In this paper, we study the Cauchy problem of the isothermal system in a general nozzle with space-dependent friction $ \alpha(x) $. First, by using the maximum principle, we obtain the uniform bound $ \rho^{\delta, \varepsilon, \tau} \le M $, $ |m^{\delta, \varepsilon, \tau}| \le M $, independent of the time, of the viscosity-flux approximation solutions; Second, by using the compensated compactness method coupled with the convergence framework given in [
Citation: Yun-guang Lu, Xian-ting Wang, Richard De la cruz. Cauchy problem for isothermal system in a general nozzle with space-dependent friction[J]. AIMS Mathematics, 2021, 6(6): 6482-6489. doi: 10.3934/math.2021381
In this paper, we study the Cauchy problem of the isothermal system in a general nozzle with space-dependent friction $ \alpha(x) $. First, by using the maximum principle, we obtain the uniform bound $ \rho^{\delta, \varepsilon, \tau} \le M $, $ |m^{\delta, \varepsilon, \tau}| \le M $, independent of the time, of the viscosity-flux approximation solutions; Second, by using the compensated compactness method coupled with the convergence framework given in [
[1] | W. T. Cao, F. M. Huang, D. F. Yuan, Global entropy solutions to the gas flow in general nozzle, SIAM J. Math. Anal., 51 (2019), 3276–3297. doi: 10.1137/19M1249436 |
[2] | P. Embid, J. Goodman, A. Majda, Multiple steady states for 1-D transsonic flow, SIAM J. Sci. Stat. Comput., 5 (1984), 21–41. doi: 10.1137/0905002 |
[3] | J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697–715. doi: 10.1002/cpa.3160180408 |
[4] | J. Glimm, G. Marshall, B. Plohr, A generalized Riemann problem for quasi-one-dimensional gas flows, Adv. Appl. Math., 5 (1984), 1–30. doi: 10.1016/0196-8858(84)90002-2 |
[5] | F. M. Huang, Z. Wang, Convergence of viscosity solutions for isothermal gas dynamics, SIAM J. Math. Anal., 34 (2002), 595–610. doi: 10.1137/S0036141002405819 |
[6] | E. Isaacson, B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math., 52 (1992), 1260–1278. doi: 10.1137/0152055 |
[7] | T. P. Liu, Resonance for a quasilinear hyperbolic equation, Bull. Am. Math. Soc., 6 (1982), 463–465. doi: 10.1090/S0273-0979-1982-15018-2 |
[8] | Y. G. Lu, Global existence of solutions to system of polytropic gas dynamics with friction, Nonlinear Anal.: Real World Appl., 39 (2018), 418–423. doi: 10.1016/j.nonrwa.2017.07.010 |
[9] | Y. G. Lu, Resonance for the isothermal system of isentropic gas dynamics, Proc. Am. Math. Soc., 139 (2011), 2821–2826. doi: 10.1090/S0002-9939-2011-10733-0 |
[10] | Y. G. Lu, Global solutions to isothermal system in a divergent nozzle with friction, Appl. Math. Lett., 84 (2018), 176–180. doi: 10.1016/j.aml.2018.05.006 |
[11] | Y. G. Lu, Global existence of resonant isentropic gas dynamics, Nonlinear Anal.: Real World Appl., 12 (2011), 2802–2810. doi: 10.1016/j.nonrwa.2011.04.005 |
[12] | T. Makino, K. Mizohata, S. Ukai, The global weak solutions of the compressible Euler equation with spherical symmetry, Japan J. Ind. Appl. Math., 785 (1992), 1–28. |
[13] | T. Makino, K. Mizohata, S. Ukai, Global weak solutions of the compressible Euler equation with spherical symmetry (II), Japan J. Ind. Appl. Math., 11 (1994), 417–426. doi: 10.1007/BF03167230 |
[14] | F. Murat, Compacité par compensation, Ann. Sc. Norm. Super. Pisa, 5 (1978), 489–507. |
[15] | T. Nishida, Global solution for an initial-boundary-value problem of a quasilinear hyperbolic system, Proc. Japan Acad., 44 (1968), 642–646. |
[16] | A. H. Shapino, The Dynamics and Thermodynamics of Compressible Fluid Flow, John Wiley & Sons, 1953. |
[17] | Q. Y. Sun, Y. G. Lu, C. Klingenberg, Global weak solutions for a nonlinear hyperbolic system, Acta Math. Sci., 40 (2020), 1185–1194. doi: 10.1007/s10473-020-0502-1 |
[18] | T. Tartar, Compensated compactness and applications to partial differential equations, In: R. J. Knops, Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Vol. 4, London: Pitman Press, 1979. |
[19] | N. Tsuge, Existence of global solutions for isentropic gas flow in a divergent nozzle with friction, J. Math. Anal. Appl., 426 (2015), 971–977. doi: 10.1016/j.jmaa.2015.01.031 |
[20] | N. Tsuge, Global $L^\infty$ solutions of the compressible Euler equations with spherical symmetry, J. Math. Kyoto Univ., 46 (2006), 457–524. |
[21] | N. Tsuge, The compressible Euler equations for an isothermal gas with spherical symmetry, J. Math. Kyoto Univ., 43 (2004), 737–754. |