Research on the degenerate versions of special polynomials provides a new area, introducing the $ \lambda $-analogue of special polynomials and numbers, such as $ \lambda $-Sheffer polynomials. In this paper, we propose a new variant of type 2 Bernoulli polynomials and numbers by modifying a generating function. Then we derive explicit expressions and their representations that provide connections among existing $ \lambda $-Sheffer polynomials. Also, we provide the explicit representations of the proposed polynomials in terms of the degenerate Lah-Bell polynomials and the higher-order degenerate derangement polynomials to confirm the presented identities.
Citation: Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim. Representations of modified type 2 degenerate poly-Bernoulli polynomials[J]. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
Research on the degenerate versions of special polynomials provides a new area, introducing the $ \lambda $-analogue of special polynomials and numbers, such as $ \lambda $-Sheffer polynomials. In this paper, we propose a new variant of type 2 Bernoulli polynomials and numbers by modifying a generating function. Then we derive explicit expressions and their representations that provide connections among existing $ \lambda $-Sheffer polynomials. Also, we provide the explicit representations of the proposed polynomials in terms of the degenerate Lah-Bell polynomials and the higher-order degenerate derangement polynomials to confirm the presented identities.
[1] | S. Araci, Degenerate poly type 2-Bernoulli polynomials, Math. Sci. Appl. E-Notes, 9 (2021), 1–8. https://doi.org/10.36753/mathenot.839111 doi: 10.36753/mathenot.839111 |
[2] | A. Bayad, D. S. Kim, Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math., 20 (2010), 23–28. |
[3] | A. Bayad, M. Hajli, On the multidimensional zeta functions associated with theta functions, and the multidimensional Appell polynomials, Math. Method. Appl. Sci., 43 (2020), 2679–2694 https://doi.org/10.1002/mma.6075 doi: 10.1002/mma.6075 |
[4] | A. Bayad, T. Kim, Results on values of Barnes polynomials, Rocky Mountain J. Math., 43 (2013), 1857–1869. https://doi.org/10.1216/RMJ-2013-43-6-1857 doi: 10.1216/RMJ-2013-43-6-1857 |
[5] | L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), 28–33. https://doi.org/10.1007/BF01900520 doi: 10.1007/BF01900520 |
[6] | L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979), 51–88. |
[7] | U. Duran, M. Acikgoz, On generalized degenerate Gould-Hopper based fully degenerate Bell polynomials, JMCS, 21 (2020), 243–257. http://doi.org/10.22436/jmcs.021.03.07 doi: 10.22436/jmcs.021.03.07 |
[8] | M. Hajli, The spectral properties of a continuous family of zeta functions, Int. J. Number Theory, 16 (2020), 693–717. https://doi.org/10.1142/S1793042120500359 doi: 10.1142/S1793042120500359 |
[9] | H. Haroon, W. A. Khan, Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials, Commun. Korean Math. Soc., 33 (2018), 651–669. https://doi.org/10.4134/CKMS.c170217 doi: 10.4134/CKMS.c170217 |
[10] | M. Hajli, On a formula for the regularized determinant of zeta functions with application to some Dirichlet series, Q. J. Math., 71 (2020), 843–865. https://doi.org/10.1093/qmathj/haaa006 doi: 10.1093/qmathj/haaa006 |
[11] | G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147–159. |
[12] | L. C. Jang, D. S. Kim, T. Kim, H. Lee, $p$-adic integral on $Z_p$ associated with degenerate Bernoulli polynomials of the second kind, Adv. Differ. Equ., 2020 (2020), 278. https://doi.org/10.1186/s13662-020-02746-2 doi: 10.1186/s13662-020-02746-2 |
[13] | M. Kaneko, Poly-Bernoulli numbers, J. Theor. Nombr. Bordx., 9 (1997), 221–228. |
[14] | W. A. Khan, R. Ali, K. A. H. Alzobyd, N. Ahmed, A new family of degenerate poly-Genocchi polynomials with its certain properties, J. Funct. Spaces, 2021 (2021), 6660517. https://doi.org/10.1155/2021/6660517 doi: 10.1155/2021/6660517 |
[15] | D. S. Kim, T. Kim, Lah-Bell numbers and polynomials, Proc. Jangjeon Math. Soc., 23 (2020), 577–586. |
[16] | D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. https://doi.org/10.1134/S1061920820020090 doi: 10.1134/S1061920820020090 |
[17] | D. S. Kim, T. Kim, Degenerate Sheffer sequences and $\lambda$-Sheffer sequences, J. Math. Anal. Appl., 493 (2021), 124521. https://doi.org/10.1016/j.jmaa.2020.124521 doi: 10.1016/j.jmaa.2020.124521 |
[18] | T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24 (2017), 241–248. https://doi.org/10.1134/S1061920817020091 doi: 10.1134/S1061920817020091 |
[19] | T. Kim, D. S. Kim, A note on type 2 Changhee and Daehee polynomials, RACSAM, 113 (2019), 2763–2771. https://doi.org/10.1007/s13398-019-00656-x doi: 10.1007/s13398-019-00656-x |
[20] | T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 124017. https://doi.org/10.1016/j.jmaa.2020.124017 doi: 10.1016/j.jmaa.2020.124017 |
[21] | T. Kim, D. S. Kim, J. Kwon, H. Lee, Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials, Adv. Differ. Equ., 2020 (2020), 168. https://doi.org/10.1186/s13662-020-02636-7 doi: 10.1186/s13662-020-02636-7 |
[22] | T. Kim, D. S. Kim, H. Lee, L. Jang, A note on degenerate derangement polynomials and numbers, AIMS Mathematics, 6 (2021), 6469–6481. https://doi.org/10.3934/math.2021380 doi: 10.3934/math.2021380 |
[23] | T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331. |
[24] | T. K. Kim, D. S. Kim, H. I. Kwon, A note on degenerate Stirling numbers and their applications, Proc. Jangjeon Math. Soc., 21 (2018), 195–203. |
[25] | F. Qi, J. L. Wang, B. N. Guo, Simplifying differential eqpuations concerning degenerate Bernoulli and Euler numbers, T. A. Razmadze Math. In., 172 (2018), 90–94. https://doi.org/10.1016/j.trmi.2017.08.001 doi: 10.1016/j.trmi.2017.08.001 |
[26] | S. Roman, The umbral calculus (Pure and Applied Mathematics), London: Academic Press, 1984. |