diffusion equations, SIAM J. Math. Anal., 47 (2015), 2122-2177. doi: 10.1137/140981447
    [8] J. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model, Nonlinear Anal. Theor., 8 (1984), 1121-1144. doi: 10.1016/0362-546X(84)90115-9
    [9] H. Kuiper, L. Dung, Global attractors for cross diffusion systems on domains of arbitrary dimension, Rocky Mt. J. Math., 37 (2007), 1645-1668. doi: 10.1216/rmjm/1194275939
    [10] D. Le, Cross diffusion systems on n spatial dimensional domains, Indiana Univ. Math. J., 51 (2002), 625-643.
    [11] D. Le, T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension, P. Am. Math. Soc., 133 (2005), 1985-1992. doi: 10.1090/S0002-9939-05-07867-6
    [12] D. Le, L. Nguyen, T. Nguyen, Shigesada-Kawasaki-Teramoto model on higher dimensional domains, Electron. J. Differ. Eq., 2003 (2003), 1-12.
    [13] Y. Li, C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains, Discrete Contin. Dyn. Syst., 12 (2005), 185-192. doi: 10.3934/dcds.2005.12.185
    [14] Y. Lou, W. Ni, Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203. doi: 10.3934/dcds.1998.4.193
    [15] N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theret. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
    [16] S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems, J. Differ. Equations, 185 (2002), 281-305. doi: 10.1006/jdeq.2002.4169
    [17] Y. Tao, M. Winker, Boundedness and stabilization in a population model with cross-diffusion for one species, P. London Math. Soc., 119 (2019), 1598-1632. doi: 10.1112/plms.12276
    [18] R. Temam, Infinite dimensional dynamical systems on mechanics and physics, New York: Springer Verlag, 1998.
    [19] P. Tuoc, Global existence of solutions to shigesada-kawasaki-teramoto cross-diffusion systems on domains of arbitrary dimensions, P. Am. Math. Soc., 135 (2007), 3933-3941. doi: 10.1090/S0002-9939-07-08978-2
    [20] P. Tuoc, On global existence of solutions to a cross-diffusion system, J. Math. Anal. Appl., 343 (2008), 826-834. doi: 10.1016/j.jmaa.2008.01.089
    [21] Q. Xu, Y. Zhao, The existence of a global attractor for the S-K-T competition model with selfdiffusion, Abstr. Appl. Anal., 2014 (2014), 1-6.
    [22] A. Yagi, Global solution to some quasilinear parabolic system in population dynamics, Nonlinear Anal. Theor., 21 (1993), 603-630. doi: 10.1016/0362-546X(93)90004-C
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2814) PDF downloads(122) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog