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1. Introduction

Fractional differential equations have played an important role and have presented valuable tools in
the modeling of many phenomena in various fields of science and engineering [6—16]. There has been
a significant development in fractional differential equations in recent decades [2-5,23,26,33,37]. On
the other hand, many authors studied the stability of functional equations and established some types
of Ulam stability [1,17-22,24,27-37] and references there in. Moreover, many authors discussed local
and global attractivity [8—11, 34].

Benchohra et al. [13] established some types of Ulam-Hyers stability for an implicit fractional-order
differential equation.

A. Baliki et al. [11] have given sufficient conditions for existence and attractivity of mild solutions
for second order semi-linear functional evolution equation in Banach spaces using Schauder’s fixed
point theorem.
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Benchohra et al. [15] studied the existence of mild solutions for a class of impulsive semilinear
fractional differential equations with infinite delay and non-instantaneous impulses in Banach spaces.
This results are obtained using the technique of measures of noncompactness.

Motivated by these works, in this paper, we investigate the following initial value problem for an
implicit fractional-order differential equation

CDY [x(t) = h(t, x(1)] = g1t x(t), e (t, x(1) ted 1<a<2, a=p,
(1.1)

(x(t) — B(t, x(t))) =0 and 4[x(t) - b(t, x(1)], = O

t=0
where €D is the Caputo fractional derivative, h : /X R — R, g; : J X RXR — R and
a2 : J X R — R are given functions satisfy some conditions and J = [0, T].

we give sufficient conditions for the existence of solutions for a class of initial value problem for
an neutral differential equation involving Caputo fractional derivatives. Also, we establish some types
of Ulam-Hyers stability for this class of implicit fractional-order differential equation and some
applications and particular cases are presented.

Finally, existence of at least one mild solution for this class of implicit fractional-order differential
equation on an infinite interval J = [0, +0), by applying Schauder fixed point theorem and proving
the attractivity of these mild solutions.

By a solution of the Eq (1.1) we mean that a function x € C?(J, R) such that

(i) the function t — [x(t) — b(t, x(1))] € C*(J,R) and
(i1) x satisfies the equation in (1.1).

2. Preliminaries

Definition 1. /23] The Riemann-Liouville fractional integral of the function € L'([a,b]) of order
a € R, is defined by

t t — )|
3 i(t) = f % i(s) ds.

and when a = 0, we have 3 {(t) = J{ f(1).
Definition 2. [23] For a function § : [a,b] — R the Caputo fractional-order derivative of f, is
defined by

Coangy " p(s)
0= Ry f Gt &

where where nw = [a] + 1 and [a] denotes the integer part of the real number «.

Lemma l. [23]. Let a >0 and n= [a] + 1. Then
n—1
~a Cra _ f(0)
I CD()) = F(t) - ; =t

Lemma 2. Let € L'([a,b]) and a € (0, 1], then
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(i) “D*If() = f(d).
(ii) The operator I* maps L'([a, b)) into itself continuously.
(iii) For vy, B> 0, then
WA = A = ),

For further properties of fractional operators (see [23,25,26]).
3. Main results

Consider the initial value problem for the implicit fractional-order differential Eq (1.1) under the
following assumptions:

(i) b:JXR — R is acontinuous function and there exists a positive constant K; such that:
| b(t,x) = b(t,y) <K Ky |x—1p| foreach teJ and %9y €R.

(i) g; : J X R X R — R is a continuous function and there exist two positive constants K, H such
that:

|1t %, 0)— | a1, x,D) KK |x—%|+H [y -] foreacht € Jand %% 1,9 €R
(iii)) g : J X R — R is a continuous function and there exists a positive constant K, such that:
| go(t, %) —go(t,p) IS K, |x—1p | foreachte J and x,1y € R.

Lemma 3. Let assumptions (i)—(iii) be satisfied. If a function x € C*(J,R) is a solution of initial value
problem for implicit fractional-order differential equation (1.1), then it is a solution of the following
nonlinear fractional integral equation

1 t 1 s
as(t):b(t,ae(t))+m fo (t—9) g, (s,x(s),r—(ﬁ) fo (s—e)ﬂ-lgz(e,x(e))de)ds (3.1)

Proof. Assume first that x is a solution of the initial value problem (1.1). From definition of Caputo
derivative, we have

D2 (x(t) - Dt x(1) = g1 (1 1(1), Faa(t, x(H))).

on both sides and using Lemma 2, we get

a—1

Operating by 3
3D (a(t) - bt 2(1) = Iy (1, 1(1), Faa(t, x(1))).

Then J 4
E(%(t) - b(t, x(1))) - E(f(f) —h(tx(1)| =3 gt x(1), Paa(t, x(1))).
t=0

Using initial conditions, we have
d ~a—1 ~pB
E(f(t) = b(t, x(1)) = 37 g (1, 2(0), Fga(t, 2(1))).
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Integrating both sides of (1.1), we obtain

(x(t) = b(t, x(1)) — (x(H) - b(t, x(f)))'t_o = 301 (4, x(1), Paa(t, x())).

Then

1 t 1 s
x(t)=b(t,x(t))+@ O(t—s)"‘lgl (s,x(ﬁ),r—(ﬁ) fo (s—Gf‘lgz(H,x(H))dH)ds

Conversely, assume that x satisfies the nonlinear integral Eq (3.1). Then operating by ¢®% on both
sides of Eq (3.1) and using Lemma 2, we obtain

DY) ~ bt x(M)) = DI, x(H), Pt x(1))
= qi(t, x(1), Pt x(1))).

Putting t = 0in (3.1) and since g; is a continuous function, then we obtain

=0.

t=0

(x(t) = bt 3E(t)))‘t_o = 176, (t, x(1), Fa(t, 2(1)))

Also,
d
a(%(t) —B(t, x(1)) = I g1 (1, x(1), Faa(t, x(1))).

Then we have J
—(x(t) = b(t, x(f)))‘ = 37 Mg (1, x(1), Paa(t, %(’f)))' = 0.
dt t=0 t=0

Hence the equivalence between the initial value problem (1.1) and the integral Eq (3.1) is proved. Then
the proof is completed. O

Definition 3. The Eq (1.1) is Ulam-Hyers stable if there exists a real number ¢; > 0 such that for each
€ > 0 and for each solution 3 € C*(J, R) of the inequality

D [3(1) - bit, 3] — st 3, Paa(t,3() I< €, t e,
there exists a solution vy € C*(J,R) of Eq (1.1) with
| 3() = ()| < e, t €

Definition 4. The Eq (1.1) is generalized Ulam-Hyers stable if there exists y; € C(R,,R,), ¥5(0) =0,
such that for each solution 3 € C*(J, R) of the inequality

D [3(1) - bit, 3] — a1t 3D, Faa(t3(1) I< €, t e,
there exists a solution v € C*(J,R) of Eq (1.1) with
| 3() — (DI < ¢s(e), te L
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Definition 5. The Eq (1.1) is Ulam-Hyers-Rassias stable with respect to ¢ € C(J,R,) if there exists a
real number ¢; > 0 such that for each € > 0 and for each solution 3 € C*(J, R) of the inequality

DY [3(1) = bt 3] = 81t 30, Faa(t, 3())) I< ep(t), t €,

there exists a solution v € C*(J,R) of Eq (1.1) with

[3(t) — n(D)| < Gep(t), t e J

Definition 6. The Eq (1.1) is generalized Ulam-Hyers-Rassias stable with respect to ¢ € C(J,R,) if
there exists a real number ¢, > 0 such that for each solution 3 € C*(J, R) of the inequality

[ DY [3(1) = bt 3] = 61t 3(0), Faa(t, 3(0)) I< @(t), t € J,

there exists a solution v € C*(J,R) of Eq (1.1) with

| 3(t) — ()| < g (b), t € J

Now, our aim is to investigate the existence of unique solution for (1.1). This existence result will
be based on the contraction mapping principle.
KT® K, H T*#
Theorem 1. Let assumptions (i)-(iii) be satisfied. If K|+ + 2 < 1, then there
Ia+1) T+ DI(a+1)
exists a unique solution for the nonlinear neutral differential equation of fractional order .

Proof. Define the operator N by:

Nx(t) = b(t, x(1)) + ﬁ f (t -5 g, (5 1(s), —— @ f (s — 0P ' g,(6, x(@))d@) ds, teJ.

In view of assumptions (i)-(iii), then N : C*(J,R) — C*(J,R) is continuous operator.

Now, let x and ,¥ € C*(J,R), be two solutions of (1.1)then

| Nx(t) - NE(H) | = ‘b(t,x(t))
a 1
" T f (t- 5 x(s), F_(ﬂ) f (s — 0/ 006, x(e))de)
- f)(f (1))

— (x 1 _
@) f (=957 ) B f (s - 0Y0a(60,%0))d0 s
< Kylx(t) =x(b)]

L t t— a-1
* r(a)fo (=9

AT N
- gl(s,x(s),r—(ﬂ) fo (s—e)ﬂ—lgz(e,x(e))de)ds
K |x(t) —%(t)|

1 S
91(5, x(s), F_(B) j(; (s — 0P 1g,(0, x(@))d@)

N
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¢
+ % f (t =) 'K | x(s) = %(s)lds

+ F( )f( ) lr(p’) f (s = 0" | 32(6, x(6)) — 92(6,(6))dbdls

N

Kilx(t) —=(D] + ﬁf(t )" | 1(s) = x(s)lds

H t a-1 2 _1 .
) j; A ) fo (s — 0" | x(6) —¥(9)ldbds.

Then
— Klx- '
INx(t) = Nx(Oll < Killx ==l + I Fi“f(f—@“_lds
- “n—f( r s [ (s oyt asas
I'(a) L(B)
Klx -3l T*
< Killx—%|+ ——
illx =] F( D
+ k- e ld
[E ”I‘(ﬁ+1)1‘( )f( )" ds
Klx 3| T*
< Ki|x -3+ ———
illx =] Ta+ D
K, T HT®
+ e =Fl=
TB+ DHI(a+ 1)
KT” K, H T*#
< K+ + -
< K+ morn e e
KT® K, H T*%#
Since K + + 2 < 1. It follows that N has a unique fixed point which is a
Ia+1) TE+DI(@+1)
solution of the initial value problem (1.1) in C?*(J,R). m]

4. Stability of solutions of the IVP (1.1)

4.1. Ulam-Hyers stability

Theorem 2. Let assumptions of Theorem 1 be satisfied. Then the fractional order differential Eq (1.1)
is Ulam-Hyers stable.

Proof. Let vy € C*(J,R) be a solution of the inequality

€ D [n(t) = bt, ()] = a1t (), Faat, n(t)) I< €, €> 0, te . 4.1

Let ¥ € C*(J,R) be the unique solution of the initial value problem for implicit fractional-order
differential Eq (1.1). By using Lemma 3, The Cauchy problem (1.1) is equivalent to

x() = b(t, x(1)) + T) f (t—9)""g (s x(s), — TG f (s — 0P 02(0, x(0))d6 | ds.
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Operating by 37" on both sides of (4.1) and then integrating, we get

1 5
@f(t— 5)* gy (5 n(s), r—(ﬂ)f(s—G)ﬁ_lgz(Q, t)(g))dg)ds

1 f* »
— | (t=9)"€ds,
I'(a) Jo

GT(Y

T(a+1)

() = bt, (M)

N

IA

Also, we have

[p(t) — x(b)]

in(t) bt x(t)) — ﬁ f (t—9)" g (s x(s), F_(ﬁ) f (s — 0P 3,06, x(é)))dﬁ)

in(t) bt x(t)) - ﬁ f (t—9)"'g (s x(s), @ f (s — 0P 3,06, x(é)))dé))

+ b, n(t))+m f (t—9)" g (s (s), =— F(B) f (s — 0Y 3,06, r)(G))dG)ds

a—1 _
- b(t, n(t))—m f (t—9) (s n(s), F_(B) f (s — 0Y 3,06, r)(G))dG)ds

a-1 _
< in(t) h(t, n(t))—mf(t— $)" g (s n(s), r—(ﬁ)f(s ) n(G))dG)ds
+ [b(t, p(®)) — b(t, x(D))|

Lot L .
' @fo (= (5’”(5)»r—(ﬁ) fo (s = 0F gz(e,n(e))de)

- g (5 (s), r_(ﬂ) (5—9)’8_192(9,35(9))619) ds

+ Kiy(t) — x(®)

a

T(a+ 1)

1 t s
+ @ f(; (t—s9)" ! [Kh)(t) —x(t)| + F_(,B) f (s— H)B_1|g2(9, 1(0)) — a2(6, 35(9))|d9] ds

IA

eT®

+
T(a+ 1)
1 t H K||x — v||T?
P f (t— 9 | Kl — vy + L2 DI
I'(a) Jo rg+1)
eT” N
T(a+ 1)
K Ty — x| L H Ky TP*|jx — |
Ta+1) T@+DIa+1)

IA

Iy — xll Killy — ]

IA

Killp — x|

Then )

eT” [ ( KT® H K, TP+ )
~-|K; =Ce¢€,

+ +
[a+1) [la+1) TE+DI(ae+1)
thus the intial value problem (1.1) is Ulam-Heyers stable, and hence the proof is completed. O

Iy — x| <
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By putting Y(e) = c &, ¥(0) = 0 yields that the Eq (1.1) is generalized Ulam-Heyers stable.

4.2. Ulam-Hyers-Rassias stability

Theorem 3. Let assumptions of Theorem 1 be satisfied, there exists an increasing function ¢ € C(J,R)
and there exists A, > 0 such that for any t € J, we have

then the Eq (1.1) is Ulam-Heyers-Rassias stable.
Proof. Let vy € C*(J,R) be a solution of the inequality

DY () = bt ()] = g1t v, Faat, n(1)) I< €p(t), € >0, t e J. (4.2)

Let ¥ € C%(J,R) be the unique solution of the initial value problem for implicit fractional-order
differential Eq (1.1). By using Lemma 3, The Cauchy problem (1.1) is equivalent to

x(t) = b(t, x(1) + m f (t—9)""g (5 x(s), = Q) f (s = 03,06, 35(9))619)

~xa—1

Operating by 37" on both sides of (4.2) and then integrating, we get

1 t a—1 1 ® 1
@fo(t—s) a1 (5,0(5),1_—(@]0‘(5—9)‘7 QZ(Q,D(Q))dQ)dS

if(t— ) (s)d
T Jo 7 7%
€ 3%(t)
€ A (1).

() = bt, p(d))

N

IA A

Also, we have

In(t) — x(®)

'I)(f) b(t, x(1) - ﬁ f (t—9)""g (S x(8), = F(,B) f (s — 03,06, %(9))61'9)

'I)(f) b(t, x()) - ﬁ f (t—9)""g (S x(9), = Q) f (s — 03,06, %(9))61'9)

+ bt n(t) + ﬁf(f—fa)“ ') (5 (), = F(,B) f (s — 03,06, 1)(9))0'9)015

= bt n(t) - ﬁf(f—fa)“ ') (5 (), =— Q) f (s — 03,06, 1)(9))0'9)015

1 a-1 -1
< ' (® = bt n(t) - @) J, (f— 5)" a1 (S, D(S),r—@fo(s—@ﬂ 92(9,1)(9))619)615
+ Bt n(t) = bk, x(1)]

Lot L |
' @fo (= (S’U(S)’F—(ﬁ) fo (s - 0F gzw,n(e))de)

AIMS Mathematics Volume 6, Issue 4, 3703-3719.
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- g (5, (s), Fi(ﬂ) j; 5(5 - 0¥ ay(6, x(@))d@) ds
€ A,0(t) + Ki[p(t) — x(1)|

1 t H s
+ @ j(: (t—s)2! [K|r)(t) —x(H)| + F—(,B) j(; (s — 0 [a>(6. 1(6)) — (6. x(@))ld@] s

IA

IA

Iy — x| € Ayp(t) + Kylly — 2|

1 t a—1
+ @) fo (t—s9) [Klln(t) (Dl +
edgp(t) + K|y — x|
KTy -l  HK TP |x — v
T(a+1) TB+ Dl(a+1)"

H K||x — y||IT? 4
s — S
TG+ 1)

IA

Then |
=zl <ed, o)1 - (K + 1, _HK LA | I (t)
_ - = c ep(1),
DHl= ety "TTa+ ) T@E+ D@+ 1) 4
then the initial problem (1.1) is Ulam-Heyers-Rassias stable, and hence the proof is completed. O

5. Existence and attractivity of solutions on half line

In this section, we prove some results on the existence of mild solutions and attractivity for the
neutral fractional differential equation (1.1) by applying Schauder fixed point theorem. Denote BC =
BC(J), J =[0,+c0) and consider the following assumptions:

(I) b:J xR — R isacontinuous function and there exists a continuous function Kjp(t) such that:
| b(t,x) = b(t,n) |[< Ky(t) | x—vp | foreach t€ J and x,1my €R,

where Kg‘ = sup Ky(t) < 1, tlim Ky(t) =0, and tlim h(t,0) = 0.
D) g; : J X R X R — R satisfies Carathéodory condition and there exist an integrable function

a; : R, — R, and a positive constant b such that:

ap(t)

1+ [x]

| g1, %, 1) |< +Dbly| foreach te J andx, v e R.

(III) g, : J X R — R satisfies Carathéodory condition and there exists an integrable function
a, : R, — R, such that:

1
| ga(t, %) |< w2 foreach te J and x € R.
1+ |x|
(IV) Let
t -1

. (t—9)

lim ———aq(s)ds =0

t—o0 0 F(a) 1

AIMS Mathematics Volume 6, Issue 4, 3703-3719.
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t -1
(t—9)
a; =su ———a;(s) ds
! Jfo M@

t 4 o\a+B-1
lim &az(s) ds=0

oy T@+p)

( )a/+ﬂ 1
= supf o ——a,(s) ds

teJ

By a mild solution of the Eq (1.1) we mean that a function x € C(J, R) such that x satisfies the
equation in (3.1).

Theorem 4. Let assumptions (I)—(1V) be satisfied. Then there exists at least one mild solution for the
nonlinear implicit neutral differential equation of fractional order (1.1). Moreover, mild solutions of
IVP (1.1) are locally attractive.

Proof. For any ¥ € BC, define the operator A by

t S
Ax(t) = b(t, x(t))+% (t—s)"'g (s,x(s),r%ﬁ) fo (s-@)ﬂ—‘gz(e,x(e))de)dg.

The operator A is well defined and maps BC into BC. Obviously, the map A(x) is continuous on
J forany ¥ € BC and for each t € J, we have

|Ax(D)

IA

g1 5, (), r_(ﬁ) L (s — 0 gy, x(@))d@) ds

a—1
[b(t, x(1)] + mf(f —5)

[b(t, 2(t)) — b(t, 0)] + [b(t, 0]

_ el C(1(5) B
’ @fo O e r(ﬂ)f (5= 0F 6.5

IA

1 a— l - _ — (12(9)
< KOO+ 16t 00 + 7= (t—s) 01(5)+br(ﬁ)f( oy T+ 0 ] 5
* * a/+ﬂ 1 (12(6)
< Kl + 100t 0)1 + 0} + b B f (t- T30
< K;M+|b(t,0)|+a7+br(a—+ﬁ) f (t — o) ay(0)do
0
< KyM +[b(t,0)] + aj + ba; < M.

Then
lAxDllsc < M, M = (|b(t,0)| + a] + baj)(1 — K;)_l. (5.1

Thus A(x) € BC. This clarifies that operator A maps BC into itself.

Finding the solutions of IVP (1.1) is reduced to find solutions of the operator equation A(x) = x.
Eq (5.1) implies that A maps the ball By, := B(0, M) = {x € BC : |[x(t)|lsc < M} into itself. Now,
our proof will be established in the following steps:

AIMS Mathematics Volume 6, Issue 4, 3703-3719.
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Step 1: A is continuous.
Let {x,},cv be asequence such that ¥, — ¥ in B,,. Then, for each t € J, we have

| Ax,(t) -

Ax(b) |

'b(t, 6(1)

1 t a—1 1 : _1
(@) [) (t—5s) 91(5, ,(9), G j(; (s — 0P 14,00, xn(G))dG)ds

b(t, x(1))
1 f t(t—s)f’-lgl(s,ae(s),L f S(S—H)ﬁ_lgz(e,x(e))de)ds
F(a) 0 F(ﬁ) 0

Kb<t>|xn<t> —x(b)
o f (t — 50! g1 5, 1,(5), r_@ fo ks—ef—lgz(e,xn(e))de)

gl(s, ). 75 fo (s — 6 0200, x(@)d@) ds
K;lta(h) — x(b)

L tt_ a1
r(a)fo( K

91(5, x(s), f (s — 0 a,(0, x(@))d@) ds
0

1 S
91(5, x,(9), F_(ﬁ) I) (s — 0 'ax(6, fn(g))dg)

L
r'®)

Assumptions (II) and (III) implies that:

gl(t, 5, Faalt, xn>) N gl(t, 5, Yo, x)) as n — oo,

Using Lebesgue dominated convergence theorem, we have

A%, (1) — Ax(Dllsc = 0 as n — oo.

Step 2: A(Bj,) is uniformly bounded.

It is obvious since A(B,) € By, and B, is bounded.
Step 3: A(B,,) is equicontinuous on every compact subset [0, 7] of J, T > 0 and t;,t, € [0,T], t, >
t; (without loss of generality), we get

| Ax(ty) — Ax(ty) |

AIMS Mathematics

IA

+

ce

1
bt xt) + =— | i —-9)"'g (S, (%),

to

1 1

W)+ oy | e )" gy (s, ) 15
tl 1

T(a) 7))

| B(t2, 2(t2)) — b(ty, 3E(h))l
1

)
(t —9)" g (s, x(s),

0

t)

to

(t, —9)" g (s, x(s), f S(s - 0Y'g2(6, X(H))dH) ds
0 0

1

()

f (s — 0¥ a,(6, x(@))d@) ds
0

L
r@)

f S(s - 0P 4,6, x(@))d@) ds
0

f 5(5 — 0P ' g,(6, x(@))d@) ds
0
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< | b(ta, x(t2)) — b(ty, x(t1)) + b(tz, 3€(Jfl)) b(tz,f(tl)ﬂ
t)
L (t—9)" gy (s x(s), F—(ﬁ) (s—ef‘lgz(e, x(e))de)ds
1 Q
-Fﬁa (-wf@&ﬂﬁﬂgf@ﬂwhﬁﬂwwys
t)
— al_ﬁakhFx@)F@lf(ﬁ_@ﬁ9ﬂ9“®Mﬂd5
0
< Ky(b) | x(tp) — x(ty) | +[b(ta, x(t1)) — b(ty, x(t))]
) S
+ (t; —9)% g (s (s), r—(ﬁ)f(s—@)ﬂ_lgz(e, x(@))d@)ds
0
ty 1 S
+ﬁ5 (@ww‘&a@ﬁg @—W%wﬂwwys
t
t)
- (t1 —9)" gy (s x(s), @ f (s—e)ﬁ‘lgz(e,xw))de)ds
0
< Ky() | 3E(fz) —x(t)) | +H(t2, x(t1)) — b(ty, x(1)))|
1 S
+H) (sf@&%ﬁQIQ%WMM@@ﬁ
< Ky() | 3€(fz) —x(ty) | +Ib(tz, x(t))) — b(h (1))l
L N (T . TTC f@—w|(M@M4
T@) J, T ke TR %
< Ky | x(t) — x(ty) | +[D(t2, x(t)) — by, x(t))]
1 ° a-1 ()
YT, B al(g’”br_(ﬁ)f( ~ @ dols
< Kyl 3E(fz) —x(t)) | +[b(t2, x(t1)) — b(ty, x(1)))|
o (1) (ty — o)™ a1(5)+b— f (5 — O] az(G)dH]ds

Thus, for a; = sup aj,
te[0,T]

| Ax(ty) — Ax(ty) |

Continuity of h implies that

IA

IA

i = 1,2 and from the continuity of the functions a; we obtain

Ky | x(t2) — x(t) | +[D(t2, x(t1)) — b(ty, x(t)]

1 (™ ol ba,
ol SCRE i C Rt sl 8
K ) =) |t 560) = B 50)

ba
2 (ty — t)*.

(2 —t)"+ Ta+B+1)

[« +1)

[(A)(t) — (A)t) | -0 as b -t

Step 4: A(B),) is equiconvergent.
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Let teJ and x € B, then we have

|Ax()] < [b(t, x(1)) - b(t, 0)] + [b(t, 0)]

1 t 1 5
+ @ f(; (t —9)* g, (S, x(9), l“_(B) f (s — 0P 1g,(0, x(@))de) ds

< Kb<t)|x(t)|+|b<t,0)|+r( ) f (t- “1 1il|(:<)s)| % f (s — 0P In,(0, x(e))|d9]
0

< Kb(t)lx(t)l+lb(t,0)l+r( )f(t ) 1 a(s)+br(ﬂ)f( —0y! azl( ()O)I ]

< Ky + b, 0)|+r( ) (t—s)" lal(s)ds+b B f (t — 9)2P Lay(s)ds.

In view of assumptions (I) and (IV), we obtain
[Ax(t)] > 0 as t — oo.

Then A has a fixed point ¥ which is a solution of IVP (1.1) on J.
Step 5: Local attactivity of mild solutions. Let x* be a mild solution of IVP (1.1). Taking x €
B(x*,2M), we have

|ax() — = ()] = |Ax®) - Ax (b

|b(t x(1)) — b(t, 35*(1?)) |
a—1

o f (t =95, 509), r—(ﬁ) f (s - 079200, x0))do)

- gl(s,x*(s),r—(ﬁ) fo (s—@)ﬂ-lgz(e,x*(e))de)ds

Ky(1) | x(t) — (1) |

1 t a-1
+ m‘[o‘(t—S) [

1 S
gl(s, 6 55 fo (s — 6F 3,06, x*(e»de)

Ky | x(t) —x"() |
2 t 5
+ @f;(t—s)a1al(s)+r@£(5_9f—1a2(9)d9ds

Ky | x(t) —x"(t) | +2a} + 2bm fo (s — 0)"F ay(6)dO

2(Ky | x(t) | +Ib(t, 0)] + a + bay)
2(KyM + [b(t,0)] + aj + bay) < 2M.

IA

+

IA

1 S
91(5, %(S),r—(ﬁ) fo (s = 0Y 0206, X(G))dG)'

]ds

IA

IA

INIA

We have
IAX(t) — x* (Dllsc < 2M.

Hence A is a continuous function such that A(B(x*,2M)) C B(*, 2M).
Moreover, if x is a mild solution of IVP (1.1), then

kD) -] = |Axt) - Ar)|
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IA

| B(t, x(1)) — bt x° (D) |

1 t a-1 1 s 1
+ @fo(t—s) gl(s,x(s),r—(ﬁ)fo(s—e)ﬁ gz(g,x(g))dg)

1 S
- gl(s,x*(s),r—(ﬁ)fo(s—e)ﬁ_lgz(e,x*(@)w)
< Ky [2(t) — (1) |

1 t a-1
+ @ﬁ(t—S) [

+ 'gl(s,x*(s),ri(ﬂ) fo s(s—H)ﬁ_lgz(e,x*(e))de)uds
Ky | x(t) —x"(t) |

ds

1 S
gl(s,x(s),r—(ﬂ) fo (S—H)ﬁ_lgz(é,x(e))de)‘

IA

+ Lft— gy (5)dls + — ft—@“*ﬁ—l 0)do
T 0( 5)" ay(s)ds Fa+5) 0( ) ax(0)de.

Then

2b
I'(a+pB)

t t
|x(t)—x*(t)|£(1—K;)‘1[% fo (t— o)y (s)ds + j; t-0)"" 0y O)do|.  (5.2)

In view of assumption of (IV) and estimation (5.2), we get
lim [x(t) — x*(t)] = 0.
—00
Then, all mild solutions of IVP (1.1) are locally attractive. O

6. Applications

As particular cases of the IVP (1.1), we have

e Taking g;(t,%,1v) = g/(t,x), we obtain the initial value problem

D [x(H) - bt xO)] = ;i x() te ) 1 <a<2,

(x(t) - b(t, x(t))) =0 and %[x(t) - bh(t,x(1)],_, =0

t=0

e Letting @ — 2, B — 1, as a particular case of Theorem 1 we can deduce an existence result for
the initial value problem for implicit second-order differe-integral equation

£ GO - bt xO) = w1130, [ 9205, 3(ds) te

(x(t) - b(t,xt))| =0 and %[x(t)—b(t,x(t»] =0

t=0

t=0

As particular cases we can deduce existence results for some initial value problem of second order
differential equations (when h=0)and o — 2, we get:

AIMS Mathematics Volume 6, Issue 4, 3703-3719.
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e Taking g(t,x, 1) = —A%x(t), 1 € R*, then we obtain a second order differential equation of
simple harmonic oscillator

zx
T = _2%x(t) tel,

¥(0)=0 and ¥(0)=0
e Taking g;(t,%,1) = (ti—;k) ¥+ q(x), k € R where q(x) is continuous function, then we obtain
Riccati differential equation of second order

PLWO _ (© — pa(t) = La(x() te

¥0)=0 and ¥(0)=0
e Taking g;(t,x,19) = —(t> — 2/t — k)x + q(x), kK € R where q(x) is continuous function and /
is fixed, then we obtain Coulomb wave differential equation of second order

O 4 (=2t — k)x = q(x(t) te,

¥(0)=0 and ¥(0)=0

e Taking g;(t,x,9) = (‘8;1’#) (Ex — %235) + q(x), k € R where q(x) is continuous function and

h is the Planket’s constant and FE, k are positive real numbers, then we obtain of
Schrédinger wave differential equation for simple harmonic oscillator

0 = (S22) (Ex(t) — Lx(t) + a(x(t) te

¥(0)=0 and ¥(0)=0.
7. Conclusions

Sufficient conditions for the existence of solutions for a class of neutral integro-differential equations
of fractional order (1.1) are discussed which involved many key functional differential equations that
appear in applications of nonlinear analysis. Also, some types of Ulam stability for this class of implicit
fractional differential equation are established. Some applications and particular cases are presented.
Finally, the existence of at least one mild solution for this class of equations on an infinite interval by
applying Schauder fixed point theorem and the local attractivity of solutions are proved.
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