Research article

Cauchy problem for isothermal system in a general nozzle with space-dependent friction

  • Received: 08 February 2021 Accepted: 09 April 2021 Published: 15 April 2021
  • MSC : 35L65, 76N10

  • In this paper, we study the Cauchy problem of the isothermal system in a general nozzle with space-dependent friction $ \alpha(x) $. First, by using the maximum principle, we obtain the uniform bound $ \rho^{\delta, \varepsilon, \tau} \le M $, $ |m^{\delta, \varepsilon, \tau}| \le M $, independent of the time, of the viscosity-flux approximation solutions; Second, by using the compensated compactness method coupled with the convergence framework given in [5], we prove that the limit, $ (\rho, m) $ of $ (\rho^{\delta, \varepsilon, \tau}, m^{\delta, \varepsilon, \tau}) $, as $ \varepsilon, \delta, \tau $ go to zero, is a uniformly bounded entropy solution.

    Citation: Yun-guang Lu, Xian-ting Wang, Richard De la cruz. Cauchy problem for isothermal system in a general nozzle with space-dependent friction[J]. AIMS Mathematics, 2021, 6(6): 6482-6489. doi: 10.3934/math.2021381

    Related Papers:

  • In this paper, we study the Cauchy problem of the isothermal system in a general nozzle with space-dependent friction $ \alpha(x) $. First, by using the maximum principle, we obtain the uniform bound $ \rho^{\delta, \varepsilon, \tau} \le M $, $ |m^{\delta, \varepsilon, \tau}| \le M $, independent of the time, of the viscosity-flux approximation solutions; Second, by using the compensated compactness method coupled with the convergence framework given in [5], we prove that the limit, $ (\rho, m) $ of $ (\rho^{\delta, \varepsilon, \tau}, m^{\delta, \varepsilon, \tau}) $, as $ \varepsilon, \delta, \tau $ go to zero, is a uniformly bounded entropy solution.



    加载中


    [1] W. T. Cao, F. M. Huang, D. F. Yuan, Global entropy solutions to the gas flow in general nozzle, SIAM J. Math. Anal., 51 (2019), 3276–3297. doi: 10.1137/19M1249436
    [2] P. Embid, J. Goodman, A. Majda, Multiple steady states for 1-D transsonic flow, SIAM J. Sci. Stat. Comput., 5 (1984), 21–41. doi: 10.1137/0905002
    [3] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697–715. doi: 10.1002/cpa.3160180408
    [4] J. Glimm, G. Marshall, B. Plohr, A generalized Riemann problem for quasi-one-dimensional gas flows, Adv. Appl. Math., 5 (1984), 1–30. doi: 10.1016/0196-8858(84)90002-2
    [5] F. M. Huang, Z. Wang, Convergence of viscosity solutions for isothermal gas dynamics, SIAM J. Math. Anal., 34 (2002), 595–610. doi: 10.1137/S0036141002405819
    [6] E. Isaacson, B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math., 52 (1992), 1260–1278. doi: 10.1137/0152055
    [7] T. P. Liu, Resonance for a quasilinear hyperbolic equation, Bull. Am. Math. Soc., 6 (1982), 463–465. doi: 10.1090/S0273-0979-1982-15018-2
    [8] Y. G. Lu, Global existence of solutions to system of polytropic gas dynamics with friction, Nonlinear Anal.: Real World Appl., 39 (2018), 418–423. doi: 10.1016/j.nonrwa.2017.07.010
    [9] Y. G. Lu, Resonance for the isothermal system of isentropic gas dynamics, Proc. Am. Math. Soc., 139 (2011), 2821–2826. doi: 10.1090/S0002-9939-2011-10733-0
    [10] Y. G. Lu, Global solutions to isothermal system in a divergent nozzle with friction, Appl. Math. Lett., 84 (2018), 176–180. doi: 10.1016/j.aml.2018.05.006
    [11] Y. G. Lu, Global existence of resonant isentropic gas dynamics, Nonlinear Anal.: Real World Appl., 12 (2011), 2802–2810. doi: 10.1016/j.nonrwa.2011.04.005
    [12] T. Makino, K. Mizohata, S. Ukai, The global weak solutions of the compressible Euler equation with spherical symmetry, Japan J. Ind. Appl. Math., 785 (1992), 1–28.
    [13] T. Makino, K. Mizohata, S. Ukai, Global weak solutions of the compressible Euler equation with spherical symmetry (II), Japan J. Ind. Appl. Math., 11 (1994), 417–426. doi: 10.1007/BF03167230
    [14] F. Murat, Compacité par compensation, Ann. Sc. Norm. Super. Pisa, 5 (1978), 489–507.
    [15] T. Nishida, Global solution for an initial-boundary-value problem of a quasilinear hyperbolic system, Proc. Japan Acad., 44 (1968), 642–646.
    [16] A. H. Shapino, The Dynamics and Thermodynamics of Compressible Fluid Flow, John Wiley & Sons, 1953.
    [17] Q. Y. Sun, Y. G. Lu, C. Klingenberg, Global weak solutions for a nonlinear hyperbolic system, Acta Math. Sci., 40 (2020), 1185–1194. doi: 10.1007/s10473-020-0502-1
    [18] T. Tartar, Compensated compactness and applications to partial differential equations, In: R. J. Knops, Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Vol. 4, London: Pitman Press, 1979.
    [19] N. Tsuge, Existence of global solutions for isentropic gas flow in a divergent nozzle with friction, J. Math. Anal. Appl., 426 (2015), 971–977. doi: 10.1016/j.jmaa.2015.01.031
    [20] N. Tsuge, Global $L^\infty$ solutions of the compressible Euler equations with spherical symmetry, J. Math. Kyoto Univ., 46 (2006), 457–524.
    [21] N. Tsuge, The compressible Euler equations for an isothermal gas with spherical symmetry, J. Math. Kyoto Univ., 43 (2004), 737–754.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2162) PDF downloads(86) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog