Research article Special Issues

Representations of modified type 2 degenerate poly-Bernoulli polynomials

  • Received: 07 January 2022 Revised: 26 March 2022 Accepted: 10 April 2022 Published: 13 April 2022
  • MSC : 05A19, 11B73, 11B83

  • Research on the degenerate versions of special polynomials provides a new area, introducing the $ \lambda $-analogue of special polynomials and numbers, such as $ \lambda $-Sheffer polynomials. In this paper, we propose a new variant of type 2 Bernoulli polynomials and numbers by modifying a generating function. Then we derive explicit expressions and their representations that provide connections among existing $ \lambda $-Sheffer polynomials. Also, we provide the explicit representations of the proposed polynomials in terms of the degenerate Lah-Bell polynomials and the higher-order degenerate derangement polynomials to confirm the presented identities.

    Citation: Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim. Representations of modified type 2 degenerate poly-Bernoulli polynomials[J]. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638

    Related Papers:

  • Research on the degenerate versions of special polynomials provides a new area, introducing the $ \lambda $-analogue of special polynomials and numbers, such as $ \lambda $-Sheffer polynomials. In this paper, we propose a new variant of type 2 Bernoulli polynomials and numbers by modifying a generating function. Then we derive explicit expressions and their representations that provide connections among existing $ \lambda $-Sheffer polynomials. Also, we provide the explicit representations of the proposed polynomials in terms of the degenerate Lah-Bell polynomials and the higher-order degenerate derangement polynomials to confirm the presented identities.



    加载中


    [1] S. Araci, Degenerate poly type 2-Bernoulli polynomials, Math. Sci. Appl. E-Notes, 9 (2021), 1–8. https://doi.org/10.36753/mathenot.839111 doi: 10.36753/mathenot.839111
    [2] A. Bayad, D. S. Kim, Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math., 20 (2010), 23–28.
    [3] A. Bayad, M. Hajli, On the multidimensional zeta functions associated with theta functions, and the multidimensional Appell polynomials, Math. Method. Appl. Sci., 43 (2020), 2679–2694 https://doi.org/10.1002/mma.6075 doi: 10.1002/mma.6075
    [4] A. Bayad, T. Kim, Results on values of Barnes polynomials, Rocky Mountain J. Math., 43 (2013), 1857–1869. https://doi.org/10.1216/RMJ-2013-43-6-1857 doi: 10.1216/RMJ-2013-43-6-1857
    [5] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), 28–33. https://doi.org/10.1007/BF01900520 doi: 10.1007/BF01900520
    [6] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979), 51–88.
    [7] U. Duran, M. Acikgoz, On generalized degenerate Gould-Hopper based fully degenerate Bell polynomials, JMCS, 21 (2020), 243–257. http://doi.org/10.22436/jmcs.021.03.07 doi: 10.22436/jmcs.021.03.07
    [8] M. Hajli, The spectral properties of a continuous family of zeta functions, Int. J. Number Theory, 16 (2020), 693–717. https://doi.org/10.1142/S1793042120500359 doi: 10.1142/S1793042120500359
    [9] H. Haroon, W. A. Khan, Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials, Commun. Korean Math. Soc., 33 (2018), 651–669. https://doi.org/10.4134/CKMS.c170217 doi: 10.4134/CKMS.c170217
    [10] M. Hajli, On a formula for the regularized determinant of zeta functions with application to some Dirichlet series, Q. J. Math., 71 (2020), 843–865. https://doi.org/10.1093/qmathj/haaa006 doi: 10.1093/qmathj/haaa006
    [11] G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147–159.
    [12] L. C. Jang, D. S. Kim, T. Kim, H. Lee, $p$-adic integral on $Z_p$ associated with degenerate Bernoulli polynomials of the second kind, Adv. Differ. Equ., 2020 (2020), 278. https://doi.org/10.1186/s13662-020-02746-2 doi: 10.1186/s13662-020-02746-2
    [13] M. Kaneko, Poly-Bernoulli numbers, J. Theor. Nombr. Bordx., 9 (1997), 221–228.
    [14] W. A. Khan, R. Ali, K. A. H. Alzobyd, N. Ahmed, A new family of degenerate poly-Genocchi polynomials with its certain properties, J. Funct. Spaces, 2021 (2021), 6660517. https://doi.org/10.1155/2021/6660517 doi: 10.1155/2021/6660517
    [15] D. S. Kim, T. Kim, Lah-Bell numbers and polynomials, Proc. Jangjeon Math. Soc., 23 (2020), 577–586.
    [16] D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. https://doi.org/10.1134/S1061920820020090 doi: 10.1134/S1061920820020090
    [17] D. S. Kim, T. Kim, Degenerate Sheffer sequences and $\lambda$-Sheffer sequences, J. Math. Anal. Appl., 493 (2021), 124521. https://doi.org/10.1016/j.jmaa.2020.124521 doi: 10.1016/j.jmaa.2020.124521
    [18] T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24 (2017), 241–248. https://doi.org/10.1134/S1061920817020091 doi: 10.1134/S1061920817020091
    [19] T. Kim, D. S. Kim, A note on type 2 Changhee and Daehee polynomials, RACSAM, 113 (2019), 2763–2771. https://doi.org/10.1007/s13398-019-00656-x doi: 10.1007/s13398-019-00656-x
    [20] T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 124017. https://doi.org/10.1016/j.jmaa.2020.124017 doi: 10.1016/j.jmaa.2020.124017
    [21] T. Kim, D. S. Kim, J. Kwon, H. Lee, Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials, Adv. Differ. Equ., 2020 (2020), 168. https://doi.org/10.1186/s13662-020-02636-7 doi: 10.1186/s13662-020-02636-7
    [22] T. Kim, D. S. Kim, H. Lee, L. Jang, A note on degenerate derangement polynomials and numbers, AIMS Mathematics, 6 (2021), 6469–6481. https://doi.org/10.3934/math.2021380 doi: 10.3934/math.2021380
    [23] T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331.
    [24] T. K. Kim, D. S. Kim, H. I. Kwon, A note on degenerate Stirling numbers and their applications, Proc. Jangjeon Math. Soc., 21 (2018), 195–203.
    [25] F. Qi, J. L. Wang, B. N. Guo, Simplifying differential eqpuations concerning degenerate Bernoulli and Euler numbers, T. A. Razmadze Math. In., 172 (2018), 90–94. https://doi.org/10.1016/j.trmi.2017.08.001 doi: 10.1016/j.trmi.2017.08.001
    [26] S. Roman, The umbral calculus (Pure and Applied Mathematics), London: Academic Press, 1984.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1352) PDF downloads(64) Cited by(3)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog