The Italian reinforcement number of a digraph is the minimum number of arcs that have to be added to the digraph in order to decrease the Italian domination number. In this paper, we present some new sharp upper bounds on the Italian reinforcement number of a digraph. We also determine the exact values of the Italian reinforcement number of the Cartesian products of directed paths and directed cycles: $ P_2\square P_n $, $ P_3\square P_n $, $ P_3\square C_n $, $ C_3\square P_n $ and $ C_3\square C_n $.
Citation: Zhihong Xie, Guoliang Hao, S. M. Sheikholeslami, Shuting Zeng. On the Italian reinforcement number of a digraph[J]. AIMS Mathematics, 2021, 6(6): 6490-6505. doi: 10.3934/math.2021382
The Italian reinforcement number of a digraph is the minimum number of arcs that have to be added to the digraph in order to decrease the Italian domination number. In this paper, we present some new sharp upper bounds on the Italian reinforcement number of a digraph. We also determine the exact values of the Italian reinforcement number of the Cartesian products of directed paths and directed cycles: $ P_2\square P_n $, $ P_3\square P_n $, $ P_3\square C_n $, $ C_3\square P_n $ and $ C_3\square C_n $.
[1] | F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim., 6 (2021), 123–136. |
[2] | M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. A. McRae, Roman $\{2\}$-domination, Discrete Appl. Math., 204 (2016), 22–28. doi: 10.1016/j.dam.2015.11.013 |
[3] | M. Chellai, N. Jafari Rad, S. M. Sheikholeslami, L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Combin., 17 (2020), 966–984. doi: 10.1016/j.akcej.2019.12.001 |
[4] | M. Chellali, N. Jafari Rad, S. M. Sheikholeslami, L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput., to appear. |
[5] | M. Chellali, N. Jafari Rad, S. M. Sheikholeslami, L. Volkmann, Varieties of Roman domination, In: T. W. Haynes, S. T. Hedetniemi, M. A. Henning, Structures of Domination in Graphs, Springer International Publishing, 2021. |
[6] | H. Gao, T. T. Xu, Y. S. Yang, Bagging approach for Italian domination in $C_n\square P_m$, IEEE Access, 7 (2019), 105224–105234. doi: 10.1109/ACCESS.2019.2931053 |
[7] | S. C. Garcá, A. C. Martínez, F. A. H. Mira, I. G. Yero, Total Roman $\{2\}$-domination in graphs, Quaestiones Math., 2019. Available from: https://doi.org/10.2989/16073606.2019.1695230. |
[8] | G. L. Hao, X. Chen, Y. Zhang, A note on Roman $\{2\}$-domination in digraphs, Ars Combin., 145 (2019), 185–193. |
[9] | G. L. Hao, S. M. Sheikholeslami, S. L. Wei, Italian reinforcement number in graphs, IEEE Access, 7 (2019), 184448–184456. doi: 10.1109/ACCESS.2019.2960390 |
[10] | T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, New York: Marcel Dekker Inc, 1998. |
[11] | T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in Graphs, Advanced Topics, New York: Marcel Dekker Inc, 1998. |
[12] | T. W. Haynes, M. A. Henning, Perfect Italian domination in trees, Discrete Appl. Math., 260 (2019), 164–177. doi: 10.1016/j.dam.2019.01.038 |
[13] | T. W. Haynes, M. A. Henning, L. Volkmann, Graphs with large Italian domination number, Bull. Malays. Math. Sci. Soc., 43 (2020), 1–15. doi: 10.1007/s40840-018-0660-7 |
[14] | M. A. Henning, W. F. Klostermeyer, Italian domination in trees, Discrete Appl. Math., 217 (2017), 557–564. doi: 10.1016/j.dam.2016.09.035 |
[15] | K. Kim, The Italian bondage and reinforcement numbers of digraphs, 2020. Available from: https://arXiv.org/abs/2008.05140. |
[16] | K. Kim, The Italian domination numbers of some product of directed cycles, Mathematics, 8 (2020), 1472. Available from: https://doi.org/10.3390/math8091472. |
[17] | A. Rahmouni, M. Chellali, Independent Roman $\{2\}$-domiantion in graphs, Discrete Appl. Math., 236 (2018), 408–414. doi: 10.1016/j.dam.2017.10.028 |
[18] | L. Volkmann, Italian domination in digraphs, J. Combin. Math. Combin. Comput., to appear. |
[19] | L. Volkmann, The Italian domatic number of a digraph, Commun. Comb. Optim., 4 (2019), 61–70. |