Citation: Raúl M. Falcón, Laura Johnson, Stephanie Perkins. A census of critical sets based on non-trivial autotopisms of Latin squares of order up to five[J]. AIMS Mathematics, 2021, 6(1): 261-295. doi: 10.3934/math.2021017
[1] | C. J. Colbourn, M. J. Colbourn, D. R. Stinson, The computational complexity of recognizing critical sets, Lect. Notes Math., 1073 (1984), 248-253. doi: 10.1007/BFb0073124 |
[2] | C. J. Colbourn, The complexity of completing partial Latin squares, Discrete Appl. Math., 8 (1984), 25-30. doi: 10.1016/0166-218X(84)90075-1 |
[3] | J. Nelder, Critical sets in Latin squares. In: CSIRO Division of Math. and Stats, Newsletter, 1977. |
[4] | J. Cooper, D. Donovan, J. Seberry, Latin squares and critical sets of minimal size, Australas. J. Combin., 4 (1991), 113-120. |
[5] | J. A. Bate, G. H. J. van Rees, The size of the smallest strong critical set in a Latin square, Ars Comb., 53 (1999), 73-83. |
[6] | N. Cavenagh, D. Donovan, A. Khodkar, On the spectrum of critical sets in back circulant Latin squares, Ars Combin., 82 (2007), 287-319. |
[7] | B. Smetaniuk, On the minimal critical set of a Latin square, Utilitas Math., 16 (1979), 97-100. |
[8] | D. Curran, G. H. J. Van Rees, Critical sets in Latin squares. In: Proceedings of the Eighth Manitoba Conference on Numerical Mathematics and Computing, Congress. Numer., XXII, 1979,165-168. |
[9] | D. R. Stinson, G. H. J. Van Rees, Some large critical sets, Congr. Numer., 34 (1982), 441-456. |
[10] | A. P. Street, Defining sets for t-designs and critical sets for Latin squares, New Zealand J. Math., 21 (1992), 133-144. |
[11] | A. D. Keedwell, Critical sets for Latin squares, graphs and block designs: a survey, Congr. Numer., 113 (1996), 231-245. |
[12] | A. D. Keedwell, Critical sets in Latin squares: An Intriguing Problem, Math. Gaz., 85 (2001), 239-244. doi: 10.2307/3622009 |
[13] | A. D. Keedwell, Critical sets in Latin squares and related matters: an update, Util. Math., 65 (2004), 97-131. |
[14] | N. J. Cavenagh, The theory and application of Latin bitrades: a survey, Math. Slovaca, 58 (2008), 691-718. |
[15] | P. Adams, R. Bean, A. Khodkar, A census of critical sets in the Latin squares of order at most six, Ars Combin., 68 (2003), 203-223. |
[16] | D. Donovan, A. Howse, Critical sets for Latin squares of order 7, J. Combin. Math. Combin. Comput., 28 (1998), 113-123. |
[17] | A. Hulpke, P. Kaski, P. R. J.?sterg?rd, The number of Latin squares of order 11, J. Math. Comp., 80 (2011), 1197-1219. |
[18] | G. Kolesova, C. W. H. Lam, L. Thiel, On the number of 8 × 8 Latin squares, J. Combin. Theory Ser. A, 54 (1990), 143-148. doi: 10.1016/0097-3165(90)90015-O |
[19] | B. D. McKay, A. Meynert, W. Myrvold, Small Latin squares, quasigroups, and loops, J. Combin. Des., 15 (2007), 98-119. |
[20] | R. M. Falcón, The set of autotopisms of partial Latin squares, Discrete Math., 313 (2013), 1150- 1161. |
[21] | R. M. Falcón, Enumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method, European J. Combin., 48 (2015), 215-223. |
[22] | R. M. Falcón, R. J. Stones, Classifying partial Latin rectangles, Electron. Notes Discrete Math., 49 (2015), 765-771. doi: 10.1016/j.endm.2015.06.103 |
[23] | R. M. Falcón, O. J. Falcón, J. Nú?ez, Counting and enumerating partial Latin rectangles by means of computer algebra systems and CSP solvers, Math. Methods Appl. Sci., 41 (2018), 7236-7262. |
[24] | R. M. Falcón, R. J. Stones, Enumerating partial Latin rectangles, Electron. J. Combin., 27 (2020), ]P2.47. |
[25] | J. Browning, D. S. Stones, I. Wanless, Bounds on the number of autotopisms and subsquares of a Latin square, Combinatorica, 33 (2013), 11-22. doi: 10.1007/s00493-013-2809-1 |
[26] | R. M. Falcón, R. J. Stones, Partial Latin rectangle graphs and autoparatopism groups of partial Latin rectangles with trivial autotopism groups, Discrete Math., 340 (2017), 1242-1260. doi: 10.1016/j.disc.2017.01.002 |
[27] | D. Kotlar, Parity types, cycle structures and autotopisms of Latin squares, Electron. J. Combin., 19 (2012), 10. |
[28] | D. S. Stones, Symmetries of partial Latin squares, European J. Combin., 34 (2013), 1092-1107. doi: 10.1016/j.ejc.2013.02.005 |
[29] | R. M. Falcón, V. álvarez, F. Gudiel, A computational algebraic geometry approach to analyze pseudo-random sequences based on Latin squares, Adv. Comput. Math., 45 (2019), 1769-1792. doi: 10.1007/s10444-018-9654-0 |
[30] | E. Danan, R. M. Falcón, D. Kotlar, T. G. Marbach, R. J. Stones, Refining invariants for computing autotopism groups of partial Latin rectangles, Discrete Math., 343 (2020), 1-21. |
[31] | R. M. Falcón, Using a CAS/DGS to analyze computationally the configuration of planar bar linkage mechanisms based on partial Latin squares, Math. Comp. Sc., 14 (2020), 375-389. |
[32] | D. Kotlar, Computing the autotopy group of a Latin square by cycle structure, Discrete Math., 331 (2014), 74-82. doi: 10.1016/j.disc.2014.05.004 |
[33] | R. Stones, R. M. Falcón, D. Kotlar, T. G. Marbach, Computing autotopism groups of partial Latin rectangles: a pilot study, Comput. Math. Meth., (2020), e1094. |
[34] | R. Stones, R. M. Falcón, D. Kotlar, T. G. Marbach, Computing autotopism groups of partial Latin rectangles, J. Exp. Algorithmics, 25 (2020), 1-39. |
[35] | R. J. Stones, M. Su, X. Liu, G. Wang, S. Lin, A Latin square autotopism secret sharing scheme, Des. Codes Cryptogr., 35 (2015), 1-16 |
[36] | M. Yan, J. Feng, T. G. Marbach, R. J. Stones, G. Wang, X. Liu, Gecko: A resilient dispersal scheme for multi-cloud storage, IEEE Access, 7 (2019), 77387-77397. doi: 10.1109/ACCESS.2019.2920405 |
[37] | L. Yi, R. J. Stones, G. Wang, Two-erasure codes from 3-plexes. In: Network and Parallel Computing. Springer International Publishing, Cham, 2019,264-276. |
[38] | R. J. Stones, K-plex 2-erasure codes and Blackburn partial Latin squares, IEEE Trans. Inf. Theory, 66 (2020), 3704-3713. doi: 10.1109/TIT.2020.2967758 |
[39] | R. M. Falcón, O. J. Falcón, J. Nú?ez, A historical perspective of the theory of isotopisms, Symmetry, 10 (2018), 322. |
[40] | R. M. Falcón, Latin squares associated to principal autotopisms of long cycles. Application in Cryptography. In: Proceedings of Transgressive Computing 2006: a conference in honor of Jean Della Dora, Université J. Fourier, Grenoble, France, 2006,213-230. |
[41] | R. M. Falcón, Study of critical sets in Latin squares by using the autotopism group, Electron. Notes Discrete Math., 29 (2007), 503-507. |
[42] | S. D. Andres, R. M. Falcón, Autotopism stabilized colouring games on rook's graphs, Discrete Appl. Math., 266 (2019), 200-212. |
[43] | N. J. Cavenagh, D. S. Stones, Near-automorphisms of Latin squares, J. Combin. Des., 19 (2011), 365-377. doi: 10.1002/jcd.20282 |
[44] | M. Grüttmüller, Completing partial Latin squares with two cyclically generated prescribed diagonals, J. Combin. Theory Ser. A, 103 (2003), 349-362. |
[45] | M. Grüttmüller, Completing partial Latin squares with prescribed diagonals, Discrete Appl. Math., 138 (2004), 89-97. |
[46] | R. M. Falcón, J. Martín-Morales, Gr?bner bases and the number of Latin squares related to autotopisms of order up to 7, J. Symb. Comput., 42 (2007), 1142-1154. |
[47] | D. S. Stones, P. Vojtěchovsky, I. M. Wanless, Cycle structure of autotopisms of quasigroups and Latin squares, J. Combin. Des., 20 (2012), 227-263. doi: 10.1002/jcd.20309 |
[48] | W. Decker, G. M. Greuel, G. Pfister, et al., Singular 4-1-3 A computer algebra system for polynomial computations, 2020. Available from: http://www.singular.uni-kl.de. |
[49] | R. M. Falcón, L. Johnson, S. Perkins, Equivalence classes of critical sets based on non-trivial autotopisms of Latin squares, Mendeley Data, v1, 2020. Available from: http://dx.doi.org/10.17632/fkm575299m.1. |
[50] | H. A. Norton, The 7 × 7 squares, Ann. Eugenics, 9 (1939), 269-307. |
[51] | A. Drápal, T. Kepka, Exchangeable groupoids I, Acta Univ. Carolin.—Math. Phys., 24 (1983), 57-72. |
[52] | D. Donovan, A. Howse, P. Adams, A discussion of Latin interchanges, J. Combin. Math. Combin. Comput., 23 (1997), 161-182. |
[53] | N. Cavenagh, D. Donovan, A. Drápal, Constructing and deconstructing Latin trades, Discrete Math., 284 (2004), 97-105. |
[54] | N. Cavenagh, D. Donovan, 3-Homogeneous Latin trades, Discrete Math., 300 (2005), 57-70. |
[55] | D. Donovan, J. A. Cooper, D. J. Nott, J. Seberry, Latin squares: Critical sets and their lower bounds, Ars Combin., 39 (1995), 33-48. |