Research article Special Issues

A note on degenerate derangement polynomials and numbers

  • Received: 17 November 2021 Accepted: 12 April 2021 Published: 15 April 2021
  • MSC : 11B73, 11B83, 60G50

  • In this paper, we study the degenerate derangement polynomials and numbers, investigate some properties of those polynomials and numbers and explore their connections with the degenerate gamma distributions. In more detail, we derive their explicit expressions, recurrence relations and some identities involving the degenerate derangement polynomials and numbers and other special polynomials and numbers, which include the fully degenerate Bell polynomials, the degenerate Fubini polynomials and the degenerate Stirling numbers of both kinds. We also show that those polynomials and numbers are connected with the moments of some variants of the degenerate gamma distributions.

    Citation: Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang. A note on degenerate derangement polynomials and numbers[J]. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380

    Related Papers:

  • In this paper, we study the degenerate derangement polynomials and numbers, investigate some properties of those polynomials and numbers and explore their connections with the degenerate gamma distributions. In more detail, we derive their explicit expressions, recurrence relations and some identities involving the degenerate derangement polynomials and numbers and other special polynomials and numbers, which include the fully degenerate Bell polynomials, the degenerate Fubini polynomials and the degenerate Stirling numbers of both kinds. We also show that those polynomials and numbers are connected with the moments of some variants of the degenerate gamma distributions.



    加载中


    [1] L. Carlitz, The number of derangements of a sequence with given specification, Fibonacci Quart., 16 (1978), 255–258.
    [2] D. V. Dolgy, D. S. Kim, T. Kim, J. Kwon, On fully degenerate Bell numbers and polynomials, Filomat, 2020. Available from: http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/10239.
    [3] D. M. Jackson, Laguerre polynomials and derangements, Math. Proc. Cambridge Philos. Soc., 80 (1976), 213–214. doi: 10.1017/S030500410005283X
    [4] A. W. Joseph, A problem in derangements, J. Inst. Actuaries Students' Soc., 6 (1946), 14–22.
    [5] W. A. Khan, A new class of degenerate Frobenius-Euler-Hermite polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 28 (2018), 567–576.
    [6] N. Kilar, Y. Simsek, A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials, J. Korean Math. Soc., 54 (2017), 1605–1621.
    [7] D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. doi: 10.1134/S1061920820020090
    [8] T. Kim, D. S. Kim, Some identities on derangement and degenerate derangement polynomials, In: Advances in mathematical inequalities and applications, Singapore: Birkhäuser/Springer, 2018,265–277.
    [9] T. Kim, D. S. Kim, Note on the degenerate Gamma function, Russ. J. Math. Phys., 27 (2020), 352–358. doi: 10.1134/S1061920820030061
    [10] T. Kim, D. S. Kim, D. V. Dolgy, J. Kwon, Some identities of derangement numbers, Proc. Jangjeon Math. Soc., 21 (2018), 125–141.
    [11] T. Kim, D. S. Kim, G. W. Jang, A note on degenerate Fubini polynomials, Proc. Jangjeon Math. Soc., 20 (2017), 52–531.
    [12] T. Kim, D. S. Kim, G. W. Jang, J. Kwon, A note on some identities of derangement polynomials, J. Inequal. Appl., 2018 (2018), 40. doi: 10.1186/s13660-018-1636-8
    [13] T. Kim, D. S. Kim, H. I. Kwon, L. C. Jang, Fourier series of sums of products of $r$-derangement functions, J. Nonlinear Sci. Appl., 11 (2018), 575–590.
    [14] T. Kim, D. S. Kim, J. Kwon, H. Lee, A note on degenerate gamma random variables, Revista de edu., 388 (2020), 39–44.
    [15] D. S. Lee, H. K. Kim, On the new type of degenerate poly-Genocchi numbers and polynomials, Adv. Differ. Equ., 2020 (2020), 431. doi: 10.1186/s13662-020-02886-5
    [16] Y. Ma, T. Kim, A note on negative $\lambda$-binomial distribution, Adv. Differ. Equ., 2020 (2020), 569. doi: 10.1186/s13662-020-03030-z
    [17] S. Roman, The umbral calculus, New York: Academic Press, Inc., 1984.
    [18] S. M. Ross, Introduction to probability models, 11 Eds., Amsterdam: Elsevier/Academic Press, 2014.
    [19] S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New construction of type 2 degenerate central Fubini polynomials with their certain properties, Adv. Differ. Equ., 2020 (2020), 587. doi: 10.1186/s13662-020-03055-4
    [20] Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 27 (2017), 199–212.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2712) PDF downloads(186) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog