Citation: Abdulkarim Hassan Ibrahim, Poom Kumam, Auwal Bala Abubakar, Umar Batsari Yusuf, Seifu Endris Yimer, Kazeem Olalekan Aremu. An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration[J]. AIMS Mathematics, 2021, 6(1): 235-260. doi: 10.3934/math.2021016
[1] | M. V. Solodov, B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765-776. doi: 10.1137/S0363012997317475 |
[2] | Y. Xiao, H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310-319. doi: 10.1016/j.jmaa.2013.04.017 |
[3] | J. Liu, S. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70 (2015), 2442-2453. doi: 10.1016/j.camwa.2015.09.014 |
[4] | J. Liu, Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algorithms, 82 (2019) 245-262. |
[5] | A. H. Ibrahim, A. I. Garba, H. Usman, J. Abubakar, A. B. Abubakar, Derivative-free projection algorithm for nonlinear equations with convex constraints, Thai Journal of Mathematics, 18 (2020), 212-232. |
[6] | P. Kaelo, M. Koorapetse, A globally convergent projection method for a system of nonlinear monotone equations, Int. J. Comput. Math., 2020. |
[7] | A. B. Abubakar, J. Rilwan, S. E. Yimer, A. H. Ibrahim, I. Ahmed, Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints, Thai Journal of Mathematics, 18 (2020) 501-517. |
[8] | A. H. Ibrahim, P. Kumam, W. Kumam, A Family of Derivative-Free Conjugate Gradient Methods for Constrained Nonlinear Equations and Image Restoration, IEEE Access, 8 (2020), 162714- 162729. doi: 10.1109/ACCESS.2020.3020969 |
[9] | A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad, C. Tammer, A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations, Applied Analysis and Optimization, 4 (2020), 1-24. |
[10] | K. Meintjes, A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361. |
[11] | K. Meintjes, A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM T. Math. Software, 16 (1990), 143-151. doi: 10.1145/78928.78930 |
[12] | M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, R. J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization, Comput. stat. data an., 52 (2007), 155-173. doi: 10.1016/j.csda.2006.11.006 |
[13] | S. P. Dirkse, M. C. Ferris, Mcplib: A collection of nonlinear mixed complementarity problems, Optim. method. softw., 5 (1995), 319-345. doi: 10.1080/10556789508805619 |
[14] | J. E. Dennis, J. J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods, Math. comput., 28 (1974), 549-560. |
[15] | R. Fletcher, C. M. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), 149-154. doi: 10.1093/comjnl/7.2.149 |
[16] | R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, 2013. |
[17] | Y. H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. optimiz., 10 (1999), 177-182. doi: 10.1137/S1052623497318992 |
[18] | M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of research of the National Bureau of Standards, 49 (1952), 409-436. doi: 10.6028/jres.049.044 |
[19] | E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, ESAIM-Math. Model. Num., 3 (1969), 35-43. |
[20] | B. T. Polyak, The conjugate gradient method in extremal problems, U. S. S. R. Comput. Math. Math. Phys., 9 (1969), 94-112. doi: 10.1016/0041-5553(69)90035-4 |
[21] | Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, part 1: theory, J. optimiz. theory app., 69 (1991), 129-137. |
[22] | S. S. Djordjevi?, New Hybrid Conjugate Gradient Method As A Convex Combination of Ls and Fr Methods, Acta Math. Sci., 39 (2019), 214-228. |
[23] | A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat, J. Abubakar, A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing, Heliyon, 6 (2020), 1-17. |
[24] | D. H. Li, M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129 (2001), 15-35. doi: 10.1016/S0377-0427(00)00540-9 |
[25] | D. H. Li, M. Fukushima, On the global convergence of the BFGS method for nonconvex unconstrained optimization problems, SIAM J. Optimiz., 11 (2001), 1054-1064. doi: 10.1137/S1052623499354242 |
[26] | E. G. Birgin, J. M. Martinez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. opt., 43 (2001), 117-128. doi: 10.1007/s00245-001-0003-0 |
[27] | G. Yuan, T. Li, W. Hu, A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems, Appl. Numer. Math., 147 (2020), 129-141. doi: 10.1016/j.apnum.2019.08.022 |
[28] | D. H. Li, X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations, Numerical Algebra, Control & Optimization, 1 (2011), 71-82. |
[29] | E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. program., 91 (2002), 201-213. |
[30] | A. B. Abubakar, P. Kumam, H. Mohammad, A. M. Awwal, K, Sitthithakerngkiet, A modified fletcher-reeves conjugate gradient method for monotone nonlinear equations with some applications, Mathematics, 7 (2019), 1-25. |
[31] | W. La Cruz, J. Martínez, M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comput., 75 (2006), 1429-1448. doi: 10.1090/S0025-5718-06-01840-0 |
[32] | W. La Cruz, A spectral algorithm for large-scale systems of nonlinear monotone equations, Numer. Algorithms, 76 (2017), 1109-1130. |
[33] | Y. Bing, G. Lin, An efficient implementation of Merrill's method for sparse or partially separable systems of nonlinear equations, SIAM J. Optimiz., 1 (1991), 206-221. doi: 10.1137/0801015 |
[34] | Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423. doi: 10.1016/j.apnum.2009.04.004 |
[35] | Y. Ding, Y. Xiao, J. Li, A class of conjugate gradient methods for convex constrained monotone equations, Optimization, 66 (2017), 2309-2328. doi: 10.1080/02331934.2017.1372438 |
[36] | I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pur. Appl. Math., 57 (2004), 1413-1457. |
[37] | A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202. doi: 10.1137/080716542 |
[38] | E. T. Hale, W. Yin, Y. Zhang, A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing, CAAM TR07-07, Rice University, 2007, 1-45. |
[39] | S. Huang, Z. Wan, A new nonmonotone spectral residual method for nonsmooth nonlinear equations, J. Comput. Appl. Math., 313 (2017), 82-101. doi: 10.1016/j.cam.2016.09.014 |
[40] | J. Abubakar, P. Kumam, A. H. Ibrahim, A. Padcharoen, Relaxed Inertial Tseng's Type Method for Solving the Inclusion Problem with Application to Image Restoration, Mathematics, 8 (2020), 1-19. |
[41] | A. H. Ibrahim, P. Kumam, A. B. Abubakar, J. Abubakar, A. B. Muhammad, Least-Square-Based Three-Term Conjugate Gradient Projection Method for?1-Norm Problems with Application to Compressed Sensing, Mathematics, 8 (2020), 1-21. doi: 10.3390/math8101793 |
[42] | A. B. Abubakar, K. MUangchoo, A. Muhammad, A. H. Ibrahim, A Spectral Gradient Projection Method for Sparse Signal Reconstruction in Compressive Sensing, Modern Applied Science, 14 (2020), 86-93. |
[43] | A. C. Bovik, Handbook of Image and Video Processing, Academic press, 2010. |
[44] | S. M. Lajevardi, Structural similarity classifier for facial expression recognition, Signal Image Video P., 8 (2014), 1103-1110. doi: 10.1007/s11760-014-0639-2 |