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1. Introduction

The degenerate Stirling, Bernoulli and Euler polynomials and numbers were first introduced by
Carlitz [5, 6] with intriguing results of arithmetic and combinatorial identities. In recent years, much
attention has been paid both to providing degenerate versions of special polynomials and numbers, and
finding their relations and connections to known degenerate polynomials, as well as transcendental
functions such as degenerate gamma functions and degenerate Laplace transforms [18]. In general,
degenerate versions of special functions are provided by modifying generating functions in terms of
the degenerate exponential functions and the degenerate logarithm function, (see [1,7, 11,12, 14, 16,
20,21,25] and the references therein). To investigate their arithmetic and combinatorial properties and
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relations, the research is usually performed by combinatorial methods, umbral calculus techniques,
p-adic analysis, and differential equations. In particular, the relation between two A-Sheffer sequences
can be expressed by the representation formula (3.6) that is recently established [17] replacing linear
functionals and differential operators by A-functionals and A-differential operators, respectively, in
Rota’s theory [26] of Sheffer sequences.

The aim of the paper is to introduce a new degenerate version of the type 2 poly-Bernoulli
polynomials [21] called modified type 2 degenerate poly-Bernoulli polynomials (2.1) by modifying
the generating function and present their properties as well as relations to other degenerate versions of
polynomials. Also, we provide the computational examples to obtain explicit representations of the
proposed polynomials for various k and A based on two well known special polynomials: the
degenerate Lah-Bell polynomials, and the higher-order degenerate derangement polynomials.

The rest of the paper is organized as follows: Section 2 introduces a new class of degenerate type 2
poly-Bernoulli polynomials and related numbers. Then, we present their properties and expressions in
terms of the degenerate Stirling numbers of the second kind and the degenerate type 2 Bernoulli
polynomials. Section 3 reviews the A-linear functionals, related A-differential operators, and A-Sheffer
polynomials, and presents the connection between the proposed polynomials and the known
degenerate polynomials, such as the type 2 degenerate Bernoulli polynomials, the degenerate Hermite
polynomials, the degenerate derangement polynomials, the higher-order degenerate Euler
polynomials, and the degenerate Lah-Bell polynomials. Section 4 presents several specific examples
to confirm the computed results between the proposed polynomials and the existing degenerate type
polynomials, the degenerate Lah-Bell polynomials and the degenerate derangement polynomials.
Section 5 concludes the paper. Before closing this section, we recall several definitions to introduce
our new type of poly-Bernoulli polynomials.

Throughout this paper, we denote N the set of all natural numbers and Z be the set of all integers.
The Bernoulli polynomials B,(x) and the Bernoulli numbers B, for N U {0} are respectively given by
the generating functions (see [2, 16, 21] for details):

t
el —1

RS " rox g, !
e —;Bn(x)a and  —— —;BHE, (Il < 1). (1.1)

The degenerate Bernoulli polynomials B, ,(x) and the degenerate Bernoulli numbers B, , are
respectively defined by (see [5, 6] for detail)

(o)

t " t "
=SB ()= and —0 =3B L. 12
e 190 2 Ay and 2 A (1.2)

n=0 n=0

(o0

Here, the degenerate exponential functions e}(7) for A € R\{0} are given by

ZCRIERUIEDY Onirs ea®=eh0= Y Dy, (1.3)

n=0

where (x),, 1s the A-falling factorial sequence defined by (see [21])
a1 =x(x=Dx=22)---(x—(m—-1)) forn > 1 and (x)g, = 1. (1.4)

AIMS Mathematics Volume 7, Issue 6, 11443—-11463.



11445

The degenerate Bernoulli polynomials qu”)d(x) of order r > 1 are defined by (see [16])

t r oo © " " ‘ r_ 00 (r)ﬁ
(ea(ﬂ—l)e”(t)_ZBi(x) nd (ea(t)—l) = 2, By 1.3

n=0 n=0

The degenerate type 2-Bernoulli polynomials S, 4(x) in [16] are considered as

t o had ﬁ
meﬂ(n—;ﬁmmm, (i < 1), w6

and the related extension, the type 2 degenerate Bernoulli polynomials ,BE:)A(x) of order r is introduced
(see [19])

(e/l(t)—e/ll(l‘)) ﬂ()_zﬁ( (X%, (1] < 1). (07

The type 2 degenerate Euler polynomials &, ,(x) are introduced in [12] based on the following
generating function:

N .
() = ;Sn,m)n—,, (1] < 1). (1.8)

1210) +eﬁl(t)

Next, we briefly recall some basic functions used throughout the paper. The polylogarithm functions
Lix(?) for k € Z are defined by (see [13,19])

X mn

Li = > o (<1,

n=1
Note that Li,(¢) for k = 1 satisfy

X

L=y % — _log(1 - 1).

n=1

The degenerate polylogarithm functions Li; ,(¢) for k € Z are given by (see [20])

x© -1 n—1 1 "
Liga() = )| ﬁt (I < D). (1.9)

n=1

The degenerate Stirling numbers S, ;(n, m) of the second kind are defined by (see [23,24])

1 i n
%(e/l(t) - D"ey(t) = Z Sz’,l(n,m)%, (n>0). (1.10)

Note that (see [23])
Ona = ) Saam)(On, (12 0),
m=0
where (7), 1s the falling factorial sequence defined by (see [16])

Oy =tt-1D(t=2)---(t—m—-1))forn >1and (¢)g = 1.
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2. Modified type 2 degenerate poly-Bernoulli polynomials

In this section, we introduce a new type of degenerate poly-Bernoulli polynomials and numbers and
discuss their properties and representations in relation to the degenerate type 2-Bernoulli polynomials.

Definition 2.1. The modified type 2 degenerate poly-Bernoulli polynomials %(ki(x) for k € Z are
defined by the generating function

Lig (1 — e (-1)) o ®
)~ e *“)_,,Z:% LF

In the case of x = 0, we call %% = 581(3(0) the modified type 2 degenerate poly-Bernoulli numbers.

Remark 2.2. By noting that Liy ,(1 —e,(—t)) = t for k = 1, EB( )(x) vield the degenerate type 2-
Bernoulli polynomials 3, ,(x) listed in (1.6), we can show that hmﬂ_,o B! ;(x) Bn(x) for k = 1, where
Bn(x) are type 2-Bernoulli polynomials [13] that satisfy
(o] l‘n
M= B0
g n!

We next state the expression for EB%(x) as the sum of the products of the modified type 2 degenerate
poly-Bernoulli numbers and A-falling factorial sequence.

,1()_

lim——
200 €1(1) — ex(—1)

Theorem 2.3. Let k be any integer. Then the following identity holds true for all n > 0,

B () = Z( )(%(k) ) 2.1)

m=0
where (x), 1 is the A-falling factorial sequence in (1.4).

Proof. From Definition 2.1, we can consider the generating series of the polynomials EB% as the
indicated product:

o0

5 (o Ll —e=D)
nZ: ()- e-ey0

R i

- t
Z (m) (SB(k) ) (x)n -m, /ln‘

m=0

By the comparison of coeflicients, we have the desired identity. O

—Le(-tand1 - At = e —1), we have
(=" Dpi/a d
(n—1)nk
e (—1)
T A=) - ex(-1)

A(—
= #ﬁ(—)t)llik_l’ﬂ (1 - e/l(_t))

Remark 2.4. Since Le)(—1) = ==

d
= Liga (1 = ex(—1) = Z S =e=n)

dt

n=1

Lij_1 2 (1 = e(=1)
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for k > 2. By the multiple integrals of Li; , (1 — e (—1)), the function Liy , (1 — e (—t)) is computed, and
%1(1]3()6) can be expressed as

y ) elt) (e e i)
NG ! 1 )
Z o ) ! eﬂ(t) - ezl(t)f l—ei=n)Jo 1-ea-1) j(; 1- el(—tk_l)tk_ldtk_1 dndt,

n=0

1-1/_
in which k — 1 times of integrals are performed by the product with fﬁeﬁ((_t[kki'l)) each time. For example,

when k = 2, we have

e;(0) e (-h)
2) A
nZ?% ()n. ea(t) — ;' (1) Jo T—e—m

0 e L
=T s Zﬁn,m D=1 dr

te3(1) Z Bma(l =) (=D)"r"

Ta -4 mel ml

( l)m o
(;ﬁnﬂ(x) )[Zﬁmﬂ( - )m_l_l%)
(B NI
-SSP -0

n=0 \m=0

(2.2)

Thus, by comparing coefficients in both sides of (2.2), we have that the identity holds
@ n INGDN
B () = Z (m)ﬁ @Bl = )

m=0

Next, we can express the modified type 2 degenerate poly-Bernoulli polynomials in terms of the
degenerate Stirling numbers of the second kind and the degenerate type 2-Bernoulli polynomials (1.6).

Theorem 2.5. Forn > 0 and A € R\{0}, the following identity holds:

n m+l ye-q m
n A (D) (1)
SOEDY (m)ﬁn—m,a(X) > o " i/;{,k_l Saa(m + 1,0),
=1

m=0

where S, ,(n,m) are the degenerate Stirling numbers of the second kind defined in (1.10).
Proof. We first note that the degenerate polylogarithm function (1.9) for 0 < A < 1 satisfies

. _ _ b _ -1
Liga(1—ex(=0) 1 3 CO™ Dty

t ] (m — 1)!mk

m=1

~ 0" D)paa 1
-—Z( " D L eor

k-1

(2.3)

mk-1

m— n—1
— Z ( /l) (1)m 1/4 ZSZJ(”, m)(_l)n+mtn_'
=1 .

"
(n + Dm+! S24n+1,m) n!

= (”“ ") ja(=1)"

n=0
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From (2.3) and Definition 2.1, we can see that

3 an
Z (k)( ) = i (1= ex(-1)
n=0 Do) —e (0
> o n+l ;=1 n
= A N (D a(=1) "
B (;ﬁnl(x)ﬁ) [nz—(; (Z‘f (n + mk-1 Saa(n+1,m) o1 (2.4)
> m+l1 -1 "
= AT (Deaa(=1) o
Comparison of the coeflicients on both sides concludes the desired result for 4 # 0. |

Using Theorem 2.3 and Eq (2.3), we have the following result.
Theorem 2.6. For n > 0 and k € Z, the following relation holds:

BEM) = B = > A Dpapa(= 1" w18 5 40, m). (2.5)

m=1

Proof. First, notice that, from (2.3), we have

el n /lm—l 1 " -1 n—1
Lipi (1 - ey(=1) = Z Z (Dm1/2(=1)

n=1 \m=1

tn
Sa.a(n,m) - (2.6)
n!

mk-1

On the other hand, by the virtue of the result of Theorem 2.3, it follows that

Lira (1 - ex(=0) = (ex(t) = €1 Z B -

(D - (DM)—Z B

Mg

3
I
(=]

. 2.7)
ZJ’l
=Z[ (Bor Dot = By (D) |
n=0 \m=
=y (szs(k;(l) B (- 1))
n=1
which shows the desired result by comparison of the coefficients of (2.6) and (2.7). O

3. Representations of Modified Type 2 Degenerate poly-Bernoulli Polynomials

In this section, we recall a family of A-linear functionals on the space of polynomials, A-differential
operators related to the family of A-linear functionals, and A-Sheffer sequences. The details on these
concepts and definitions can be found in [2—4, 8, 10, 17] and the references therein.

Let ¥ be the algebra of exponential formal power series in ¢ over the field C of complex numbers

. {f(r) =Y allae @},

n=0
AIMS Mathematics Volume 7, Issue 6, 11443—-11463.
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and let P be the algebra of polynomials in x over C, i.e.,

(o8]

P=C|x] = {Zakxk

k=0

a; € C with g, = 0 for all but finite number of i} .

Recall that ((x),,1), form a basis for the C-vector space P. Then, the A-linear functional {(f(7)|-),
on P for f(1) = Yoy ayt; € F is defined by

(fOIXn)2 = an, (3.1)

and satisfies
() nada = 11, (3.2)

where 6, 1s the Kronecker delta.

The order o(f(#)) of the formal power series for a nontrivial f(¢) is the smallest integer k for which
a; does not vanish. In particular, f(¢) is called a delta series if o(f(r)) = 1, while f(¢) is called an
invertible series if o(f(¢)) = 0, (see [17] for details).

In [17], the A- differential operator (), of order k on P is defined by

(2(0)0 = {(")k(”"‘“ osksn (33)

0, if k> n,

where (n)y = n(n—1)(n—2)---(n—k+1)forn > 1 and (n)y = 1. In general, for f(r) = X2, ak,i—k! S
the A-differential operator (f(¢)), is defined by

n

(f(0)(X)na = Z (Z)ak(x)n—k,/l- (3.4)

k=0

Or equivalently, (f(#)), can be expressed by

(o)

(f0), = Y Tt

k=0

In particular, when f (1) = e}(¢) where e3(t) = 3,2 (X),, 15 (F(), satisfies

n!?

n

(e®), WM = Z (Z)(y)k,/l(x)n—k,/l = (x+ Y

k=0

For f(¢) a delta series and g(¢) an invertible series, i.e., o(f(¢)) = 1 and o(g(¢)) = 0, there exists a
unique sequence s, (x) of polynomials deg(s, (x)) = n satisfying the orthogonality condition

(8OO ]3,a0) =6 (n.k > 0).
Here, s, 4(x) is called the A-Sheffer sequence for (g(¢), f(¢)) and is denoted by s, ,(x) ~ (g(?), f(1)),.

AIMS Mathematics Volume 7, Issue 6, 11443—-11463.
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We recall that s, ,(x) ~ (g(?), f(¢)), if and only if

Sn,/l(-x)
(ﬂ»ﬁm—; o= (3.5)

where f(f) is the compositional inverse of f(f) and satisfies f (f(¢)) = f ( f (t)) =t
For given A-Sheffer sequences s, ,(x) ~ (g(?), f(?)), and 7, ,(x) ~ (h(z), {(1)),, the following relation
holds

n

$00(0) = ) Capia(x), (3.6)
k=0
where ¢, is obtained by
h(f(t
%:%<@»MNWum» (3.7)
K\ g (Fo) .

Therefore, since (x),1 ~ (1,1),, any A-Sheffer sequence s, ,(x) ~ (g(?), f(¢)), satisfies

=~ 1
Sn,/l(x) Z ' <m(f( )) > (x)k,/l- (3.8)

Remark 3.1. From (3.1), we have

< Lij (1 — e)(—
e (t) - ef(t)

> :iss,ﬁf;ni,(m”’l (X)), f({)%jf)“,
. !

m=0

so that (3.8) yields
B (x) = Z (’;) (3L,.) @ea. (3.9)

=0

Further, using (x);q = an:o ZT:O So.a(€,m)S 1 2(m, j)(x)jain (3.9), the identity holds

m

B (x) = Z ZZ( )SU(” m)S 1am, £ + (B Xea,

m=0 j=0 ¢=0

where S 1 (n,m) are the degenerate Stirling numbers of the first kind [24] given by
1 - "
— (log,(1+0)" = Z S1an.m)— (m 2 0).

Now, we explore the representations of the modified type 2 degenerate poly-Bernoulli polynomials
in terms of various known degenerate polynomials by using (3.6). We first note that from (3.5), the
corresponding A-Sheffer sequence for %fﬁ(x) is given by

(k) e,(t) — ' (1)
A0 (le,a(l —ei(— t))’t h (3.10)

AIMS Mathematics Volume 7, Issue 6, 11443—-11463.
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Theorem 3.2. Let 3, ,(x) be the degenerate type 2-Bernoulli polynomials (1.6). Then for any n > 0
and integer k € Z, we have

B (AT (D (=1) Sy — j+1,€
%(k; (x) = Z Z (VJZ) (Deaa(=1D)"7So.(n—j+1,¢) ().

S {1 (n—j+1)

Proof. From (1.6), (2.3), (3.1), (3.2), and Definition 2.1, the following computations are established.

(k) Lik,/l(l - e/l(_t)) y
0= < e —e; 0 (x)“>d
1
< le /1(1 - €/1( t))' (meﬂ(l))ﬁ (x)n,/1>/l
:Z n)ﬂ]x(y)< —Lig (1 — e (=1))| (x),- ]/1>
=0 !
" (S AT Deyya=D" Soa(m + 1,0/,
= n)ﬁ} 2() Z (Z ;’21—/11 2’(Amm+ 1! ]<t} | (x)n_j’/l>ﬂ
= m=0 \ (=1
= (n " A D eaa(=1)"7 Soan = j+1,0) ;
= 2. ])ﬁj/l(y)[; = —j+ 1) (n—p!
5% (n)ﬁ'A(y)/lf_l(l)f,lm(—l)"_j Saan=j+ 1.0
j=0 =1 I e (n=j+l)
which yields the result. O

Next, we consider the type 2 degenerate Bernoulli polynomials of order r defined in (1.7), which
satisfy the following A-Sheffer sequence

(ea(t) — ;' (D) t
t )L

g~
Theorem 3.3. For any n > 0 and integer k € Z, we have
(k) a n — Sz,/l(g +r, l’) n— (k) (r)
% (X) mZ:O(m) [Z:(; ([+r) [ n m—{,A ﬁ (X)

Proof. Let B,(x) = ¥ o ComBer(X), Cum € C. Then, by (3.8) with (3.7), we can obtain

_ ! <Lik,ﬁ<1 —e=n) e -e' o), >
Com = — - " (On.a
m! eﬁ(t)—eﬂl(t) t A
_ (1) LikaCl = ea(=0) (ea(t) — &' )
= | - (x)n—m,/l
m ex(t) —e; (1) t Pl
_(n)i" SM(€+r,r)<Li“(1 e (- >
m) = (e ex(t) — ef(t)
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n i Sz,{(f'i‘l",l’) n—m Lik,l(l—e/l(—t))
= Z {,— : = (On-m-e.4) >
m) £ ( Jrrr) l ety — ey (1) A
which yields the conclusion from <I% (X)n-m—e. ﬂ> = EBS‘_)m_ Y m]
Pl P i

We also consider the degenerate Hermite polynomials [9], which are defined by
S1(2) N "
t 2t) = ) H,(x)—,
&' (P)en n§:0 A

where H,, ,(x) can be considered to be the A-Sheffer sequence for (e A(%tz), é), or equivalently,

H, 1r2 d
na~leal =t .5 -
A 4 2/,

Let P, = {p(x) € C[x]|degp(x) < n} be an (n + 1) dimensional vector space over C. Since the
degenerate Hermite polynomials form a basis of the vector space P,, for every polynomial p(x) of
degree n we have

n

px) = Z CnicHi 2(x), (3.11)
k=0
where ¢, satisfies
1,\/t\" - 1,\/t\"
ea| 77 (—) p) =) cule| 5 (—) H (%)
4 J\2 = 4 J\2 ’ A
B (3.12)
= Cn,km!(sm,k = Cypmm..
k=0
Thus, we have an explicit form of ¢, .
Theorem 3.4. For any n > 0 and integer k € Z, we have
B9 (x) = n! Zn: Z (D2 *) H, (%)
mAVES T 2+ (m/2)!(n — € — m)l€) nlomA [N

=0 \ 0O<m<n—¢

m: even

Proof. Taking p(x) = B% (x) in (3.11), we have

m,

n

B0 = D encHeal).

=0

From (1.3), (3.7) and (3.12), we get

1 {1\ =l \ Ty
et ‘E<el(1t )(Lim(l —eﬂ(—z))) (E) (x)”’”>ﬂ

AIMS Mathematics Volume 7, Issue 6, 11443—-11463.
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C 1 L —e=0) (1),
2! < e —elo (4’ ) ‘ )”(x)“>ﬂ

1 (n <L1“(1 —e=)) (e/l (%tz)) (X)n—m>
2 A
[*

~20\e e/l(t)—ell(t)

N‘
L

_l n (l)m/l Lik,/l(l - 6/1(—l))
XAV mzzo 4mm!( €)2m< ea(t)—egl(t) (x)n—[—Zm,/l>/l
[5¢]
1 (n (D,
~2i\¢ mZ:O 22m A( _5)2’"%:()5 2m,A

0<m<n—{ 2m+[(m/2)|(n —{—m)'t! n—t=m, >

and yield the conclusive result.
Next, let df:;(x) be the degenerate derangement polynomials [22] of order r € N given by

RN N
= t)re/ll(t)eﬂ(t) = Z:(; df&(x)m.

These polynomials form a A-Sheffer sequence such that
dP(x) ~ (1 = 1) ex(0). 1),
Then, we have the following representation of EBLITZ(x).
Theorem 3.5. For any n > 0 and integer k € Z, we have
n\ < (r\(n - ;
R 111 RN P
=0 =0

Proof. Let p(x) = %;’fﬁ(x) € P,. Then we can express that

n

B = D cnd (),

=0

where ¢, satisfy

(=0 ex0r'| B (0)

‘\l;—\

Cn,t’ -

”) (=018, (x+ D)

NS Yoo,

J=0

Il
/_\/—\
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n\ < (r\(n—-"¢ .
LIS oo

which provides the conclusion. O

Remark 3.6. In the case of r = 1 in the previous result, the modified type 2 degenerate poly-Bernoulli
polynomials have the relation with the degenerate derangement polynomials of order 1 as

500 = (e =" et o) dtion.
=0

Recalling that the degenerate Bernoulli polynomials [6] of order r are given by

t Y = "
— )&= ) B x)—,
(eﬂ(t) - 1) e Z:(; na )y
we obtain the following relation.
Theorem 3.7. For any n > 0 and integer k € Z, we have
n n n—{ n—{
SMOEDY (r!(f) > ( N )(m + 1), Saa(m + 7, r)%;"_)f_r’i] B\ ().
=0 m=0

Proof. Let p(x) = %Eﬁ(x) € P,. Then we can express p(x) in terms of Bﬁlr’;(x)

n

BE) = ) eneB (),

=0

Birl(x) N ((3/1([) - 1) ,t) '
> t A

where Bf:)l(x) satisfy

and ¢, ¢ is computed by

_l et) -1 " oeit) - e;l(t) - i (x)
“nl =70 t Lig (1 — ex(=1)) o A
U L o] — er(— -1\
:?v< f”fg - :ﬂl( (z;)) (emt ) (tfh(x)"’»
\ oo R (3.13)

_(’1) < Liga(1 — ex(-1))
\¢)\ eat) —e7\(2)

(#7)), e
t P |

n\ &S (n—¢ Liga(1 — ea(—1))
:r‘(f) mZ:O( m )(I’I’l + r)rSz,A(m +7, I’)< ) — e/_ll(t) (x)n—f—r,/l>/l .

In the above computation, the following relation is applied

(ea(t) - l)r _rli(ean -1y

t t r!

AIMS Mathematics Volume 7, Issue 6, 11443—-11463.
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tm—r

oo
=r! Z Soa(m,r) '
m!
m=r

() tm
=r! Z(m + 1) Soa(m+r, r)—'.
m!

m=0

Applying the property of (3.1) in the last equation of (3.13) completes the proof. O

Taking into account the degenerate Euler polynomials [6] of order r

2 N N
(e/l(t) + 1) el = ; E“(x)n!’

we have the following result.

Theorem 3.8. For any n > 0 and integer k € Z, we have

n r n—{ 1 ¢
o SE SR o
=0 \m=0 j=

Proof. We note that the corresponding A-Sheffer sequence for E,(gl(x) is given by

poo~ (232 )
A

n

BE) = Y cnEN(),

t=0

Then, we have

where ¢, satisfies

L (e 1y Qm—qW)_z”ﬂM
o\ 2 ) Dol —een Y
Lig (1 —ex(-0) (ex® + 1\ ,

< e/l(t) _ e;ll(t) ( D) ) (l )/l(-x)n,/l>/l

2
ex(®) = ;' (1) 2 ),
n r r Lik,/l(l - e/l(_t)) .

¢ Z m < ea(r) — e (1) (€7(1), (x)n_m>

1 (n\~(r Li; (1 — e (-1))

2r\¢ m)\ exr) —e;' (1)

1

¢!
_(ﬂ Liga(1 — ex(-1))
\¢

1

2"

A

(x+ m)n—t’,/l>

A

3
o

|

n—€

_1fn r (n - 5)( Yo <Lik,/l(1 —e)(-1))
o) &m0 T T = e

(x) j,/l> .
2

Thus, the desired identity can be obtained by the property of (3.1). O

3
o
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We finally consider the degenerate Lah-Bell polynomials [15] that are defined by

t - 1"
ei(7) = D B, (<

and the unsigned Lah numbers L(n, k) defined by

n-—1\n!
L(n, k) = (k— 1)E

having the generating function
(1 —t) ZL(m 5)_

Theorem 3.9. For any n > 0 and integer k € Z, %%(x) satisfy
n n n ~
SUOEDY (Z (m)(—l)’" ‘Lim, B | B ().
=0 \m=(

Proof. 1f we let p(x) = 2333()() € P,, then we have

n

BE) = ) cneBf ().

=0

By noting that the corresponding A-Sheffer sequence is given by

t
BL ~(1,—) ,
na(%) 1+1¢/2

the followings are established for ¢, ,:

1 am-e'® \!
cn’g_ﬁ<(Li“(l—eﬁ(—t))) (1+t) ()“>A
Liga(1 = ex(-1)) t ¢
< eA(r) —e' (1) (5'(1‘”) )A(X)M>/l
o (n et Liga(1 — e)(—1))
_;(m)( 1) L(m,€)< -0

in which the identity for the unsigned Lah numbers is applied:

{}' (1 + t) Z( 1" L(m, f)_

Therefore, ¢, is explicitly computed in a the similar way.

(-x)n—m,/l>
A

O
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4. Illustrative examples

In this section, we present two examples that show the explicit representations of the modified
type 2 degenerate poly-Bernoulli polynomials in terms of the degenerate Lah-Bell polynomials and
the degenerate derangement polynomials of order r € N. We compute the combinatorial results ¢,
presented in Theorems 3.5 and 3.9 to confirm the connections.

To do this, we first calculate B")(x) for k = 0,1 and n = 0,1,2,3,4. For k = 0, B{)(x) can be
obtained using Lig 4(#) = #(1 — £)*~!, which are listed below:

1
B =3,

1 1
28(1(3(36) =—x+ -,

2 4
1 1 1 1
(0) —
Boa() =3+ (0= D= gk 74,
1 1 1 1 1 1
B (x) =520 = 7(64=3)2 = SPx = 2 = 2+ A~ T

1 1 1 1
BY (%) =%+ (1 =302 + S8 = 30" = S0+ 2 = 81+ Dx = 2(64° =24+ 50).
For k = -1, QS;_A] )(x) are computed as follows:

_ 1
B, () =3,

1 1 3
(CY) _
%1’/1 (X) —EX - 5/1 + 5,

1 3 3 1
(=D —
%2,1 (%) —Exz - E/lx + Ex S L Z/l +1,
15 11 9

1 1 1 1
AN SESE DRSS SO 1, 15, 119
%3,,1 (%) —2x 4(12/1 9x (2/1 + 34 3)x+4/l 4/1 + 4/1+8’

1 1 1
B () =§x4 —(51-3)x" + 5a 122 =212+ 12)x* - 5(11% ~ 102 - 9)x
1
- Z(u3 +264% + 261 + 9 + 1.
Figure 1 illustrates the shapes of 8 (x), k = —1forn=0,1,2,3,4 when 1 = 1/10 and A = 1.

A=1/10

7
s

Figure 1. 8, (x),n =0,1,2,3,4 fork = —1.
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We express EB(k) 1), k=0,
various A =

-1, n =0,1,2,3,4 by the degenerate Lah-Bell polynomials
100, 10, 1 in the following example.

B (x) for

Example 4.1 (Illustration of Theorem 3.9). The degenerate Lah-Bell polynomials B: aa(X) for
n=0,1,2,3,4 are explicitly given by
Bj (%) =1,
BIL’ 1) =x,
By (x) =x* — (A= 2)x,
B (%) =x* = 3(1 = 2)x% + 2(4 = 31 + 3)x,
Bl ((x) =x* = 6(1 = 2)x* + (1147 - 364 + 36)x”

—6(2 —42% + 61— d)x.

Figure 2 shows the graphs ofBﬁ,A(x)for n=0,1,2,3,4when A=1/10,1.

A=1/10

250

-100
-150

150 |
100
50 -

-50
-100
-150
-200

-250

Figure 2. Bﬁ’/l(x) forn=0,1,2,3,4.
To confirm the established identity in Theorem 3.9, we compute };_, Cn’gBé 1(x), where

%f:}j(jo4w*Lmum%ﬁmpn::Lz3A.
m=_{ m ’

Then, we present that each linear combination of Bﬁ, () with ¢, is identically equal to %ilf)ﬁ(x),
n=1273,4forA=1/100,1/10,1and k =0,—-1:

Case (I): Fork=0and A = Wlo’
jf”l (x) =0.5x* + 0.97x° — 0.0147x> — 0.4601x + 0.0125
> 100
L 4017 , 7 . . 1,
=280 1 (0 = 19 Bl L (0 + By ) (0= 5By, (0 + 5B | (%),
B, (x) =0.5x" +0.735x" - 0.00005x — 0 115
> 100
23 713 9 1
__ 2 pL BL _ZpL _pt
200207 ¥ 473 B (0 = 3By (0 + 5By (0.
%(0)1 (x) =0.5x% + 0.495x + 0.0024
100
1 1 1
_mBé L (x )__BL & (x) + BL & (x),
AIMS Mathematics Volume 7, Issue 6, 11443—-11463.
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23“’) (x) =0.5x + 0.25
100

1 1
:133%()+ BL%()
Case (Il): Fork =0, A =1,
%g?{(x) =0.5x* - 2x7 + x> + 2x - 0.75
3 L 3 L 21 L L
786100 = BT, () + B3, (x) = 5B (x) + B (),
BY(x) =0.5x° - 0.75x* = 0.5x + 0. 375
3 3
SBél( x) + B 1( x) — Blfl( )+ B 1(x)
%;?{(x) =0.5x* - 0.25
1 1
B(L)l(x) Bfl(x)+ B 21(X),
B (x) =0.5x + 0.25
1
= Bél( )+ B 1 ().
Case (Ill): Fork = -1, 1 = 1/10,

) (%) =0.5x* +2.5x° + 5.005x + 4.925x + 2.1034

L
10

1485 1329 699 16 1
:—BL & - —BL & _BL L - _BL L BL L
i()c) =0.5x> + 1.95x% + 2.695x + 1.3627
10
740 339 9 1
__BL _BL _ _BL BL
52350509 2008140 T 195240+ 2P )
i()c) =0.5x% + 1.35x + 0.965
10
193 2 1
=500 B0 () + 5B L (0 = 5By, (%),
(x) =0.5x+ 0.7

L
10

_7 L 1L
_IOB 1()+ B 1(x)

Case (IV): Fork = -1, 1 =1,
BY)(x) =0.5x* — 217 + &7 + 2x = 0.75

3

3 21
Bél(x) BlLl(x)+ Bgl() 5B, (x) + Bl(x)

BY)(x) =0.5x - 0.75x —05x+0375

3

—8331( X) + B 1) — Bél( ) + B (0,
B (x) =0.5x7 —0.25
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1 1
= = 2 B6, (0 = 3Bi, (0 + B 5100,
%g?{(x) =0.5x +0.25

1
B(Ln( )+ B 11().

In the next example, we express %(k) 1), k=0,-1, n=0,1,2,3,4 by the degenerate derangement

polynomials df:)l(x) for A = <, 1, 10, as selected cases of the results in Theorem 3.5.

10’
Example 4.2 (Illustration of Theorem 3.5). The degenerate derangement polynomials of order r = 2
forn=0,1,2,3,4 are listed as:

do(x) =1,

dP(x) =x + 1,

Ay (x) =x" + (2= Dx+ A+ 3,

A (x) =x* + (3 = 30)x% + 2% + 9x = 2% + 34 + 11,

d(x) =x* = (64— 4)x* + (1147 = 64 + 18)x% — (64 + 64> + 61 — 44)x + 64° — 5% + 181 + 53.

We plot the graphs ofd,(:fl(x) of order 2 forn =0,1,2,3,4 when A = 1/10, 1 in Figure 3.

A= 1/10 A= 1
" 7 400 7
1] ——n=0 /

! 4 - = = n=1 /

) L

/ 300 - ;

/ —====:n=3 /'
200 H -4 /
4 //
4
100 - g
s
______ P = - e
o//
-100 %
'/I 4
/ 4
200 / 200 /
7 /
300 L 300
10 5 o 5 10 -10 5 o 5 10

Figure 3. d( (x)forn=0,1,2,3,4.

To confirm the identity presented in Theorem 3.5, we compute };_, c,,,gdffj(x), where
n\ <= (2\(n - ¢
Cot = ( 5) > (1)( ; )(—1)f j1BY,_ (1), n=1,2,3,4
Jj=0

Then, the following presentations support the analysis that each linear combination of d' j(x) with
computed c, is exactly equal to 5853()0, n=1,2,3,4when A1 =1,10and k = 0:
Case (I): Fork =0, A = 10,

BY)(x) =0.5x" — 29x° +235x” - 1010.5x — 15488

123 1
= = 14279dp0(x) = —=dy3(x) = 321d570(x) = () + 5,
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B (x) =0.5x" — 14.25x% — 50x — 265.125

123 321 3
= %&U——%%m—ﬁ%m+d&m

B (x) =0. 5x ~4.5x 475

_ 107 ) @) @)
) ——dg10(X) = Edl 10(X) + d 10(x)

j“{o(x) =0.5x + 0.25

=~ 220 + 3d (.
Case (Il): Fork =0, A =1,
B (x) =0. 5x4 - 2% + x2 +2x-0.75
d<2>( )+ d@( )~ —d@)( )= d3(0 + d@) (x),
%g?i(x) =0. Sx - 0.75x* - 0 5x+0.375
d<2>( )= d<2>( )~ d<2>< )+ d<2><x>
B (x) =0. 5x -0.25
- _ _d(2)( ) — _d(Z)( ) + d(z)(x)
B (x) =0.5x +0.25

d<2>( ) + d(z)(x)
5. Conclusions

In this paper, we propose a new variant of type 2 poly-Bernoulli polynomials and numbers using the
generating function that is a combination of the degenerate exponential functions with the degenerate
polylogarithm function. Then, we derive explicit expressions of the proposed polynomials in terms
of the degenerate type 2-Bernoulli polynomials and the degenerate Stirling numbers of the second
kind. Furthermore, using A-linear functionals and A-Sheffer sequences, we present connections of the
modified type 2 degenerate poly-Bernoulli polynomials among existing A-Sheffer polynomials: the
degenerate type 2-Bernoulli polynomials, the higher-order type 2 degenerate Bernoulli polynomials,
the degenerate Hermite polynomials, the higher-order degenerate Bernoulli polynomials, the higher-
order degenerate derangement polynomials, the degenerate Euler polynomials, and the higher-order
degenerate Lah-Bell polynomials. Finally, to confirm the presented combinatorial results, we explicitly
compute the connection constants and show combinations with the degenerate Lah-Bell polynomials
and the higher-order degenerate derangement polynomials.
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