Research article

Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators

  • Received: 07 June 2020 Accepted: 22 September 2020 Published: 09 October 2020
  • MSC : 30C45, 30C50, 30C80

  • In this paper, we introduce certain subclasses of meromorphic harmonic univalent functions, which are defined by using generalized (p, q)-post quantum calculus operators as well as subordination relationship. Sufficient coefficient conditions, extreme points, distortion bounds and convolution properties for functions belonging to the subclasses are obtained.

    Citation: Shuhai Li, Lina Ma, Huo Tang. Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators[J]. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015

    Related Papers:

  • In this paper, we introduce certain subclasses of meromorphic harmonic univalent functions, which are defined by using generalized (p, q)-post quantum calculus operators as well as subordination relationship. Sufficient coefficient conditions, extreme points, distortion bounds and convolution properties for functions belonging to the subclasses are obtained.


    加载中


    [1] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
    [2] R. Chakrabarti, R. Jagannathan, On the representations of GLp, q(2), GLp, q(1|1) and noncommutative spaces, J. Phys. A: Math. Gen., 24 (1991), 5683-5703.
    [3] O. P. Ahuja, A. Cetinkaya, V. Ravichandran, Harmonic univalent functions defined by post quantum calculus operators, Acta Univ. Sapientiae, Mathematica, 11 (2019), 5-17. doi: 10.2478/ausm-2019-0001
    [4] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn., 9 (1984), 3-25.
    [5] P. Duren, B. Bollobás, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, et al., Harmonic Mappings in the Plane, Cambridge University Press, 2004.
    [6] H. Aldweby, M. Darus, A new subclass of harmonic meromorphic functions involving quantum calculus, Journal of Classical Analysis, 6 (2015), 153-162.
    [7] H. Bostanci, M. O${\rm{\ddot z}}$türk, New classes of Salagean type meromorphic harmonic functions, International Journal of Mathematics Sciences, 2 (2008), 471-476.
    [8] R. M. El-Ashwah, B. A. Frasin, Hadamard product of certain harmonic univalent meromorphic functions, Theory and Applications of Mathematics & Computer Science, , 5 (2015), 126-131.
    [9] J. M. Jahangiri, Harmonic meromorphic starlike functions, B. Korean Math. Soc., 37 (2000), 291-301.
    [10] J. M. Jahangiri, H. Silverman, Harmonic meromorphic univalent functions with negative coefficients, B. Korean Math. Soc., 36 (1999), 763-770.
    [11] J. Dziok. On Janowski harmonic functions, Journal of Applied Analysis, 21 (2015), 99-107.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3332) PDF downloads(207) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog