Research article

Generalized $ (p, q) $-analogues of Dragomir-Agarwal's inequalities involving Raina's function and applications

  • Received: 19 January 2022 Revised: 02 March 2022 Accepted: 02 March 2022 Published: 13 April 2022
  • MSC : 05A30, 26A33, 26A51, 34A08, 26D07, 26D10, 26D15

  • In this paper, we introduce the class of generalized strongly convex functions using Raina's function. We derive two new general auxiliary results involving first and second order $ (p, q) $-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also found corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. We discuss some special cases about generalized convex functions. To support our main results, we offer applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to $ (p, q) $-differentiable functions of first and second order that are bounded in absolute value.

    Citation: Miguel Vivas-Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor. Generalized $ (p, q) $-analogues of Dragomir-Agarwal's inequalities involving Raina's function and applications[J]. AIMS Mathematics, 2022, 7(6): 11464-11486. doi: 10.3934/math.2022639

    Related Papers:

  • In this paper, we introduce the class of generalized strongly convex functions using Raina's function. We derive two new general auxiliary results involving first and second order $ (p, q) $-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also found corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. We discuss some special cases about generalized convex functions. To support our main results, we offer applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to $ (p, q) $-differentiable functions of first and second order that are bounded in absolute value.



    加载中


    [1] R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, E. Asian J. Appl. Math., 21 (2015), 191–203.
    [2] M. Vivas-Cortez, R. Liko, A. Kashuri, J. E. H. Hernández, New quantum estimates of trapezium-type inequalities for generalized $\varphi$-convex functions, Mathematics, 7 (2019), 1047. https://doi.org/10.3390/math7111047 doi: 10.3390/math7111047
    [3] V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2002.
    [4] R. Chakrabarti, R. Jagannathan, A $(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A, 24 (1991). https://doi.org/10.1088/0305-4470/24/13/002
    [5] M. Tunç, E. Gov, Some integral inequalities via $(p, q)$-calculus on finite intervals, Filomat, 19 (2016), 95. https://doi.org/10.2298/FIL2105421T doi: 10.2298/FIL2105421T
    [6] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282
    [7] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [8] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. https://doi.org/10.7153/jmi-09-64 doi: 10.7153/jmi-09-64
    [9] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090
    [10] W. J. Liu, H. F. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. https://doi.org/10.20944/preprints201612.0102.v1 doi: 10.20944/preprints201612.0102.v1
    [11] M. U. Awan, S. Talib, M. A. Noor, Y. M. Chu, K. I. Noor, On post quantum estimates of upper bounds involving twice $(p, q)$-differentiable preinvex function, J. Inequal. Appl., 2020 (2020), 229. https://doi.org/10.1186/s13660-020-02496-5 doi: 10.1186/s13660-020-02496-5
    [12] T. S. Du, C. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. https://doi.org/10.7153/jmi-2021-15-16 doi: 10.7153/jmi-2021-15-16
    [13] Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via $(\alpha, m)$- convexity, J. Inequal. Appl., 2018 (2018), 264. https://doi.org/10.1186/s13660-018-1860-2 doi: 10.1186/s13660-018-1860-2
    [14] M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. H. Hernández, Quantum estimates of Ostrowski inequalities for generalized $\phi$-convex functions, Symmetry, 11 (2019), 16. https://doi.org/10.3390/sym11121513 doi: 10.3390/sym11121513
    [15] M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. H. Hernández, Some inequalities using generalized convex functions in quantum analysis, Symmetry, 11 (2019), 14. https://doi.org/10.3390/sym11111402 doi: 10.3390/sym11111402
    [16] X. S. Zhou, C. X. Huang, H. J. Hu, L. Liu, Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013 (2013), 303. https://doi.org/10.1186/1029-242X-2013-303 doi: 10.1186/1029-242X-2013-303
    [17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies, Elsevier, 2006.
    [18] D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 830. https://doi.org/10.3390/math7090830 doi: 10.3390/math7090830
    [19] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press, Chichester, UK, 1985.
    [20] N. S. Barnett, P. Cerone, S. S. Dragomir, J. Roumeliotis, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure Appl. Math., 2 (2001), 1–18.
    [21] N. S. Barnett, S. S. Dragomir, Some elementary inequalities for the expectation and variance of a random variable whose pdf is defined on a finite interval, RGMIA Res. Rep. Collect., 2 (1999), 1–7. https://doi.org/10.7153/mia-06-03 doi: 10.7153/mia-06-03
    [22] P. Cerone, S. S. Dragomir, On some inequalities for the expectation and variance, Korean J. Comput. Appl. Math., 2 (2000), 357–380. https://doi.org/10.1007/BF02941972 doi: 10.1007/BF02941972
    [23] J. E. Pečarič, F. Proschan, Y. L. Tong, Convex functions, partial ordering and statistical applications, Academic Press: New York, 1991.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1245) PDF downloads(36) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog