The aim of the reported results in this manuscript is to handle the existence, uniqueness, extremal solutions, and Ulam-Hyers stability of solutions for a class of $ \Psi $-Caputo fractional relaxation differential equations and a coupled system of $ \Psi $-Caputo fractional relaxation differential equations in Banach spaces. The obtained results are derived by different methods of nonlinear analysis like the method of upper and lower solutions along with monotone iterative technique, Banach contraction principle, and Mönch's fixed point theorem concerted with the measures of noncompactness. Furthermore, the Ulam-Hyers stability of the proposed system is studied. Finally, two examples are presented to illustrate our theoretical findings. Our acquired results are recent in the frame of a $ \Psi $-Caputo derivative with initial conditions in Banach spaces via the monotone iterative technique. As a results, we aim to fill this gap in the literature and contribute to enriching this academic area.
Citation: Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad. Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces[J]. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151
The aim of the reported results in this manuscript is to handle the existence, uniqueness, extremal solutions, and Ulam-Hyers stability of solutions for a class of $ \Psi $-Caputo fractional relaxation differential equations and a coupled system of $ \Psi $-Caputo fractional relaxation differential equations in Banach spaces. The obtained results are derived by different methods of nonlinear analysis like the method of upper and lower solutions along with monotone iterative technique, Banach contraction principle, and Mönch's fixed point theorem concerted with the measures of noncompactness. Furthermore, the Ulam-Hyers stability of the proposed system is studied. Finally, two examples are presented to illustrate our theoretical findings. Our acquired results are recent in the frame of a $ \Psi $-Caputo derivative with initial conditions in Banach spaces via the monotone iterative technique. As a results, we aim to fill this gap in the literature and contribute to enriching this academic area.
[1] | R. Hilfer, Application of fractional calculus in physics, New Jersey: World Scientific, 2001. |
[2] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010. |
[3] | I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999. |
[4] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Springer, Dordrecht, 2007. |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. |
[6] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, 1993. |
[7] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in fractional differential equations, Developments in Mathematics, 27, Springer, New York, 2012. |
[8] | S. Abbas, M. Benchohra, G. M. N'Guerekata, Advanced fractional differential and integral equations, Mathematics Research Developments, Nova Science Publishers, Inc., New York, 2015. |
[9] | S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit fractional differential and integral equations, De Gruyter Series in Nonlinear Analysis and Applications, 26, De Gruyter, Berlin, 2018. |
[10] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481. doi: 10.1016/j.cnsns.2016.09.006 |
[11] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142 |
[12] | F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. doi: 10.22436/jnsa.010.05.27 |
[13] | F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S., 13 (2020), 709-722. |
[14] | Y. Luchko, J. J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal., 10 (2007), 249-267. |
[15] | R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 42 (2019), 1687-1697. doi: 10.1007/s40840-017-0569-6 |
[16] | R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336-352. doi: 10.1002/mma.4617 |
[17] | R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation-oscillation equations involving $\Psi$-Caputo fractional derivative, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 1873-1891. doi: 10.1007/s13398-018-0590-0 |
[18] | S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027-1045. doi: 10.1515/fca-2018-0056 |
[19] | M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Nonlinear implicit fractional differential equation involving $\psi$-Caputo fractional derivative, Proc. Jangjeon Math. Soc., 22 (2019), 387-400. |
[20] | M. S. Abdo, S. K. Panchal, A. M. Saeed, Fractional boundary value problem with $\psi $-Caputo fractional derivative, Proc. Indian Acad. Sci. Math. Sci., 129 (2019), 65. doi: 10.1007/s12044-019-0514-8 |
[21] | M. S. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, J. Math. Anal. Model., 1 (2020), 33-46. doi: 10.48185/jmam.v1i1.2 |
[22] | A. Aghajani, E. Pourhadi, J. J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 16 (2013), 962-977. doi: 10.2478/s13540-013-0059-y |
[23] | C. Derbazi, Z. Baitiche, Coupled systems of $\Psi$-Caputo differential equations with initial conditions in Banach spaces, Mediterr. J. Math., 17 (2020), 169. doi: 10.1007/s00009-020-01603-6 |
[24] | K. D. Kucche, A. D. Mali, J. V. C. Sousa, On the nonlinear $\Psi$-Hilfer fractional differential equations, Comput. Appl. Math., 38 (2019), 73. doi: 10.1007/s40314-019-0833-5 |
[25] | A. Seemab, J. Alzabut, M. ur Rehman, Y. Adjabi, M. S. Abdo, Langevin equation with nonlocal boundary conditions involving a $\psi$-Caputo fractional operator, (2020), arXiv: 2006.00391v1. |
[26] | J. Vanterler da Costa Sousa, E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\Psi$-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87-106. |
[27] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, Existence, uniqueness, estimation and continuous dependence of the solutions of a nonlinear integral and an integrodifferential equations of fractional order, (2018), arXiv: 1806.01441. |
[28] | H. A. Wahash, M. S. Abdo, A. M. Saeed, S. K. Panchal, Singular fractional differential equations with $\psi$-Caputo operator and modified Picard's iterative method, Appl. Math. E-Notes., 20 (2020), 215-229. |
[29] | H. A. Wahash, S. K. Panchal, Positive solutions for generalized two-term fractional differential equations with integral boundary conditions, J. Math. Anal. Model., 1 (2020), 47-63. doi: 10.48185/jmam.v1i1.35 |
[30] | J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., (2011), 1-10. |
[31] | M. Al-Refai, M. Ali Hajji, Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Anal., 74 (2011), 3531-3539. doi: 10.1016/j.na.2011.03.006 |
[32] | C. Chen, M. Bohner, B. Jia, Method of upper and lower solutions for nonlinear Caputo fractional difference equations and its applications, Fract. Calc. Appl. Anal., 22 (2019), 1307-1320. doi: 10.1515/fca-2019-0069 |
[33] | P. Chen, Y. Kong, Monotone iterative technique for periodic boundary value problem of fractional differential equation in Banach spaces, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 595-599. doi: 10.1515/ijnsns-2018-0239 |
[34] | C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with $\Psi$-Caputo derivative via monotone iterative technique, Axioms., 9 (2020), 57. doi: 10.3390/axioms9020057 |
[35] | Y. Ding, Y. Li, Monotone iterative technique for periodic problem involving Riemann-Liouville fractional derivatives in Banach spaces, Bound. Value Probl., 2018 (2018), 119. doi: 10.1186/s13661-018-1037-4 |
[36] | S. W. Du, V. Lakshmikantham, Monotone iterative technique for differential equations in a Banach space, J. Math. Anal. Appl., 87 (1982), 454-459. doi: 10.1016/0022-247X(82)90134-2 |
[37] | K. D. Kucche, A. D. Mali, Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative, Comput. Appl. Math., 39 (2020), 31. doi: 10.1007/s40314-019-1004-4 |
[38] | X. Lin, Z. Zhao, Iterative technique for a third-order differential equation with three-point nonlinear boundary value conditions, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 12. doi: 10.1186/s13662-015-0736-8 |
[39] | G. Wang, W. Sudsutad, L. Zhang, J. Tariboon, Monotone iterative technique for a nonlinear fractional $q$-difference equation of Caputo type, Adv. Differ. Equ., 2016 (2016), 211. doi: 10.1186/s13662-016-0938-8 |
[40] | S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71 (2009), 2087-2093. doi: 10.1016/j.na.2009.01.043 |
[41] | J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, Inc., New York, 1980. |
[42] | D. Bothe, Multivalued perturbations of $m$-accretive differential inclusions, Israel J. Math., 108 (1998), 109-138. doi: 10.1007/BF02783044 |
[43] | R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, New York, 2014. |
[44] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract spaces, Academic Press, New York, 1988. |
[45] | D. J. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publ., Dordrecht, 1996. |
[46] | H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371. doi: 10.1016/0362-546X(83)90006-8 |
[47] | H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985-999. doi: 10.1016/0362-546X(80)90010-3 |
[48] | Z. Wei, Q. D. Li, J. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), 260-272. doi: 10.1016/j.jmaa.2010.01.023 |
[49] | S. Schwabik, G. Ye, Topics in Banach space integration, Series in Real Analysis, 10, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. |