Research article

On Dirac operator with boundary and transmission conditions depending Herglotz-Nevanlinna type function

  • Received: 27 May 2020 Accepted: 11 January 2021 Published: 25 January 2021
  • MSC : 34A55, 34B24, 34L05

  • In this paper, an inverse problem is considered for Dirac equations with boundary and transmission conditions eigenvalue depending as rational function of Herglotz-Nevanlinna. We give some spectral properties of the problem and also it is shown that the coefficients of the problem are uniquely determined by Weyl function and by classical spectral data made up of eigenvalues and norming constants.

    Citation: Yalçın Güldü, Ebru Mişe. On Dirac operator with boundary and transmission conditions depending Herglotz-Nevanlinna type function[J]. AIMS Mathematics, 2021, 6(4): 3686-3702. doi: 10.3934/math.2021219

    Related Papers:

  • In this paper, an inverse problem is considered for Dirac equations with boundary and transmission conditions eigenvalue depending as rational function of Herglotz-Nevanlinna. We give some spectral properties of the problem and also it is shown that the coefficients of the problem are uniquely determined by Weyl function and by classical spectral data made up of eigenvalues and norming constants.



    加载中


    [1] P. A. Binding, P. J. Browne, B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter I, P. Edinburgh Math. Soc., 45 (2002), 631-645. doi: 10.1017/S0013091501000773
    [2] P. A. Binding, P. J. Browne, B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II, J. Comput. Appl. Math., 148 (2002), 147-168. doi: 10.1016/S0377-0427(02)00579-4
    [3] P. A. Binding, P. J. Browne, B. A. Watson, Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl., 291 (2004), 246-261. doi: 10.1016/j.jmaa.2003.11.025
    [4] A. Chernozhukova, G. Freiling, A uniqueness theorem for the boundary value problems with non-linear dependence on the spectral parameter in the boundary conditions, Inverse Probl. Sci. Eng., 17 (2009), 777-785. doi: 10.1080/17415970802538550
    [5] G. Freiling, V. A. Yurko, Inverse problems for Sturm- Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Probl., 26 (2010), 055003. doi: 10.1088/0266-5611/26/5/055003
    [6] R. Mennicken, H. Schmid, A. A. Shkalikov, On the eigenvalue accumulation of Sturm-Liouville problems depending nonlinearly on the spectral parameter, Math. Nachr., 189 (1998), 157-170. doi: 10.1002/mana.19981890110
    [7] A. S. Ozkan, Inverse Sturm-Liouville problems with eigenvalue-dependent boundary and discontinuity conditions, Inverse Probl. Sci. Eng., 20 (2012), 857-868. doi: 10.1080/17415977.2012.658519
    [8] H. Schmid, C. Tretter, Singular Dirac systems and Sturm-Liouville problems nonlinear in the spectral parameter, J. Differ. Equations, 181 (2002), 511-542. doi: 10.1006/jdeq.2001.4082
    [9] V. A. Yurko, Boundary value problems with a parameter in the boundary conditions, Sov. J. Contemp. Math. Anal., Arm. Acad. Sci., 19 (1984), 62-73.
    [10] V. A. Yurko, An inverse problem for pencils of differential operators, Sb. Math., 191 (2000), 137-158. doi: 10.4213/sm520
    [11] A. S. Ozkan, An impulsive Sturm-Liouville problem with boundary conditions containing Herglotz-Nevanlinna type functions, Appl. Math. Inform. Sci., 9 (2015), 205-211.
    [12] V. A. Ambarzumian, Über eine Frage der Eigenwerttheorie, Zs. f. Phys., 53 (1929), 690-695. doi: 10.1007/BF01330827
    [13] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe: bestimmung der differentialgleichung durch die eigenwerte, Acta Math., 78 (1946), 1-96. doi: 10.1007/BF02421600
    [14] B. M. Levitan, Inverse Sturm-Liouville problems, Moscow: Nauka, 1984.
    [15] V. A. Marchenko, Sturm-Liouville operators and their applications, Kiev: Nukova Dumka, 1977.
    [16] A. G. Ramm, Inverse problems, New York: Springer, 2005.
    [17] B. M. Levitan, I. S. Sargsyan, Sturm-Liouville and Dirac operators, Moscow: Nauka, 1988.
    [18] F. Gesztesy, B. Simon, Inverse spectral analysis with partial information on the potential II. The case of discrete spectrum, T. Am. Math. Soc., 352 (2000), 2765-2787.
    [19] M. G. Gasymov, Inverse problem of the scattering theory for Dirac system of order 2n, Tr. Mosk. Mat. Obs., 19 (1968), 41-112.
    [20] M. G. Gasymov, T. T. Dzhabiev, Determination of a system of Dirac differential equations using two spectra, In: Proceedings of School-Seminar on the Spectral Theory of Operators and Representations of Group Theory, 1975, 46-71.
    [21] I. M. Guseinov, On the representation of Jost solutions of a system of Dirac differential equations with discontinuous coefficients, Trans. Acad. Sci. Azerb., Ser. Phys. Tech. Math. Sci., 19 (1999), 42-45.
    [22] Z. Akdogan, M. Demirci, O. Sh. Mukhtarov, Discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary and transmissions conditions, Acta Appl. Math., 86 (2005), 329-344. doi: 10.1007/s10440-004-7466-3
    [23] R. Kh. Amirov, On system of Dirac differential equations with discontinuity conditions inside an interval, Ukrainian Math. J., 57 (2005), 712-727. doi: 10.1007/s11253-005-0222-7
    [24] R. Kh. Amirov, A. S. Ozkan, B. Keskin, Inverse problems for impulsive Sturm-Liouville operator with spectral parameter linearly contained in boundary conditions, Integr. Trans. Spec. Funct., 20 (2009), 607-618. doi: 10.1080/10652460902726443
    [25] R. S. Anderssen, The effect of discontinuities in density and shear velocity on the asymptotic overtone structure of tortional eigenfrequencies of the Earth, Geophys. J. R. Astr. Soc., 50 (1997), 303-309.
    [26] G. Freiling, V. A. Yurko, Inverse Sturm-Liouville problems and their applications, New York: Nova Science, 2001.
    [27] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, P. R. Soc. Edinburgh A., 77 (1977), 293-308. doi: 10.1017/S030821050002521X
    [28] C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, P. R. Soc. Edinburgh A., 87 (1980), 1-34. doi: 10.1017/S0308210500012312
    [29] O. H. Hald, Discontiuous inverse eigenvalue problems, Commun. Pure Appl. Math., 37 (1984), 539-577. doi: 10.1002/cpa.3160370502
    [30] C. M. McCarthy, W. Rundell, Eigenparameter dependent inverse Sturm-Liouville problems, Numer. Funct. Anal. Optim., 24 (2003), 85-105. doi: 10.1081/NFA-120020248
    [31] Kh. R. Mamedov, O. Akcay, Inverse problem for a class of Dirac operator, Taiwanese J. Math., 18 (2014), 753-772. doi: 10.11650/tjm.18.2014.2768
    [32] C. Van der Mee, V. N. Pivovarchik, A Sturm-Liouville inverse spectral problem withboundary conditions depending on the spectral parameter, Funct. Anal. Appl., 36 (2002), 74-77. doi: 10.1023/A:1014490403525
    [33] A. S. Ozkan, R. Kh. Amirov, Inverse problems for impulsive Dirac operators with eigenvalue dependent boundary condition, J. Adv. Res. Appl. Math., 3 (2011), 33-43. doi: 10.5373/jaram.820.030711
    [34] A. S. Ozkan, Half inverse problem for a class of differential operator with eigenvalue dependent boundary and jump conditions, J. Adv. Res. Appl. Math., 4 (2012), 43-49. doi: 10.5373/jaram.1260.010412
    [35] Y. P. Wang, Uniqueness theorems for Sturm-Liouville operators with boundary conditions polynomially dependent on the eigenparameter from spectral data, Results Math., 63 (2013), 1131-1144. doi: 10.1007/s00025-012-0258-6
    [36] W. Rundell, P. Sacks, Numerical technique for the inverse resonance problem, J. Comput. Appl. Math., 170 (2004), 337-347. doi: 10.1016/j.cam.2004.01.035
    [37] V. A. Yurko, Integral transforms connected with discontinuous boundary value problems, Integr. Trans. Spec. Funct., 10 (2000), 141-164. doi: 10.1080/10652460008819282
    [38] V. A. Yurko, Inverse spectral problems for differential operators and their applications, Amsterdam: Gordon and Breach Science, 2000.
    [39] A. S. Ozkan, B. Keskin, Y. Cakmak, Double discontinuous inverse problems for Sturm-Liouville operator with parameter-dependent conditions, Abstr. Appl. Anal., 2013 (2013), 794262.
    [40] A. S. Ozkan, Half-inverse Sturm-Liouville problem with boundary and discontinuity conditions dependent on the spectral parameter, Inverse Probl. Sci. Eng., 22 (2013), 848-859.
    [41] B. Keskin, A. S. Ozkan, N. Yalçin, Inverse spectral problems for discontinuous Sturm-Liouville operator with eigenparameter dependent boundary conditions, Commun. Fac. Sci. Univ. Ank. Sér. A., 1 (2011), 15-25.
    [42] D. G. Shepelsky, The inverse problem of reconstruction of the medium's conductivity in a class of discontinuous and increasing functions, Adv. Soviet Math., 19 (1994), 209-232.
    [43] V. A. Yurko, On boundary value problems with jump conditions inside the interval, Differ. Uravn., 36 (2000), 1139-1140.
    [44] A. Benedek, R. Panzone, On inverse eigenvalue problems for a second-order differential equations with parameter contained in the boundary conditions, Notas Algebra y Analysis, 1980, 1-13.
    [45] P. A. Binding, P. J. Browne, B. A. Watson, Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions, J. London Math. Soc., 62 (2000), 161-182. doi: 10.1112/S0024610700008899
    [46] P. J. Browne, B. D. Sleeman, A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems, Inverse Probl., 13 (1997), 1453-1462. doi: 10.1088/0266-5611/13/6/003
    [47] M. V. Chugunova, Inverse spectral problem for the Sturm-Liouville operator with eigenvalue parameter dependent boundary conditions, Oper. Theory, 123 (2001), 187-194.
    [48] B. Keskin, A. S. Ozkan, Inverse spectral problems for Dirac operator with eigenvalue dependent boundary and jump conditions, Acta Math. Hungar., 130 (2011), 309-320. doi: 10.1007/s10474-010-0052-4
    [49] A. S. Ozkan, B. Keskin, Spectral problems for Sturm-Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter, Inverse Probl. Sci. Eng., 20 (2012), 799-808. doi: 10.1080/17415977.2011.652957
    [50] R. Mennicken, M. Möller, Non-self-adjoint boundary eigenvalue problems, North Holland: Elsevier, 2003.
    [51] A. A. Shkalikov, Boundary problems for ordinary problems for differential equations with parameter in the boundary conditions, J. Sov. Math., 33 (1986), 1311-1342. doi: 10.1007/BF01084754
    [52] C. Tretter, Boundary eigenvalue problems with differential equations $N\eta = \lambda P\eta$ with $\lambda$-polynomial boundary conditions, J. Differ. Equations., 170 (2001), 408-471. doi: 10.1006/jdeq.2000.3829
    [53] C. F. Yang, Uniqueness theorems for differential pencils with eigenparameter boundary conditions and transmission conditions, J. Differ. Equations, 255 (2013), 2615-2635. doi: 10.1016/j.jde.2013.07.005
    [54] C. F. Yang, Inverse problems for Dirac equations polynomially depending on the spectral parameter, Appl. Anal., 95 (2016), 1280-1306. doi: 10.1080/00036811.2015.1061654
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2149) PDF downloads(173) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog