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1. Introduction

A derangement is a permutation with no fixed points. In other words, a derangement is a
permutation of the elements of a set that leaves no elements in their original places. The number of
derangements of a set of size n is called the n-th derangement number and denoted by dn. The first
few terms of the derangement number sequence {dn}

∞
n=0 are

d0 = 1, d1 = 0, d2 = 1, d3 = 2, d4 = 9, . . . . It was Pierre Rémonde de Motmort who initiated the
study of counting derangements in 1708 (see [1]).

Carlitz was the first one who studied degenerate versions of some special polynomials and numbers,
namely the degenerate Bernoulli polynomials and numbers and degenerate Euler polynomials and
numbers. In recent years, the study of various degenerate versions of some special polynomials and
numbers regained the interests of quite a few mathematicians and yielded many interesting arithmetical
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and combinatorial results. It is remarkable that the study of degenerate versions is not just limited to
polynomials but can be extended to transcendental functions like gamma functions (see [9,14]).

The aim of this paper is to study the degenerate derangement polynomials, which are a degenerate
version of the derangement polynomials. Here the derangement polynomials are a natural extension
of the derangement numbers. In more detail, we derive their explicit expressions, recurrence relations
and some identities involving those polynomials and numbers and other special polynomials and
numbers, which include the fully degenerate Bell polynomials, the degenerate Fubini polynomials
and the degenerate Stirling numbers of both kinds. We also introduce the higher-order degenerate
derangement polynomials. Then we explore the degenerate gamma distributions as a degenerate
version of the gamma distributions. We show that the moments of distributions coming from some
variants of degenerate gamma distributions are related to the degenerate derangement polynomials or
the degenerate derangement numbers or the higher-order degenerate derangement polynomials.

For the rest of this section, we recall the necessary facts about the degenerate derangement
polynomials and numbers and the degenerate exponential functions.

As is well known, the generating function of the derangement numbers is given by

1
1 − t

e−t =

∞∑
n=0

dn
tn

n!
, (see [1, 3, 4, 8, 12, 13]). (1.1)

From (1.1), we note that

dn = n!
n∑

i=0

(−1)i

i!
, (n ≥ 0), (see [8, 10, 12, 13]). (1.2)

The derangement polynomials are defined by the generating function as

1
1 − t

e(x−1)t =

∞∑
n=0

dn(x)
tn

n!
, (see [12, 13]). (1.3)

By (1.3), we get

dn(x) =

n∑
l=0

(
n
l

)
dlxn−l (1.4)

= n!
n∑

l=0

(x − 1)l

l!
, (n ≥ 0).

Clearly, we have dn(0) = dn.
For any nonzero real number λ, the degenerate exponential function is defined as

ex
λ(t) = (1 + λt)

x
λ =

∞∑
n=0

(x)n,λ

n!
tn, (see [2, 5, 9, 11, 16]), (1.5)

where (x)0,λ = 1, (x)n,λ = x(x − λ) · · · (x − (n − 1)λ), (n ≥ 1).
For brevity we denote e1

λ(t) by eλ(t). In this paper, we study the degenerate derangement polynomials
which are derived from the degenerate exponential function.

From the definition of degenerate derangement polynomials, we investigate some properties and
recurrence relations and new identities associated with special numbers and polynomials.
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2. Degenerate derangement polynomials

In light of (1.3), we may consider the degenerate derangement polynomials which are given by

1
1 − t

ex−1
λ (t) =

∞∑
n=0

dn,λ(x)
tn

n!
. (2.1)

When x = 0, dn,λ = dn,λ(0) are called the degenerate derangement numbers.
From (1.5) and (2.1), we get

∞∑
n=0

dn,λ(x)
tn

n!
=

∞∑
l=0

tl
∞∑

m=0

(x − 1)m,λ
tm

m!
(2.2)

=

∞∑
n=0

(
n!

n∑
m=0

(x − 1)m,λ

m!

) tn

n!
.

Comparing the coefficients on both sides of (2.2), we obtain the following proposition.

Proposition 1. For n ≥ 0, we have

dn,λ(x) = n!
n∑

l=0

(x − 1)l,λ

l!
.

In particular, for x = 0, we obtain

dn,λ = n!
n∑

l=0

(−1)l,λ

l!
.

Now, we observe that

ex−1
λ (t) = 1 +

∞∑
n=1

(
dn,λ(x) − ndn−1,λ(x)

) tn

n!
. (2.3)

From (1.5) and (2.3), we have
(x − 1)n,λ = dn,λ(x) − ndn−1,λ(x), (2.4)

and
(−1)n,λ = dn,λ − ndn−1,λ, (n ≥ 1).

In addition, by (2.1), we get

dn,λ(x) =

n∑
l=0

(
n
l

)
dl,λ(x)n−l,λ, (n ≥ 0). (2.5)

Therefore, by (2.5), we obtain the following theorem.

Theorem 2. The following identities hold true:

dn,λ(x) =

n∑
l=0

(
n
l

)
dl,λ(x)n−l,λ, (n ≥ 0),

(x − 1)n,λ = dn,λ(x) − ndn−1,λ(x), (n ≥ 1),
(−1)n,λ = dn,λ − ndn−1,λ, (n ≥ 1).
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Replacing t by 1 − eλ(t) in (2.1), we get

ex−1
λ

(
1 − eλ(t)

)
= eλ(t)

∞∑
l=0

dl,λ(x)
1
l!
(
1 − eλ(t)

)l (2.6)

=

∞∑
m=0

(1)m,λ

m!
tm

∞∑
j=0

j∑
l=0

(−1)ldl,λ(x)S 2,λ( j, l)
t j

j!

=

∞∑
n=0

( n∑
j=0

j∑
l=0

(
n
j

)
(1)n− j,λ(−1)ldl,λ(x)S 2,λ( j, l)

) tn

n!
.

Here S 2,λ(n, l), (n ≥ l), are the degenerate Stirling numbers of the second kind given either by

(x)n,λ =

n∑
l=0

S 2,λ(n, l)(x)l, (n ≥ 0),

or by
1

m!
(eλ(t) − 1)m =

∞∑
n=m

S 2,λ(n,m)
tn

n!
, (m ≥ 0), (see [7]),

where (x)0 = 1, (x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1). Alternatively, (2.6) is also given by

ex−1
λ

(
1 − eλ(t)

)
=

∞∑
m=0

(x − 1)m,λ
1

m!
(
1 − eλ(t)

)m (2.7)

=

∞∑
n=0

( n∑
m=0

(x − 1)m,λ(−1)mS 2,λ(n,m)
) tn

n!
.

Therefore, by (2.6) and (2.7), we obtain the following theorem.

Theorem 3. For n ≥ 0, we have

n∑
j=0

j∑
l=0

(
n
j

)
(1)n− j,λ(−1)ldl,λ(x)S 2,λ( j, l) =

n∑
j=0

(x − 1) j,λ(−1) jS 2,λ(n, j).

Recently, the degenerate Fubini polynomials are introduced as

1
1 − y(eλ(t) − 1)

=

∞∑
n=0

Fn,λ(y)
tn

n!
, (see [11, 15]). (2.8)

Note that lim
λ→0

Fn,λ(y) = Fn(y) are the ordinary Fubini polynomials (see [6]). Replacing t by eλ(t) − 1 in
(2.1), we get

1
2 − eλ(t)

ex−1
λ

(
eλ(t) − 1

)
=

∞∑
l=0

dl,λ(x)
1
l!
(
eλ(t) − 1

)l (2.9)

=

∞∑
n=0

( n∑
l=0

S 2,λ(n, l)dl,λ(x)
) tn

n!
.
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In terms of (2.8), we note that (2.9) is also given by

1
2 − eλ(t)

ex−1
λ

(
eλ(t) − 1

)
(2.10)

=

∞∑
l=0

Fl,λ(1)
tl

l!

∞∑
m=0

(x − 1)m,λ
1

m!
(
eλ(t) − 1

)m

=

∞∑
l=0

Fl,λ(1)
tl

l!

∞∑
j=0

j∑
m=0

(x − 1)m,λS 2,λ( j,m)
t j

j!

=

∞∑
n=0

( n∑
l=0

l∑
m=0

(
n
l

)
Fn−l,λ(1)(x − 1)m,λS 2,λ(l,m)

) tn

n!
.

Therefore, by (2.9) and (2.10), we obtain the following theorem.

Theorem 4. For n ≥ 0, we have

n∑
l=0

S 2,λ(n, l)dl,λ(x) =

n∑
l=0

l∑
m=0

(
n
l

)
Fn−l,λ(1)(x − 1)m,λS 2,λ(l,m).

Let logλ(t) be the compositional inverse function of eλ(t). Recall that the degenerate Stirling
numbers of the first kind are defined either by

(x)n =

n∑
l=0

S 1,λ(n, l)(x)l,λ, (n ≥ 0),

or by
1

m!
(

logλ(1 + t)
)m

=

∞∑
n=m

S 1,λ(n,m)
tn

n!
, (m ≥ 0), (see [7, 14]).

Replacing t by logλ(1 + t) in (2.8) with y = 1, we get

1
1 − t

=

∞∑
l=0

Fl,λ(1)
1
l!
(

logλ(1 + t)
)l (2.11)

=

∞∑
n=0

( n∑
l=0

Fl,λ(1)S 1,λ(n, l)
) tn

n!
.

Writing the left hand side of (2.11) differently, we have

1
1 − t

=

( 1
1 − t

e−1
λ (t)

)
eλ(t) (2.12)

=

∞∑
l=0

dl,λ
tl

l!

∞∑
m=0

(1)m,λ
tm

m!

=

∞∑
n=0

( n∑
l=0

(
n
l

)
dl,λ(1)n−l,λ

) tn

n!
.

Therefore, by (2.1), (2.11) and (2.12), we obtain the following theorem.
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Theorem 5. For n ≥ 0, we have

n! =

n∑
l=0

Fl,λ(1)S 1,λ(n, l) =

n∑
l=0

(
n
l

)
dl,λ(1)n−l,λ =

n∑
l=0

(
n
l

)
dl,λ(x)(1 − x)n−l,λ.

Recently, Kim-Kim considered the fully degenerate Bell polynomials given by

eλ
(
x(eλ(t) − 1)

)
=

∞∑
n=0

Beln,λ(x)
tn

n!
, (see [2]). (2.13)

Replacing t by logλ(1 + t) in (2.13) with x = 1, we get

eλ(t) =

∞∑
m=0

Belm,λ
1

m!
(

logλ(1 + t)
)m (2.14)

=

∞∑
m=0

Belm,λ

∞∑
n=m

S 1,λ(n,m)
tn

n!

=

∞∑
n=0

( n∑
m=0

Belm,λS 1,λ(n,m)
) tn

n!
.

Obviously, (2.14) is also given by

eλ(t) =

∞∑
n=0

(1)n,λ
tn

n!
. (2.15)

Therefore, by (2.14) and (2.15), we obtain the following theorem.

Theorem 6. For n ≥ 0, we have

(1)n,λ =

n∑
m=0

Belm,λS 1,λ(n,m),

and

Beln,λ =

n∑
m=0

(1)m,λS 2,λ(n,m).

We observe that

1
1 − t

= e−1
λ

(
logλ(1 − t)

)
=

∞∑
m=0

(−1)m,λ
1

m!
(

logλ(1 − t)
)m (2.16)

=

∞∑
m=0

(−1)m,λ

∞∑
n=m

(−1)nS 1,λ(n,m)
tn

n!
=

∞∑
n=0

( n∑
m=0

(−1)m,λ(−1)nS 1,λ(n,m)
) tn

n!
.

From Theorem 5 and (2.16), we obtain

n! = (−1)n
n∑

m=0

(−1)m,λS 1,λ(n,m) =

n∑
m=0

(
n
m

)
dm,λ(x)(1 − x)n−m,λ.
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Replacing t by logλ(1 − t) in (2.13) with x = 1, we get

eλ(−t) =

∞∑
k=0

Belk,λ
1
k!

(
logλ(1 − t)

)k

=

∞∑
k=0

Belk,λ

∞∑
n=k

S 1,λ(n, k)(−1)n tn

n!
(2.17)

=

∞∑
n=0

( n∑
k=0

Belk,λS 1,λ(n, k)(−1)n
) tn

n!
.

We remark that (2.17) is alternatively given by

eλ(−t) = e−1
−λ(t) =

∞∑
n=0

(−1)n,−λ
tn

n!
. (2.18)

Thus, from (2.17) and (2.18), we have

n∑
k=0

Belk,λS 1,λ(n, k) = (−1)n(−1)n,−λ, (n ≥ 0). (2.19)

Replacing t by 1 − e−λ(t) in (2.1) with x = 0, we get

e−1
−λ(t)e

−1
λ

(
1 − e−λ(t)

)
=

∞∑
m=0

dm,λ
(−1)m

m!
(
e−λ(t) − 1

)m (2.20)

=

∞∑
m=0

dm,λ(−1)m
∞∑

n=m

S 2,−λ(n,m)
tn

n!

=

∞∑
n=0

( n∑
m=0

dm,λ(−1)mS 2,−λ(n,m)
) tn

n!
.

An alternative expression of (2.20) is given by

e−1
−λ(t)e

−1
λ

(
1 − e−λ(t)

)
= e−1

−λ(t)e−λ
(
e−λ(t) − 1

)
(2.21)

=

∞∑
l=0

(−1)l,−λ
tl

l!

∞∑
m=0

Belm,−λ
tm

m!

=

∞∑
n=0

( n∑
m=0

(
n
m

)
Belm,−λ(−1)n−m,−λ

) tn

n!
.

From (2.20) and (2.21), we have

n∑
m=0

(−1)mdm,λS 2,−λ(n,m) =

n∑
m=0

(
n
m

)
Belm,−λ(−1)n−m,−λ, (n ≥ 0). (2.22)

Therefore, by (2.19) and (2.22), we obtain the following theorem.
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Theorem 7. For n ≥ 0, we have

n∑
m=0

(−1)mdm,λS 2,−λ(n,m) =

n∑
m=0

(
n
m

)
Belm,−λ(−1)n−m,−λ.

In addition, we have
n∑

k=0

Belk,λS 1,λ(n, k) = (−1)n(−1)n,−λ, (n ≥ 0).

For r ∈ N, we define the degenerate derangement polynomials of order r which are given by

1
(1 − t)r ex−1

λ (t) =

∞∑
n=0

d(r)
n (x)

tn

n!
. (2.23)

When x = 0, d(r)
n (0) are called the degenerate derangement numbers of order r.

From (2.23), we note that

∞∑
n=0

d(r)
n (x)

tn

n!
=

∞∑
m=0

(
r + m − 1

m

)
tm

∞∑
l=0

(x − 1)l,λ
tl

l!
(2.24)

=

∞∑
n=0

(
n!

n∑
l=0

(x − 1)l,λ

l!

(
r + n − l − 1

n − l

)) tn

n!
.

Comparing the coefficients on both sides of (2.24), we obtain the following theorem.

Theorem 8. For n ≥ 0, we have

d(r)
n (x) = n!

n∑
l=0

(x − 1)l,λ

l!

(
r + n − l − 1

n − l

)
.

In particular, for x = 0, we have

d(r)
n = n!

n∑
l=0

(−1)l,λ

l!

(
r + n − l − 1

n − l

)
.

By (2.1), we get
1

1 + t
e−1
λ (−t) =

∞∑
m=0

dm,λ(−1)m tm

m!
. (2.25)

Replacing t by e−λ(t) − 1 in (2.25), we get

e−1
λ

(
1 − e−λ(t)

)
= e−λ(t)

∞∑
m=0

dm,λ(−1)m 1
m!

(
e−λ(t) − 1

)m (2.26)

= e−λ(t)
∞∑

m=0

dm,λ(−1)m
∞∑

j=m

S 2,−λ( j,m)
t j

j!
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=

∞∑
l=0

(1)l,−λ
tl

l!

∞∑
j=0

( j∑
m=0

(−1)mdm,λS 2,−λ( j,m)
) t j

j!

=

∞∑
n=0

( n∑
j=0

j∑
m=0

(
n
j

)
(1)n− j,−λ(−1)mdm,λS 2,−λ( j,m)

) tn

n!
.

Alternatively, (2.26) is also given by

e−1
λ

(
1 − e−λ(t)

)
= e−λ

(
e−λ(t) − 1

)
=

∞∑
n=0

Beln,−λ(1)
tn

n!
. (2.27)

Therefore, by (2.26) and (2.27), we obtain the following theorem.

Theorem 9. For n ≥ 0, we have

Beln,−λ(1) =

n∑
j=0

j∑
m=0

(
n
j

)
(1)n− j,−λ(−1)mdm,λS 2,−λ( j,m).

3. Further remarks

Let f (x) be the probability density function of the continuous random variable X, and let g(x) be a
real valued function. Then the expectation of g(X), E[g(X)], is defined by

E[g(X)] =

∫ ∞

−∞

g(x) f (x)dx, (see [18]). (3.1)

A continuous random variable X, whose density function is given by

f (x) =

 βe−βx (βx)α−1

Γ(α) , if x ≥ 0,
0, if x < 0,

(3.2)

for some β > 0 and α > 0, is said to be the gamma random variable with parameters α, β and denoted
by X ∼ Γ(α, β).

Let X ∼ Γ(1, 1). Then, for all t < 1, we have

E
[
eXt · e−1

λ (t)
]

= e−1
λ (t)

∫ ∞

0
exte−xdx

=
1

1 − t
e−1
λ (t) =

∞∑
n=0

dn,λ
tn

n!
. (3.3)

Clearly, we also have

E
[
eXte−1

λ (t)
]

=

∞∑
n=0

( n∑
m=0

(
n
m

)
(−1)n−m,λE[Xm]

) tn

n!
. (3.4)

Therefore, by (3.3) and (3.4), we obtain the following equations.
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For n ≥ 0, we have
n∑

m=0

(
n
m

)
(−1)n−m,λE[Xm] = dn,λ,

and, more generally, we also have
n∑

m=0

(
n
m

)
(x − 1)n−m,λE[Xm] = dn,λ(x).

Unless otherwise stated, for the rest of this section we assume that λ ∈ (0, 1). The degenerate
gamma function Γλ(x), which is initially defined for 0 < Re(s) < 1

λ
by the following integral

Γλ(s) =

∫ ∞

0
e−1
λ (t)ts−1dt, (see [9, 14]), (3.5)

can be continued to a meromorphic function on C, whose only singularities are simple poles at s =

0,−1,−2, . . . , 1
λ
, 1
λ

+ 1, 1
λ

+ 2, . . . . Thus, by (3.5), we get

Γλ(k) =
Γ(k)

(1)k+1,λ
,

(
k ∈ N, λ ∈ (0,

1
k

)
)
, (3.6)

and, in particular, we have

Γλ(1) =
1

1 − λ
, (see [9]).

A random variable X = Xλ is said to have the degenerate gamma distribution with parameters α and β,( 1
λ
> α > 0, β > 0

)
, and denoted by X ∼ Γλ(α, β), if its probability density function has the form

fλ(x) =

{ 1
Γλ(α)β(βx)α−1e−1

λ (βx), if x ≥ 0,
0, otherwise.

Note that d
dxec

λ(x) = cec−λ
λ (x), for any constant c. Then, for X ∼ Γλ(1, 1), we have

E
[
et−λ
λ (X)

]
= (1 − λ)

∫ ∞

0
et−λ
λ (x)e−1

λ (x)dx (3.7)

= (1 − λ)
∫ ∞

0
et−1−λ
λ (x)dx =

1
1 − λ

1
1 − t

e−1
λ (t)eλ(t)

= (1 − λ)
∞∑

l=0

dl,λ
tl

l!

∞∑
m=0

(1)m,λ
tm

m!

=

∞∑
n=0

(1 − λ)
n∑

l=0

dl,λ(1)n−l,λ

(
n
l

)
tn

n!
.

Evidently, we also have

E
[
et−λ
λ (X)

]
= E

[ 1
1 + λX

(
1 + λX

) t
λ

]
=

∞∑
n=0

E
[ 1
1 + λX

(1
λ

log(1 + λX)
)n] tn

n!
. (3.8)

Therefore, (3.7) and (3.8), we obtain the following theorem.
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Theorem 10. For X ∼ Γλ(1, 1), we have

E
[ 1
1 + λX

(1
λ

log(1 + λX)
)n]

= (1 − λ)
n∑

l=0

dl,λ(1)n−l,λ

(
n
l

)
.

Now, we observe that

(
log(1 + λX)

)n
= n!

∞∑
m=n

S 1(m, n)
λm

m!
Xm, (n ≥ 0),

where S 1(n,m) are the Stirling numbers of the first kind, (see [17,19,20]). In turn, we have

E
[ 1
1 + λX

(1
λ

log(1 + λX)
)n]

=
n!
λn

∞∑
m=n

S 1(m, n)
λm

m!
E
[ Xm

1 + λX

]
. (3.9)

From Theorem 11 and (3.9), we have

∞∑
n=m

S 1(n,m)
λm

m!
E
[ Xm

1 + λX

]
= (1 − λ)

λn

n!

n∑
l=0

dl,λ(1)n−l,λ

(
n
l

)
, (n ≥ 0),

where X ∼ Γλ(1, 1).
For X1, X2, . . . , Xr ∼ Γ(1, 1), assume that X1, X2, . . . , Xr are independent. Then we have

E
[
e(X1+X2+···+Xr)tex−1

λ (t)
]

= E
[
eX1t]E[

eX2t] · · · E[
eXrt] · ex−1

λ (t) (3.10)

=

( 1
1 − t

)
×

( 1
1 − t

)
× · · · ×

( 1
1 − t

)
︸                                    ︷︷                                    ︸

r−times

ex−1
λ (t)

=

∞∑
n=0

d(r)
n (x)

tn

n!
.

Alternatively, (3.10) is given by

E
[
e(X1+···+Xr)tex−1

λ (t)
]

(3.11)

=

∞∑
l=0

E
[
(X1 + · · · + Xr)l] tl

l!

∞∑
m=0

(x − 1)m,λ
tm

m!

=

∞∑
n=0

( n∑
l=0

(
n
l

)
E
[
(X1 + · · · + Xr)l](x − 1)n−l,λ

) tn

n!
.

By (3.10) and (3.11), we get

d(r)
n,λ(x) =

n∑
l=0

(
n
l

)
E
[
(X1 + · · · + Xr)l](x − 1)n−l,λ, (n ≥ 0).
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4. Conclusions

In this paper, we have dealt with the degenerate derangement polynomials dn,λ(x), which are a
degenerate version of the derangement polynomials dn(x). We derived their explicit expressions,
recurrence relations and some identities involving those polynomials and numbers and other special
polynomials and numbers such as the fully degenerate Bell polynomials, the degenerate Fubini
polynomials and the degenerate Stirling numbers of both kinds. We also introduced the higher-order
degenerate derangement polynomials. Then we explored the degenerate gamma distributions as a
degenerate version of the gamma distributions and showed that the moments of distributions coming
from some variants of degenerate gamma distributions are related to the degenerate derangement
polynomials or the degenerate derangement numbers or the higher-order degenerate derangement
polynomials.

In recent years, the study of many special numbers and polynomials has been carried out by using
several different methods, which include generating functions, combinatorial methods, umbral
calculus, p-adic analysis, probability theory, special functions and differential equations. Moreover,
the same has been done for various degenerate versions of quite a few special numbers and
polynomials. Motivations for studying degenerate versions arise from their interests not only in
combinatorial and arithmetical properties but also in their applications to symmetric identities,
differential equations and probability theories.

It is one of our future projects to continue to investigate many ordinary and degenerate special
numbers and polynomials by various means and to find their applications in physics, science and
engineering as well as in mathematics.
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