The purpose of this study is to give some findings on the existence, uniqueness, and Hyers-Ulam stability of the solution of an implicit coupled system of impulsive fractional differential equations possessing a fractional derivative of the Hadamard type. The existence and uniqueness findings are obtained using a fixed point theorem of the type of Kransnoselskii. In keeping with this, many forms of Hyers-Ulam stability are examined. Ultimately, to support main results, an example is provided.
Citation: Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen. Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives[J]. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350
[1] | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784 |
[2] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[3] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
[4] | Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055 |
[5] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[6] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
[7] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[8] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[9] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[10] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
The purpose of this study is to give some findings on the existence, uniqueness, and Hyers-Ulam stability of the solution of an implicit coupled system of impulsive fractional differential equations possessing a fractional derivative of the Hadamard type. The existence and uniqueness findings are obtained using a fixed point theorem of the type of Kransnoselskii. In keeping with this, many forms of Hyers-Ulam stability are examined. Ultimately, to support main results, an example is provided.
In last years, it was noted that several real-world phenomena cannot be modeled by partial or ordinary differential equations or classical difference equations defined using the standard integrals and derivatives. These problems required the concept of fractional calculus (fractional integrals and derivatives), where the classical calculus was insufficient. Differential equations of fractional order are considered to be interesting tools in the modeling of several problems in different fields of engineering and science, as electrochemistry, control, electromagnetic, porous media, viscoelasticity. See for example [1,2,3,4,5,6,7]. On the other hand, in the recent years impulsive differential equations have become essential as mathematical models of problems in social and physical sciences. There was a great development in impulsive theory in particular in the field of impulsive differential equations with fixed moments. For instance, see the works of Samoilenko and Perestyuk [8], Benchohra et al. [9], Lakshmikantham et al. [10], etc. Further works for differential equations at variable moments of impulse have been appeared. For example, we cite the papers of Frigon and O'Regan [11,12], Graef and Ouahab [13], Bajo and Liz [14], etc.
It is also observed that fixed point theory is an important mathematical tool to ensure the existence and uniqueness of many problems intervening nonlinear relations. As a consequence, existence and uniqueness problems of fractional differential equations have been resolved using fixed point techniques. This theory has been developed in many directions and has several applications. Moreover, we could apply it in different types of spaces, like metric spaces, abstract spaces, and Sobolev spaces. This use of fixed point theory makes very easier the resolution of many problems modeled by fractional ordinary, partial differential and difference equations. For instance, see [15,16,17,18,19,20].
The theory for impulsive fractional differential equations in Banach spaces have been sufficiently developed by Feckan et al. [21] by using fixed point techniques. In the real world, many phenomena are subject to transient external effects as they develop. In comparison to the entire duration of the phenomenon being observed, the durations of these external effects are incredibly brief. The logical conclusion is that these external forces are real impulses. Impulsive differential equations are now a major component of the modeling of physical real-world issues in order to study these abrupt shifts. Biological systems including heartbeat, blood flow, and impulse rate have been discussed in relation to many applications of this kind of impulsive differential equations. For more details, see, [22,23,24,25,26,27].
On the other hand, in last years the study of Hyers-Ulam (HU) stability analysis for nonlinear fractional differential equations has attracted the attention of several researchers. Note that HU stability is considered as an exact solution near the approximate solution for these equations with minimal error. The following works [28,29,30,31,32] deal with such a stability analysis. For Hyers-Ulam (HU) stabilities, there are generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities.
Much of the work on the topic of fractional differential equations deals with the governing equations involving Riemann-Liouville and Caputo-type fractional derivatives. Another kind of fractional derivative is the Hadamard type [33], which was introduced in 1892. This derivative differs significantly from both the Riemann-Liouville type and the Caputo type in the sense that the kernel of the integral in the definition of the Hadamard derivative contains a logarithmic function of arbitrary exponent. It seems that the abstract fractional differential equations involving Hadamard fractional derivatives and Hilfer-Hadamard fractional derivatives have not been fully explored so far. Several applications of where the Hadamard derivative and the Hadamard integral arise can be found in the papers by Butzer, Kilbas and Trujillo [34,35,36]. Other important results dealing with Hadamard fractional calculus and Hadamard differential equations can be found in [37,38]. The presence of the δ-differential operator (δ=xddx) in the definition of Hadamard fractional derivatives could make their study uninteresting and less applicable than Riemann-Liouville and Caputo fractional derivatives. Moreover, this operator appears outside the integral in the definition of the Hadamard derivatives just like the usual derivative D=ddx is located outside the integral in the case of Riemann-Liouville, which makes the fractional derivative of a constant of these two types not equal to zero in general. Hadamard [33] proposed a fractional power of the form (xddx)α. This fractional derivative is invariant with respect to dilation on the whole axis.
The existence and HU stability of the following implicit FDEs involving Hadamard derivatives were investigated in [39] as follows:
{HDϖz(υ)=ϕ(υ,z(υ),HDϖz(υ)), ϖ∈(0,1), z(1)=z1, z1∈R, |
where υ∈[1,G], G>1, HDϖ refers to the Hadamard fractional (HF) derivative of order ϖ.
The following coupled system containing the Caputo derivative was examined in [40] for its existence, uniqueness, and several types of Hyers-Ulam stability:
{CDϖz(υ)=ϕ(υ,s(υ),CDϖz(υ)), υ∈U,CDθs(υ)=ψ(υ,z(υ),CDθs(υ)), υ∈U,z′(G)=z′′(0)=0, z(1)=ϱz(η) ϱ,η∈(0,1),s′(G)=s′′(0)=0, s(1)=ϱs(η) ϱ,η∈(0,1), |
where υ∈U=[0,1], ϖ,θ∈(2,3] and ϕ,ψ:U×R2→R are continuous functions.
For the following coupled system containing the Riemann-Liouville derivative, the authors of [41] demonstrated the existence, uniqueness, and several types of Hyers-Ulam stability:
{Dϖz(υ)=ϕ(υ,s(υ),Dϖz(υ)), υ∈U, Dθs(υ)=ψ(υ,z(υ),Dθs(υ)), υ∈U, Dϖ−2z(0+)=π1Dϖ−2z(G−), Dϖ−2z(0+)=ℓ1Dϖ−1z(G−),Dϖ−2s(0+)=π2Dϖ−2s(G−), Dϖ−2s(0+)=ℓ2Dϖ−1s(G−), |
where υ∈U=[0,G], G>0, ϖ,θ∈(1,2] and π1,π2,ℓ1,ℓ2≠1, Dϖ,Dθ are Riemann-Liouville derivatives of fractional orders ϖ, θ respectively and ϕ,ψ:U×R2→R are continuous functions.
Inspired by the previous work, we investigate the coupled impulsive implicit FDEs (CII-FDEs) incorporating Hadamard derivatives as follows:
{HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ)), υ∈U, υ≠υi, i=1,2,...k,HDθs(υ)=ψ(υ,HDθs(υ),HDϖz(υ)), υ∈U, υ≠υj, j=1,2,...m,Δz(υi)=Iiz(υi), Δz′(υi)=˜Iiz(υi), i=1,2,...k, Δs(υj)=Ijs(υj), Δs′(υj)=˜Ijs(υj), j=1,2,...m, z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, z′(G)=B∗(z), s(G)=1Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη, s′(G)=B∗(s), | (1.1) |
where ϖ,θ∈(1,2], ϕ,ψ:U×R2→R, B:U×C(U,R)→R and B∗:U→R are continuous functions and
Δz(υi)=z(υ+i)−z(υ−i), Δz′(υi)=z′(υ+i)−z′(υ−i),Δs(υi)=s(υ+i)−s(υ−i), Δs′(υi)=s′(υ+i)−s′(υ−i). |
The derivatives HDϖ,HDθ are the Hadamard derivative operators of order ϖ and θ, respectively; z(υ+i),s(υ+i) are right limits and z(υ−i),s(υ−i) are left limits; Ii,Ij,˜Ii,˜Ij:R→R are continuous functions. The system (1.1) is used to describe certain features of applied mathematics and physics such as blood flow problems, chemical engineering, thermoelasticity, underground water flow, and population dynamics. For more details, we refer the readers to see the monograph [42].
Using the Banach contraction and Kransnoselskii FP theorems, we establish necessary and sufficient criteria for the existence and uniqueness of a positive solution for the problem (1.1). Additionally, we analyze other Hyers-Ulam (HU) stabilities such as generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities.
In this part, we present certain key terms and lemmas that are utilized throughout the rest of this paper, for more information, see [42,43].
Assume that PC(U,R+) equipped with the norms ‖z‖=max{|z(υ)|:υ∈U}, ‖s‖=max{|s(υ)|:υ∈U} is a Banach space (shortly, BS), then the products of these norms are also a BS under the norm ‖(z+s)‖=‖z‖+‖s‖. Assume that ℑ1 and ℑ2 represent the piecewise continuous function spaces described as
ℑ1=PC2−ϖ,ln(U,R+)={z:U→R+ so that z(υ+i),z′(υ+i) and z(υ−i),z′(υ−i) exist ,i=1,2,...k},ℑ2=PC2−θ,ln(U,R+)={s:U→R+ so that s(υ+j),s′(υ+j) and s(υ−j),s′(υ−j) exist ,j=1,2,...m}, |
with norms
‖z‖ℑ1=sup{|z(υ)ln(υ)2−ϖ|, υ∈U} and ‖s‖ℑ2=sup{|s(υ)ln(υ)2−θ|, υ∈U}, |
respectively. Clearly, the product ℑ=ℑ1×ℑ2 is a BS endowed with ‖(z+s)‖ℑ=‖z‖ℑ1+‖s‖ℑ2.
The following definitions are recalled from [44].
Definition 2.1. For the function z(υ), the Hadamard fractional (HF) integral of order ϖ is described as
HIϖz(υ)=1Γ(ϖ)∫υ1ln(υη)ϖ−1z(η)dηη, υ∈(1,G] |
where Γ(.) is the Gamma function.
Definition 2.2. For the function z(υ), the HF derivative of order ϖ∈[a−1,a), a∈Z+ is described as
HDϖz(υ)=1Γ(a−ϖ)(υddυ)a∫υxln(υη)a−ϖ+1z(η)dηη, υ∈(x,G]. |
Lemma 2.3. [45] Assume that ϖ>0 and z is any function, then the derivative equation HDϖz(υ)=0 has solutions below:
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+r3(lnυ)ϖ−3+...+ra(lnυ)ϖ−a, |
and the formula
HIϖHDϖz(υ)=z(υ)+r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+r3(lnυ)ϖ−3+...+ra(lnυ)ϖ−a, |
is satisfied, where ri∈R, i=1,2,...,a and ϖ∈(a−1,a).
Theorem 2.4. [46] Assume that Ξ is a non-empty, convex and closed subset of a BS ℑ. Let E and ˜E be operators so that
(1) for z,s∈Ξ, E(z,s)+˜E(z,s)∈Ξ;
(2) the operator ˜E is completely continuous;
(3) the operator Ξ is contractive.
Then there is a solution (z,s)∈Ξ for the operator equation E(z,s)+˜E(z,s)=(z,s).
The definitions and observations below are taken from [47,48].
Definition 3.1. The coupled problem (1.1) is called HU stable if there are Λϖ,θ=max{Λϖ,Λθ}>0 so that, for φ=max{φϖ,φθ} and for each solution (z,s)∈ℑ to inequalities
{|HDϖz(υ)−ϕ(υ,HDϖz(υ),HDθs(υ))|≤φϖ, υ∈U, |Δz(υi)−Iiz(υi)|≤φϖ, |Δz′(υi)−˜Iiz(υi)|≤φϖ, i=1,2,...k,|HDθs(υ)−ϕ(υ,HDθs(υ),HDϖz(υ))|≤φθ, υ∈U, |Δs(υj)−Ijs(υj)|≤φθ, |Δs′(υj)−˜Ijs(υj)|≤φθ, j=1,2,...m, | (3.1) |
there is a unique solution (˜z,˜s)∈ℑ with
‖(z,s)−(˜z,˜s)‖ℑ≤Λϖ,θφ, υ∈U. |
Definition 3.2. The coupled problem (1.1) is called GHU stable if there is Φ∈C(R+,R+) with ξ(0)=0, so that, for any solution (z,s)∈ℑ of (3.1), there is a unique solution (˜z,˜s)∈ℑ of with of (1.1) fulfilling
‖(z,s)−(˜z,˜s)‖ℑ≤Φ(φ), υ∈U. |
Set ℧ϖ,θ=max{℧ϖ,℧θ}∈C(U,R) and Λ℧ϖ,℧θ=max{Λ℧ϖ,Λ℧θ}>0.
Definition 3.3. The coupled problem (1.1) is called HUR stable with respect to ℧ϖ,θ if there is a constant Λ℧ϖ,℧θ so that, for any solution (z,s)∈ℑ for the inequalities below
{|HDϖz(υ)−ϕ(υ,HDϖz(υ),HDθs(υ))|≤℧ϖ(υ)φϖ, υ∈U,|HDθs(υ)−ϕ(υ,HDθs(υ),HDϖz(υ))|≤℧θ(υ)φθ, υ∈U, | (3.2) |
there is a unique solution (˜z,˜s)∈ℑ with
‖(z,s)−(˜z,˜s)‖ℑ≤Λ℧ϖ,℧θ℧ϖ,θφ, υ∈U. | (3.3) |
Definition 3.4. The coupled problem (1.1) is called GHUR stable with respect to ℧ϖ,θ if there is a constant Λ℧ϖ,℧θ so that, for any a proximate solution (z,s)∈ℑ of (3.2), there is a unique solution (˜z,˜s)∈ℑ of with of (1.1) fulfilling
‖(z,s)−(˜z,˜s)‖ℑ≤Λ℧ϖ,℧θ℧ϖ,θ(υ), υ∈U. |
Remark 3.5. If there are functions ℜϕ,ℜψ∈C(U,R) depending upon z, s, respectively, so that
(R1) |ℜϕ(υ)|≤φϖ, |ℜψ(υ)|≤φθ, υ∈U;
(R2)
{HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ))+ℜϕ(υ), Δz(υi)=Ii(z(υi))+ℜϕi, Δz′(υi)=˜Ii(z(υi))+ℜϕi,HDθs(υ)=ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ), Δs(υj)=Ij(s(υj))+ℜψj, Δs′(υj)=˜Ij(s(υj))+ℜψj. |
Then, (z,s)∈ℑ is a solution of the system of inequalities (3.1).
In the following part, we establish requirements for the existence and uniqueness of solutions to the suggested system (1.1)
Theorem 4.1. For the function w, the solutions of the following subsequent linear impulsive BVP
{HDϖz(υ)=w(υ), υ∈U, υ≠υi, i=1,2,...k,Δz(υi)=Ii(z(υi)), Δz′(υi)=˜Ii(z(υi)), υ≠υi, i=1,2,...k,z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, z′(G)=B∗(z), |
takes the form
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Iiz(υi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Iiz(υi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2w(η)dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1w(η)dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1w(η)dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1w(η)dηη, | (4.1) |
where u=1,2,...,k and
D0(ϖ)=ln(υG)ln(G)2−ϖ,D1i(ϖ)=(ϖ−1)(lnυ−ϖ+2)(lnυi)3−ϖ−(ϖ−2)(lnυ2−ϖ+1)(lnυi)2−ϖlnυi,D2i(ϖ)=lnυυi(3−ϖ)(lnυi)2−ϖ,D3(ϖ)=(ϖ−1−logGυϖ−2)(lnυ)2−ϖ,D4(ϖ)=logGυGϖ−1(lnG)2−ϖ,D5i(ϖ)=(lnυϖ−1Gϖ−2+logυi(Gυiυ2)ϖ−2)(lnυi)2−ϖ. |
Proof. Assume that
HDϖz(υ)=w(υ), ϖ∈(1,2], υ∈U. | (4.2) |
Using Lemma 2.3, for υ∈(1,υ1], we have
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+1Γ(ϖ)∫υ1ln(υη)ϖ−1w(η)dηη,z′(υ)=r1(ϖ−1)υ(lnυ)ϖ−2+r2(ϖ−2)υ(lnυ)ϖ−3+1Γ(ϖ−1)∫υ11υln(υη)ϖ−2w(η)dηη. | (4.3) |
Again, applying Lemma 2.3, for υ∈(υ1,υ2], we get
z(υ)=l1(lnυ)ϖ−1+l2(lnυ)ϖ−2+1Γ(ϖ)∫υυ1ln(υη)ϖ−1w(η)dηη,z′(υ)=l1(ϖ−1)υ(lnυ)ϖ−2+l2(ϖ−2)υ(lnυ)ϖ−3+1Γ(ϖ−1)∫υυ11υln(υη)ϖ−2w(η)dηη. | (4.4) |
Using initial impulses
l1=r1−(ϖ−2)(lnυ1)1−ϖI1(z(υ1))+υ1(lnυ1)2−ϖ˜I1(z(υ1))+(lnυ1)2−ϖΓ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη−(ϖ−2)(lnυ1)1−ϖΓ(ϖ)∫υ11ln(υ1η)ϖ−1w(η)dηη,l2=r2+(ϖ−1)(lnυ1)2−ϖI1(z(υ1))−υ1(lnυ1)3−ϖ˜I1(z(υ1))−(lnυ1)3−ϖΓ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη+(ϖ−1)(lnυ1)2−ϖΓ(ϖ)∫υ11ln(υ1η)ϖ−1w(η)dηη. |
From l1 and l2 on (4.4), one has
z(υ)=r1(lnυ)ϖ−1−r2(lnυ)ϖ−2+((ϖ−1)−(ϖ−2)(logυ1υ))(logυ1υ)ϖ−2I1(z(υ1))+υ1(lnυ−lnυ1)(logυ1υ)ϖ−2˜I1(z(υ1))+(lnυ−lnυ1)(logυ1υ)ϖ−2Γ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη+((ϖ−1)−(ϖ−2)(logυ1υ))(logυ1υ)ϖ−2Γ(ϖ)∫υ11ln(υ1η)ϖ−2w(η)dηη+1Γ(ϖ)∫υυ1ln(υη)ϖ−1w(η)dηη. |
Analogously for υ∈(υu,G), we have
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+u∑i=1((ϖ−1)−(ϖ−2)(logυiυ))(logυiυ)ϖ−2Ii(z(υi))+u∑i=1υi(lnυ−lnυi)(logυiυ)ϖ−2˜Ii(z(υi))+u∑i=1(lnυ−lnυi)(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+u∑i=1((ϖ−1)−(ϖ−2)(logυiυ))(logυiυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1w(η)dηη, | (4.5) |
and
z′(υ)=(ϖ−1)r1υ(lnυ)ϖ−2+(ϖ−1)r2υ(lnυ)ϖ−3+u∑i=1(ϖ−1)(ϖ−2)υ(logυe−logeυi)(logυiυ)ϖ−2Ii(z(υi))+u∑i=1υiυ[(ϖ−1)−(ϖ−2)logυυi](logυiυ)ϖ−2˜Ii(z(υi))+1υΓ(ϖ−1)∫υυuln(υη)ϖ−2w(η)dηη,+u∑i=1((ϖ−1)−(ϖ−2)logυυi)(logυiυ)ϖ−2υΓ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+u∑i=1(ϖ−1)(ϖ−2)(logυe−logeυi)(logυiυ)ϖ−2υΓ(ϖ)∫υiυi−1ln(υiη)ϖ−2w(η)dηη. | (4.6) |
Applying the boundary stipulations z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη and z′(G)=B∗(z), we obtain that
r1=GB∗(z)ln(G)2−ϖ−(lnG)1−ϖ(ϖ−2)Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+(lnG)1−ϖΓ(ϖ)∫Gυuln(Gη)ϖ−1w(η)dηη+u∑i=1(lnυϖ−1i−ϖ−2lnυi)(lnυi)2−ϖIi(z(υi))−(ϖ−2)u∑i=1υi(lnυi)ϖ−1˜Ii(z(υi))−(ϖ−2)Γ(ϖ−1)u∑i=1(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−2w(η)dηη−(lnG)2−ϖΓ(ϖ−1)∫Gυuln(Gη)ϖ−2w(η)dηη+1Γ(ϖ)u∑i=1(lnυϖ−1i−ϖ−2lnυi)(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−1w(η)dηη, |
and
r2=(lnG)2−ϖΓ(ϖ−1)∫G1ln(Gη)ϖ−1B(η,z(η))dηη−GB∗(z)ln(G)3−ϖ+u∑i=1υi(lnυi)3−ϖ˜Ii(z(υi))+(ϖ−1)u∑i=1(lnG(ϖ−2)(logυie−logeυi)−1)(lnυi)2−ϖIi(z(υi))+(lnG)3−ϖΓ(ϖ−1)∫υυuln(Gη)ϖ−2w(η)dηη+1Γ(ϖ−1)u∑i=1(lnG(ϖ−2)(logυie−logeυi)−1)(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−1w(η)dηη+1Γ(ϖ−1)u∑i=1(lnυi)3−ϖ∫υiυi−1ln(υiη)ϖ−2w(η)dηη−(lnG)2−ϖΓ(ϖ−1)∫Gυiln(Gη)ϖ−1w(η)dηη, |
for u=1,2,...,k. Substituting r1 and r2 in (4.5), we have (4.1).
Corollary 4.2. Theorem 2.4 provides the following solution for our coupled problem (1.1):
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη, | (4.7) |
where u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη,+1Γ(θ)∫υυuln(υη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη, | (4.8) |
where u=1,2,...,m.
For convenience, we use the notations below:
p(υ)=ϕ(υ,a1(υ),a2(υ))≤ϕ(υ,z(υ),a(υ)) and a(υ)=ψ(υ,p1(υ),p2(υ))≤ψ(υ,s(υ),p(υ)). |
Hence, for υ∈U, Eqs (4.7) and (4.8) can be written as
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2p(η)dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1p(η)dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1p(η)dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2p(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1p(η)dηη, |
for u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2a(η)dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1a(η)dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1a(η)dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1) intυjυj−1ln(υiη)θ−2a(η)dηη+1Γ(θ)∫υυuln(υη)θ−1a(η)dηη, |
for u=1,2,...,m.
If z and s are solutions to the CII-FDEs (1.1), then for υ∈U, we can write
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,a1(η),a2(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,a1(η),a2(η))dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,a1(η),a2(η))dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,a1(η),a2(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,a1(η),a2(η))dηη, |
for u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,p1(η),p2(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,p1(η),p2(η))dηη+1Γ(θ)∫υυuln(υη)θ−1ψ(η,p1(η),p2(η))dηη, |
for u=1,2,...,m.
Our next step is to convert the considered system (1.1) into a FP problem. Give the definition of the operators E,˜E:ℑ→ℑ as
E(z,s)(υ)=(E1z(υ),E2z(υ)) and ˜E(z,s)(υ)=(E1(z,s)(υ),E2(s,z)(υ)), |
where
{E1(z(υ))=GD0(ϖ)B∗(z)(lnυ)ϖ−2+∑ui=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+∑ui=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, u=1,2,...,k,E2(s(υ))=GD0(θ)B∗(s)(lnυ)θ−2+∑uj=1D1j(θ)(lnυ)θ−2Ij(sj)+∑uj=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη, u=1,2,...,m, | (4.9) |
and
{E1(z,s)(υ)=D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+∑ui=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+∑ui=1lnυ3−ϖ(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,a1(η),a2(η))dηη, u=1,2,...,k,E2(s,z)(υ)=D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+∑uj=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+∑uj=1lnυ3−θ(logυjυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+1Γ(θ)∫υυuln(υη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη, u=1,2,...,m. | (4.10) |
The preceding assertions must be true in order to conduct further analysis:
(A1) For υ∈U and a1,a2,p1,p2∈R, there exist ℓ0,ℓ1,ℓ2,ρ0,ρ1,ρ2∈C(U,R+), so that
|ϕ(υ,a1(υ),a2(υ))|≤ℓ0(υ)+ℓ1(υ)|a1(υ)|+ℓ2(υ)|a2(υ)|,|ψ(υ,p1(υ),p2(υ))|≤ρ0(υ)+ρ1(υ)|p1(υ)|+ρ2(υ)|p2(υ)|, |
with ˜ℓ0=supυ∈Uℓ0(υ), ˜ℓ1=supυ∈Uℓ1(υ), ˜ℓ2=supυ∈Uℓ2(υ), ˜ρ0=supυ∈Uρ0(υ), ˜ρ1=supυ∈Uρ1(υ), and ˜ρ2=supυ∈Uρ2(υ)<1.
(A2) For the continuous functions B∗,Iu,˜Iu:R→R there are positive constants
OB,OI,O˜I,O′′I,O′′˜I,˜OB,˜OI,˜O˜I,˜O′′I,˜O′′˜I so that for any (z,s)∈ℑ
|B∗(z)|≤OB∗, |Iu(z(υ))|≤OI|z|+O′′I, |˜Iu(z(υ))|≤O˜I|z|+O′′˜I,|B∗(s)|≤˜OB∗, |Iu(s(υ))|≤˜OI|s|+˜O′′I, |˜Iu(s(υ))|≤˜O˜I|s|+˜O′′˜I, |
where u={0,1,2,...,k}.
(A3) For all υ∈U and s,z∈R, there are ϱ1,δ1,ϱ2,δ2∈C(U,R+), so that
|B(υ,z(υ))|≤ϱ1(υ)+δ1|z(υ)| and |B(υ,s(υ))|≤ϱ2(υ)+δ1|s(υ)|, |
with ϱ∗1=supυ∈Uϱ1(υ), δ∗1=supυ∈Uδ1(υ), ϱ∗2=supυ∈Uϱ2(υ), δ∗2=supυ∈Uδ2(υ)<1.
(A4) For each a1,a2,˜a1,˜a2,p1,p2,˜p1,˜p2∈R, and for all υ∈U, there are constants Lϕ,Lψ>0, and ˜Lϕ,˜Lψ∈(0,1) so that
|ϕ(υ,a1(υ),a2(υ))−ϕ(υ,˜a1(υ),˜a2(υ))|≤Lϕ|a1−˜a1|+˜Lϕ|a2−˜a2|,|ψ(υ,p1(υ),p2(υ))−ψ(υ,˜p1(υ),˜p2(υ))|≤Lψ|p1−˜p1|+˜Lψ|p2−˜p2|. |
(A5) For the continuous functions Iu,˜Iu:R→R, there are positive constants LI,L˜I,˜LI,˜L˜I so for any (z,s),(˜z,˜s)∈ℑ
|Iu(z(υ))−Iu(˜z(υ))|≤LI|z−˜z|, |Iu(s(υ))−Iu(˜s(υ))|≤˜LI|s−˜s|, |˜Iu(z(υ))−˜Iu(˜z(υ))|≤L˜I|z−˜z||˜Iu(s(υ))−˜Iu(˜s(υ))|≤˜L˜I|s−˜s|. |
(A6) For each s,z,˜s,˜z∈R and for all υ∈U, there are LB,LB∗,˜LB,˜LB∗>0, so that
|B(υ,z(υ))−B(υ,˜z(υ))|≤LB|z−˜z|, |B∗(z)−B∗(˜z)|≤LB∗|z−˜z|,|B(υ,s(υ))−B(υ,˜s(υ))|≤˜LB|s−˜s|, |B∗(s)−B∗(˜s)|≤˜LB∗|z−˜z|. |
Here, we demonstrate that the operator E+˜E has at least one FP using Kransnoselskii's FP theorem. For this, we choose a closed ball
ℑx={(z,s)∈ℑ:‖(z,s)‖≤y, ‖z‖≤y2 and ‖s‖≤y2}⊂ℑ, |
where
x≥M∗1+M∗∗1+(˜ℓ0+˜ℓ2˜ρ0)M∗3+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−11−M∗2−M∗∗2−Y∗1M∗2+Y∗2M∗∗2˜ℓ2˜ρ2−1. |
Theorem 4.3. There exists at least one solution to the CII-FDEs (1.1) provided that the assertions (A1) and (A2) are true.
Proof. For any (z,s)∈ℑy, we get
‖E(z,s)(υ)+˜E(z,s)‖ℑ≤‖E1(z)‖ℑ1+‖E2(s)‖ℑ2+‖˜E1(z,s)‖ℑ1+‖˜E1(z,s)‖ℑ2. | (4.11) |
From (4.9), we have
|E1z(υ)(lnυ)2−ϖ|≤G|D0(ϖ)||B∗(z)|+u∑i=1|D1i(ϖ)||Ii(z(υi))|+u∑i=1|D2i(ϖ)||˜Ii(z(υi))|+|D3(ϖ)|Γ(ϖ)∫G1|ln(Gη)ϖ−1||B(η,z(η))|dηη, |
for u=1,2,...,k. This leads to
‖E1(z)‖ℑ1≤GOB∗|D0(ϖ)|+u|D1(ϖ)|(OI‖z‖+O′′I)+u|D2(ϖ)|(O˜I‖z‖+O′′˜I)−|D3(ϖ)|(ϱ∗1(υ)+δ∗1‖z‖))ϖΓ(ϖ)|ln(G)ϖ|=GOB∗|D0(ϖ)|+uO′′I|D1(ϖ)|+uO′′˜I|D2(ϖ)|+uOI|D1(ϖ)|‖z‖+uO˜I|D2(ϖ)|‖z‖−|D3(ϖ)|(ϱ∗1(υ)+δ∗1‖z‖))Γ(ϖ+1)|ln(G)ϖ|≤M∗1+M∗2‖z‖. | (4.12) |
Analogously, one can write
‖E2(z)‖ℑ2≤M∗∗1+M∗∗2‖s‖, | (4.13) |
where
M∗1=GOB∗|D0(ϖ)|+uO′′I|D1(ϖ)|+uO′′˜I|D2(ϖ)|−|D3(ϖ)|ϱ∗1(υ)Γ(ϖ+1)|ln(G)ϖ|, u=1,2,...,k,M∗2=uOI|D1(ϖ)|+uO˜I|D2(ϖ)|−δ∗1|D3(ϖ)|Γ(ϖ+1)|ln(G)ϖ|, u=1,2,...,k,M∗∗1=G˜OB∗|D0(θ)|+u˜O′′I|D1(θ)|+u˜O′′˜I|D2(θ)|−|D3(θ)|ϱ∗2(υ)Γ(θ+1)|ln(G)θ|, u=1,2,...,m,M∗∗2=u˜OI|D1(θ)|+u˜O˜I|D2(θ)|−δ∗2|D3(θ)|Γ(θ+1)|ln(G)θ|, u=1,2,...,m. |
Further, we obtain for u=1,2,...,k, that
|˜E1(z,s)(υ)(lnυ)2−ϖ|≤|D0(ϖ)|Γ(ϖ−1)∫Gυu|ln(Gη)ϖ−2||p(η)|dηη+|D4(ϖ)|Γ(ϖ)∫Gυu|ln(Gη)ϖ−1||p(η)|dηη+u∑i=1|D5i(ϖ)|Γ(ϖ)∫υiυi−1|ln(υiη)ϖ−1||p(η)|dηη+|(lnυ)2−ϖ|Γ(ϖ)∫υυu|ln(υη)ϖ−1||p(η)|dηη+u∑i=1|lnυ3−ϖ(lnυi)2−ϖ|Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2|p(η)|dηη. | (4.14) |
From assertion (A1), we can write
|p(υ)|=|ϕ(υ,a1(υ),a2(υ))|≤ϕ(υ,z(υ),a(υ))≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|a(υ)|=ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|ψ(υ,p1(υ),p2(υ))|≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|ψ(υ,s(υ),p(υ))|≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)[ρ0(υ)+ρ1(υ)|s(υ)|+ρ2(υ)|p(υ)|]≤ℓ0(υ)+ℓ2(υ)ρ0(υ)1−ℓ2(υ)ρ2(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)ρ1(υ)|s(υ)|1−ℓ2(υ)ρ2(υ), |
which implies that
‖p‖≤˜ℓ0+˜ℓ2˜ρ01−˜ℓ2˜ρ2+˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖1−˜ℓ2˜ρ2. | (4.15) |
Taking supυ∈U on (4.14) and using (4.15), one has
‖˜E1(z,s)‖ℑ1≤(˜ℓ0+˜ℓ2˜ρ0˜ℓ2˜ρ2−1+˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖˜ℓ2˜ρ2−1)×(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυiυi−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυi)2−ϖ||(lnυiυi−1)ϖ−1|Γ(ϖ))≤(˜ℓ0+˜ℓ2˜ρ0)M∗3˜ℓ2˜ρ2−1+(˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖)M∗3˜ℓ2˜ρ2−1≤(˜ℓ0+˜ℓ2˜ρ0)M∗3˜ℓ2˜ρ2−1+Y∗1M∗3˜ℓ2˜ρ2−1‖(z,s)‖. | (4.16) |
In the same scenario, we get
‖˜E2(z,s)‖ℑ2≤(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+Y∗2M∗∗3˜ℓ2˜ρ2−1‖(z,s)‖, | (4.17) |
where
M∗3=(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυiυi−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυi)2−ϖ||(lnυiυi−1)ϖ−1|Γ(ϖ)), u=1,2,...,k,M∗∗3=(|D0(θ)||ln(Gυu)θ−1|Γ(θ)+|D4(θ)||ln(Gυu)θ|Γ(θ+1)+u|D5(θ)||(lnυiυi−1)θ|Γ(θ+1)+|(lnυ)2−θ||(lnυυu)θ|Γ(θ+1)+u|lnυ3−θ(lnυi)2−θ||(lnυiυi−1)θ−1|Γ(θ)), u=1,2,...,m,Y∗1=max{˜ℓ1,˜ℓ2˜ρ1}, Y∗2=max{˜ρ2˜ℓ1,˜ρ1}. |
Applying (4.12), (4.13), (4.16) and (4.17) in (4.11), we have
‖E(z,s)+˜E(z,s)‖ℑ≤M∗1+M∗∗1+(˜ℓ0+˜ℓ2˜ρ0)M∗3+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+Y∗1M∗3+Y∗2M∗∗3˜ℓ2˜ρ2−1‖(z,s)‖+M∗2‖z‖+M∗∗2‖s‖≤M∗1+M∗∗1+(˜ℓ0+˜ℓ2˜ρ0)M∗3+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+(M∗2+M∗∗2+Y∗1M∗3+Y∗2M∗∗3˜ℓ2˜ρ2−1)‖(z,s)‖≤x, |
which implies that E(z,s)(υ)+˜E(z,s)∈ℑx. After that, for any υ∈U and s,z,˜s,˜z∈ℑ, one writes
‖E(z,s)−E(˜z,˜s)‖ℑ≤‖E1(z)−E1(˜z)‖ℑ1+‖E2(s)−E2(˜s)‖ℑ2≤G|D0(ϖ)||B∗(z)−B∗(˜z)|+u∑i=1|D1i(ϖ)||Ii(zi)−Ii(˜zi)|+u∑i=1|D2i(ϖ)||˜Ii(zi)−˜Ii(˜zi)|+|D3(ϖ)|Γ(ϖ)∫G1|ln(Gη)ϖ−1||B(η,z(η))−B(η,˜z(η))|dηη+G|D0(θ)||B∗(s)−B∗(˜s)|+u∑j=1D1j(θ)|Ij(sj)−Ij(˜sj)|+u∑j=1D2j(θ)|˜Ij(sj)−˜Ij(˜sj)|+|D3(θ)|Γ(θ)∫G1|ln(Gη)θ−1||B(η,s(η))−B(η,˜s(η))|dηη. |
Applying (A5) and (A6), one has
‖E(z,s)−E(˜z,˜s)‖ℑ≤[GLB∗|D0(ϖ)|+uLI|D1(ϖ)|+uL˜I|D2(ϖ)|−LB|D3(ϖ)||(lnG)ϖ|Γ(ϖ+1)]‖z−˜z‖+[G˜LB∗|D0(θ)|+u˜LI|D1(θ)|+u˜L˜I|D2(θ)|−˜LB|D3(θ)||(lnG)θ|Γ(θ+1)]‖s−˜s‖≤L(Δ1+Δ2)‖(z−˜z,s−˜s)‖, |
where
L=max{LB∗,LI,L˜I,˜LB∗,˜LI,˜L˜I,LB,˜LB}, |
and
Δ1=G|D0(ϖ)|+u|D1(ϖ)|+u|D2(ϖ)|−|D3(ϖ)||(lnG)ϖ|Γ(ϖ+1), u=1,2,...,k,Δ2=G|D0(θ)|+u|D1(θ)|+u|D2(θ)|−|D3(θ)||(lnG)θ|Γ(θ+1), u=1,2,...,m. |
Hence, E is a contraction mapping. Now, we claim that ˜E is continuous and compact. For this, we build a sequence Gn=(zn,sn) in ℑ so that limn→∞(zn,sn)=(z,s)∈ℑx. Hence, we obtain
‖˜E(z,s)−˜E(zn,sn)‖ℑ≤‖˜E1(zn,sn)−˜E1(z,s)‖ℑ1+‖˜E2(zn,sn)−˜E2(z,s)‖ℑ2. | (4.18) |
Since
‖˜E1(zn,sn)−˜E1(z,s)‖ℑ1≤(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυu)2−ϖ||(lnυuυu−1)ϖ−1|Γ(ϖ))(Lϕ‖zn−z‖+˜LϕLψ‖sn−s‖˜Lϕ˜Lψ−1)≤M∗3(Lϕ‖zn−z‖+˜LϕLψ‖sn−s‖˜Lϕ˜Lψ−1), | (4.19) |
and
‖˜E2(zn,sn)−˜E2(z,s)‖ℑ2≤(|D0(θ)||ln(Gυu)θ−1|Γ(θ)+|D4(θ)||ln(Gυu)θ|Γ(θ+1)+u|D5(θ)||(lnυuυu−1)θ|Γ(θ+1)+|(lnυ)2−θ||(lnυυu)θ|Γ(θ+1)+u|lnυ3−θ(lnυu)2−θ||(lnυuυi−1)θ−1|Γ(θ))(Lϕ˜Lψ‖zn−z‖+Lψ‖sn−s‖˜Lϕ˜Lψ−1)≤M∗∗3(Lϕ˜Lψ‖zn−z‖+Lψ‖sn−s‖˜Lϕ˜Lψ−1). | (4.20) |
Applying (4.19) and (4.20) in (4.18), we conclude that
‖˜E(z,s)−˜E(zn,sn)‖ℑ≤M∗3(Lϕ‖zn−z‖+˜LϕLψ‖sn−s‖˜Lϕ˜Lψ−1)+M∗∗3(Lϕ˜Lψ‖zn−z‖+Lψ‖sn−s‖˜Lϕ˜Lψ−1), |
which yields ‖˜E(z,s)−˜E(zn,sn)‖ℑ→0 as n→∞, this proves the continuity of ˜E. Next, using (4.16) and (4.17), we get
‖˜E(z,s)(υ)‖ℑ≤‖~E1(z,s)(υ)‖ℑ1+‖˜E2(z,s)‖ℑ2≤(˜ℓ0+˜ℓ2˜ρ0)M∗3˜ℓ2˜ρ2−1+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+(Y∗1M∗3˜ℓ2˜ρ2−1+Y∗2M∗∗3˜ℓ2˜ρ2−1)‖(z,s)‖≤x. |
Therefore, ˜E is uniformly bounded on ℑx. Finally, we show that ˜E is equicontinuous. To get this result, take υ1,υ2∈U with υ1<υ2 and for any (z,s)∈ℑx⊂ℑ (clearly ℑx is bounded), we obtain
‖˜E1(z,s)(υ1)−˜E1(z,s)(υ2)‖ℑ1=max{|[˜E1(z,s)(υ1)−˜E1(z,s)(υ2)](lnυ)2−ϖ|}≤[(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1))×|(lnυ)2−ϖ||(lnυ1)ϖ−2−(lnυ2)ϖ−2|+u|(lnυ)2−ϖ||(lnυυu)ϖ||lnυ3−ϖ1(logυuυ1)ϖ−2−lnυ3−ϖ2(logυuυ2)ϖ−2|Γ(ϖ)]×(˜ℓ0+˜ℓ2˜ρ01−˜ℓ2˜ρ2+˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖1−˜ℓ2˜ρ2)+|(lnυ)2−ϖ|Γ(ϖ)|∫υ1υuln(υ1η)ϖ−1ϕ(υ,HDϖz(υ),HDθs(υ))dηη−∫υ2υuln(υ2η)ϖ−1ϕ(υ,HDϖz(υ),HDθs(υ))dηη|, |
which yields that
‖˜E1(z,s)(υ1)−˜E1(z,s)(υ2)‖ℑ1→0, as υ1→υ2. |
Similarly, we get
‖˜E2(z,s)(υ1)−˜E2(z,s)(υ2)‖ℑ2→0, as υ1→υ2. |
Hence
‖˜E(z,s)(υ1)−˜E(z,s)(υ2)‖ℑ→0, as υ1→υ2. |
Therefore ˜E is a relatively compact on ℑx. Thanks to the theorem of Arzelà-Ascoli, ˜E is compact. Thus, it is completely continuous. So, the CII-FDEs (1.1) admits at least one solution. This finishes the proof.
Theorem 4.4. Assume that (A4)–(A6) are fulfilled with
℧1+℧3+℧2(Lϕ+˜LϕLψ)+℧4(Lϕ˜Lψ+Lψ)˜Lϕ˜Lψ−1<1, | (4.21) |
then the CII-FDEs (1.1) possesses a unique solution.
Proof. Let ℵ=(ℵ1,ℵ1):ℑ→ℑ be an operator defined by ℵ(z,s)(υ)=(ℵ1(z,s),ℵ2(z,s))(υ), where
ℵ1(z,s)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(z(υi))+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(z(υi))+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη, |
for u=1,2,...,k and
ℵ2(z,s)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,p1(η),p2(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1lnυ3−θ(logυjυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,p1(η),p2(η))dηη+1Γ(θ)∫υυuln(υη)θ−1ψ(η,p1(η),p2(η))dηη, |
for u=1,2,...,m. In light of Theorem 4.3, one can obtain
|(ℵ1(z,s)−ℵ1(˜z,˜s))((lnυ)ϖ−2)|≤[GLB∗|D0(ϖ)|+uLI|D1(ϖ)|+uL˜I|D2(ϖ)|−LB|D3(ϖ)||(lnG)ϖ|Γ(ϖ+1)+(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυu)2−ϖ||(lnυuυu−1)ϖ−1|Γ(ϖ))(Lϕ˜Lϕ˜Lψ−1)]|z−˜z|+(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυu)2−ϖ||(lnυuυu−1)ϖ−1|Γ(ϖ))(˜LϕLψ|s−˜s|˜Lϕ˜Lψ−1), |
for u=1,2,...,k. Passing supυ∈U, we have
‖ℵ1(z,s)−ℵ1(˜z,˜s)‖ℑ1≤(℧1+℧2(Lϕ+˜LϕLψ)˜Lϕ˜Lψ−1)‖(z,s)−(˜z,˜s)‖, u=1,2,...,k, |
where
℧1=GLB∗|D0(ϖ)|+uLI|D1(ϖ)|+uL˜I|D2(ϖ)|−LB|D3(ϖ)||(lnG)ϖ|Γ(ϖ+1),℧2=|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυuυu−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυu)2−ϖ||(lnυuυu−1)ϖ−1|Γ(ϖ). |
Analogously,
‖ℵ2(z,s)−ℵ2(˜z,˜s)‖ℑ2≤(℧3+℧4(Lψ+Lϕ˜Lψ)˜Lϕ˜Lψ−1)‖(z,s)−(˜z,˜s)‖, u=1,2,...,m, |
where
\begin{eqnarray*} \mho _{3} & = &G\widetilde{L}_{B^{\ast }}\left\vert D_{0}(\theta )\right\vert +u\widetilde{L}_{I}\left\vert D_{1}(\theta )\right\vert +u\widetilde{L}_{ \widetilde{I}}\left\vert D_{2}(\theta )\right\vert -\frac{\widetilde{L} _{B}\left\vert D_{3}(\theta )\right\vert \left\vert \left( \ln G\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }, \\ \mho _{4} & = &\frac{\left\vert D_{0}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }+\frac{\left\vert D_{4}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta }\right\vert }{ \Gamma \left( \theta +1\right) }+\frac{u\left\vert D_{5}(\theta )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\theta }\left( \ln \upsilon _{u}\right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }. \end{eqnarray*} |
Hence
\left\Vert \aleph (z,s)-\aleph (\widetilde{z},\widetilde{s})\right\Vert _{\Im }\leq \left( \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+ \widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\psi }+L_{\phi } \widetilde{L}_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left\Vert (z,s)-(\widetilde{z},\widetilde{s})\right\Vert . |
This suggests that \aleph is a contraction. Consequently, the CII-FDEs (1.1) has a unique solution.
In this section, we examine various stability types for the suggested system, including the HU, GHU, HUR, and GHUR stability.
Theorem 5.1. If the assertions (A_{1}) – (A_{3}) and the condition (4.21) are true and
\begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0, \end{equation*} |
then the unique solution of CII-FDEs (1.1) is HU stable and as a result, GHU stable.
Proof. Take into account that (z, s)\in \Im is an approximate solution of (3.1) and consider (\widehat{z}, \widehat{s})\in \Im is a solution of the coupled problem shown below
\begin{equation} \left\{ \begin{array}{c} ^{H}D^{\varpi }\widehat{z}(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\varpi } \widehat{z}(\upsilon ),^{H}D^{\theta }\widehat{s}(\upsilon )\right) ,\text{ } \upsilon \in U,\text{ }\upsilon \neq \upsilon _{i},\text{ }i = 1,2,...k, \\ ^{H}D^{\theta }\widehat{s}(\upsilon ) = \psi \left( \upsilon ,^{H}D^{\theta } \widehat{s}(\upsilon ),^{H}D^{\varpi }\widehat{z}(\upsilon )\right) ,\text{ } \upsilon \in U,\text{ }\upsilon \neq \upsilon _{j},\text{ }j = 1,2,...m, \\ \Delta z(\widehat{\upsilon }_{i}) = I_{i}\widehat{z}(\upsilon _{i}),{ \ \ }\Delta \widehat{z}^{\prime }(\upsilon _{i}) = \widetilde{I}_{i}\widehat{z} (\upsilon _{i}), \ \ \ i = 1,2,...k,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \Delta \widehat{s}(\upsilon _{j}) = I_{j}\widehat{s}(\upsilon _{j}),{ \ \ }\Delta \widehat{s}^{\prime }(\upsilon _{j}) = \widetilde{I}_{j}\widehat{s} (\upsilon _{j}), \ \ \ j = 1,2,...m,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \widehat{z}(G) = \frac{1}{\Gamma (\varpi )}\int_{1}^{G}\ln \left( \frac{G}{ \eta }\right) ^{\varpi -1}B(\eta ,\widehat{z}(\eta ))\frac{d\eta }{\eta }, \text{ }\widehat{z}^{\prime }(G) = B^{\ast }(\widehat{z}),{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \widehat{s}(G) = \frac{1}{\Gamma (\theta )}\int_{1}^{G}\ln \left( \frac{G}{ \eta }\right) ^{\theta -1}B(\eta ,\widehat{s}(\eta ))\frac{d\eta }{\eta }, \text{ }\widehat{s}^{\prime }(G) = B^{\ast }(\widehat{s}).{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \end{array} \right. \end{equation} | (5.1) |
From Remark 3.5, we get
\begin{equation} \left\{ \begin{array}{c} ^{H}D^{\varpi }z(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\varpi }z(\upsilon ),^{H}D^{\theta }s(\upsilon )\right) +\Re _{\phi }\left( \upsilon \right) , \text{ }\upsilon \in U,\text{ }\upsilon \neq \upsilon _{i},\text{ } i = 1,2,...k, \\ \Delta z(\upsilon _{i}) = I_{i}\left( z(\upsilon _{i})\right) +\Re _{\phi _{i}}, \ \Delta z^{\prime }(\upsilon _{i}) = \widetilde{I}_{i}\left( z(\upsilon _{i})\right) +\Re _{\phi _{i}},\text{ }i = 1,2,...k, \\ ^{H}D^{\theta }s(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) , \text{ }\upsilon \in U,\text{ }\upsilon \neq \upsilon _{j},\text{ } j = 1,2,...m, \\ \Delta s(\upsilon _{j}) = I_{j}\left( s(\upsilon _{j})\right) +\Re _{\psi _{j}}, \ \Delta s^{\prime }(\upsilon _{j}) = \widetilde{I}_{j}\left( s(\upsilon _{j})\right) +\Re _{\psi _{j}},\text{ }j = 1,2,...,m. \end{array} \right. \end{equation} | (5.2) |
It follows from Corollary 4.2 that the solution of system (5.2) is
\begin{eqnarray} z(\upsilon ) & = &GD_{0}(\varpi )B^{\ast }(z)\left( \ln \upsilon \right) ^{\varpi -2}+\sum\limits_{i = 1}^{u}D_{1i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}\left( I_{i}(z_{i})+\Re _{\phi _{i}}\right) \\ &&+\sum\limits_{i = 1}^{u}D_{2i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}\left( \widetilde{I}_{i}(z_{i})+\Re _{\phi _{i}}\right) \\ &&+\frac{D_{0}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{4}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{D_{5i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\ln \upsilon ^{3-\varpi }(\log _{\upsilon _{i}}\upsilon )^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -2}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{ \eta } \\ &&+\frac{D_{3}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\varpi -1}B(\eta ,z(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{1}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta }, \end{eqnarray} | (5.3) |
for u = 1, 2, ..., k and
\begin{eqnarray} s(\upsilon ) & = &GD_{0}(\theta )B^{\ast }(s)\left( \ln \upsilon \right) ^{\theta -2}+\sum\limits_{j = 1}^{u}D_{1j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}\left( I_{j}(s_{j})+\Re _{\psi _{j}}\right) \\ &&+\sum\limits_{j = 1}^{u}D_{2j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}\left( I_{j}(z_{j})+\Re _{\psi _{j}}\right) \\ &&+\frac{D_{0}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -2}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{4}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{D_{5i}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{j}}{\eta }\right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{\ln \upsilon ^{3-\theta }(\log _{\upsilon _{j}}\upsilon )^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\theta -2}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{3}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\theta -1}B(\eta ,s(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{1}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta }, \end{eqnarray} | (5.4) |
for u = 1, 2, ..., m. Consider
\begin{eqnarray*} &&\left\vert \left( z\left( \upsilon \right) -\widehat{z}\left( \upsilon \right) \right) \left( \ln \upsilon \right) ^{2-\theta }\right\vert \\ &\leq &G\left\vert D_{0}(\varpi )\right\vert \left\vert B^{\ast }(z)-B^{\ast }(\widehat{z})\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \left\vert I_{i}(z_{i})-I_{i}(\widehat{z}_{i})\right\vert \\ &&+\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \widetilde{I} _{i}(z_{i})-\widetilde{I}_{i}(\widehat{z}_{i})\right\vert \\ &&+\frac{\left\vert D_{0}(\varpi )\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\right\vert \\ &&\left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi } \widehat{z}(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{4}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \\ &&\left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z }(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{ \eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert D_{5i}(\varpi \right\vert )}{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\right\vert\\ && \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{s} (\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert \ln \upsilon ^{3-\varpi }\right\vert \left\vert (\ln \upsilon _{i})^{\varpi -2}\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{ \upsilon _{i}}{\eta }\right) ^{\varpi -2}\right\vert \\ &&\times \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert }{ \Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\left\vert \ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\right\vert\\ && \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{ s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{3}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{1}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert B(\eta ,z(\eta ))-B(\eta ,\widehat{z}(\eta ))\right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \Re _{\phi _{i}}\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \left\vert \Re _{\phi _{i}}\right\vert \\ &&+\frac{\left\vert D_{0}(\varpi )\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -2}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{4}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta }\\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert D_{5i}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{\upsilon _{i}}{\eta } \right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert \ln \upsilon ^{3-\varpi }\right\vert \left\vert (\ln \upsilon _{i})^{\varpi -2}\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{ \upsilon _{i}}{\eta }\right) ^{\varpi -2}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert }{ \Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\left\vert \ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta }. \end{eqnarray*} |
As in Theorem 4.4, one has
\begin{eqnarray} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} &\leq &\left( \mho _{1}+ \frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left( \ln \upsilon \right) ^{2-\varpi }\left\Vert z-\widehat{z} \right\Vert _{\Im _{1}}+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\left( \ln \upsilon \right) ^{2-\varpi }\left\Vert s-\widehat{s}\right\Vert _{\Im _{1}} \\ &&+\left( \mho _{2}+u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert \right) \varphi _{\varpi }, \end{eqnarray} | (5.5) |
for u = 1, 2, ..., k and
\begin{eqnarray} \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} &\leq &\left( \frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }\left\Vert z-\widehat{z} \right\Vert _{\Im _{2}}+\left( \mho _{3}+\frac{\mho _{4}L_{\psi }}{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }\left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} \\ &&+\left( \mho _{4}+u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert \right) \varphi _{\theta }. \end{eqnarray} | (5.6) |
Arranging (5.5) and (5.6), we get
\begin{equation} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}}-\frac{\mho _{2}\widetilde{L} _{\phi }L_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\left\Vert s-\widehat{s}\right\Vert _{\Im _{1}}\leq \frac{\left( \mho _{2}+u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert \right) }{1-\left( \mho _{1}+\frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\varpi }}\varphi _{\varpi }, \end{equation} | (5.7) |
and
\begin{equation} \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}}-\frac{\mho _{4}L_{\phi } \widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\left\Vert z-\widehat{z}\right\Vert _{\Im _{2}}\leq \frac{\left( \mho _{4}+u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert \right) }{1-\left( \mho _{3}+\frac{\mho _{4}L_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }}\varphi _{\theta }, \end{equation} | (5.8) |
respectively. Assume that \Game _{\varpi } = 1-\left(\mho _{1}+\frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left(\ln \upsilon \right) ^{2-\varpi } and \Game _{\theta } = 1-\left(\mho _{3}+ \frac{\mho _{4}L_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left(\ln \upsilon \right) ^{2-\theta }. Then (5.7) and (5.8) can be written as
\begin{equation*} \left[ \begin{array}{cc} 1 & -\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{\left( \widetilde{L} _{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }} \\ -\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi } \widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }} & 1 \end{array} \right] \\\left[ \begin{array}{c} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} \\ \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{1}} \end{array} \right] \leq \left[ \begin{array}{c} \Game _{\varpi }\varphi _{\varpi } \\ \\ \Game _{\theta }\varphi _{\theta } \end{array} \right] . \end{equation*} |
Hence
\begin{equation} \left[ \begin{array}{c} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} \\ \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} \end{array} \right] \leq \\ \left[ \begin{array}{cc} \frac{1}{\beth } & \frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{ \beth } \\ \frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi } \widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth } & \frac{1}{\beth } \end{array} \right] \\ \left[ \begin{array}{c} \Game _{\varpi }\varphi _{\varpi } \\ \\ \Game _{\theta }\varphi _{\theta } \end{array} \right] , \end{equation} | (5.9) |
where
\begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0. \end{equation*} |
From system (5.9), we observe that
\begin{eqnarray*} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} & = &\frac{\Game _{\varpi }\varphi _{\varpi }}{\beth }+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }\Game _{\theta }\varphi _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L }_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{\beth }, \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} & = &\frac{\mho _{4}L_{\phi } \widetilde{L}_{\psi }\Game _{\varpi }\varphi _{\varpi }}{\left( \widetilde{L} _{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth }+\frac{ \Game _{\theta }\varphi _{\theta }}{\beth }, \end{eqnarray*} |
which yields that
\begin{array}{l} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}}+\left\Vert s-\widehat{s} \right\Vert _{\Im _{2}} &\leq &\frac{\Game _{\varpi }\varphi _{\varpi }}{ \beth } +\frac{\Game _{\theta }\varphi _{\theta }}{\beth }\\&&+\frac{\mho _{2} \widetilde{L}_{\phi }L_{\psi }\Game _{\theta }\varphi _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{ \beth } \\ &&+\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }\Game _{\varpi }\varphi _{\varpi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth }. \end{array} |
Let us consider \varphi = \max \{\varphi _{\theta }, \varphi _{\varpi }\} and
\begin{eqnarray*} \Game _{\varpi ,\theta } & = &\frac{\Game _{\varpi }}{\beth }+\frac{\Game _{\theta }}{\beth }+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }\Game _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{\beth } \\ &&+\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }\Game _{\varpi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{ \beth }. \end{eqnarray*} |
Then, we can write
\begin{equation*} \left\Vert (z,s)-(\widehat{z},\widehat{s})\right\Vert _{\Im }\leq \Game _{\varpi ,\theta }\varphi , \end{equation*} |
which leads to the supposed coupled problem (1.1) is HU stable. Further, if
\begin{equation*} \left\Vert (z,s)-(\widehat{z},\widehat{s})\right\Vert _{\Im }\leq \Game _{\varpi ,\theta }\Phi (\varphi ),\text{ }\Phi (0) = 0. \end{equation*} |
Then the suggested coupled problem (1.1) is GHU stable.
For the final result, we suppose the following assertion:
(A_{7}) There are nondecreasing functions \gimel _{\varpi }, \gimel _{\theta }\in C(U, \mathbb{R} _{+}) so that
\begin{equation*} ^{H}D^{\varpi }\gimel _{\varpi }\left( \upsilon \right) \leq L_{\varpi }\gimel _{\varpi }\left( \upsilon \right) \text{ and }^{H}D^{\theta }\gimel _{\theta }\left( \upsilon \right) \leq L_{\theta }\gimel _{\theta }\left( \upsilon \right) ,\text{ for }L_{\varpi },L_{\theta } > 0. \end{equation*} |
Theorem 5.2. If the assertions (A_{1}) – (A_{3}) and (A_{7}) and the condition (4.21) are fulfilled and
\begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0, \end{equation*} |
then the unique solution of CII-FDEs (1.1) is HUR stable and consequently GHUR stable.
Proof. According to Definitions 3.3 and 3.4, we can get our conclusion by following the same procedures as in Theorem 5.1.
Example 6.1. Consider
\begin{equation} \left\{ \begin{array}{c} ^{H}D^{\frac{6}{5}}z(\upsilon ) = \frac{2+^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )}{70e^{20+\upsilon }\left( 1+^{H}D^{\frac{6 }{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )\right) },\text{ }\upsilon \neq 1.5,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ ^{H}D^{\frac{5}{4}}s(\upsilon ) = \frac{1}{50}\left( \upsilon \cos z(\upsilon )-s(\upsilon )\sin (\upsilon )\right) +\frac{^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )}{25+^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{ \frac{5}{4}}s(\upsilon )},\text{ }\upsilon \neq 1.5,{ \ \ \ \ \ \ \ } \\ \Delta z(1.5) = I_{1}z(1.5) = \frac{\left\vert z(1.5)\right\vert }{2+\left\vert z(1.5)\right\vert }, \ \ \Delta z^{\prime }(1.5) = \widetilde{I} _{1}z(1.5) = \frac{\left\vert z(1.5)\right\vert }{25+\left\vert z(1.5)\right\vert },{ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \Delta s(1.5) = I_{1}s(1.5) = \frac{\left\vert s(1.5)\right\vert }{2+\left\vert s(1.5)\right\vert }, \ \ \Delta s^{\prime }(1.5) = \widetilde{I} _{1}s(1.5) = \frac{\left\vert s(1.5)\right\vert }{25+\left\vert s(1.5)\right\vert },\text{ }\upsilon _{1} = 1.5, \\ z(e) = \frac{1}{\Gamma (\frac{6}{5})}\int_{1}^{e}\ln \left( \frac{e}{\eta } \right) ^{\frac{1}{5}}\frac{\eta ^{2}+z(\eta )}{60}\frac{d\eta }{\eta }, { \ \ }z^{\prime }(e) = \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }}\left\vert z(\zeta _{u})\right\vert ,{ \ \ \ }1 < \zeta _{u} < 2B_{u}^{\ast }, \\ s(e) = \frac{1}{\Gamma (\frac{6}{5})}\int_{1}^{e}\ln \left( \frac{e}{\eta } \right) ^{\frac{1}{5}}\frac{\eta ^{2}+s(\eta )}{60}\frac{d\eta }{\eta }, { \ \ }s^{\prime }(e) = \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }}\left\vert s(\zeta _{u})\right\vert ,{ \ \ \ }1 < \zeta _{u} < 2B_{u}^{\ast }, \end{array} \right. \end{equation} | (6.1) |
where \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }} < 0.5 for \upsilon \in \lbrack 1, e]. In view of problem (6.1), we observe that \varpi = \frac{6}{5 }, \theta = \frac{5}{4}, G = e, k = 1 and \upsilon _{1} = 1.5. Further, it's simple to locate L_{B^{\ast }} = \widetilde{L}_{B^{\ast }} = 0.5, L_{B} = \widetilde{L}_{B} = \frac{1}{60}, L_{I} = L_{\widetilde{I}} = 0.5, \widetilde{L }_{I} = \widetilde{L}_{\widetilde{I}} = 0.04, L_{\phi } = \widetilde{L}_{\phi } = \frac{1}{70e^{20}} and L_{\psi } = \widetilde{L}_{\psi } = 0.04. Based on Theorem 4.4, we find that
\begin{equation*} \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+\widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\phi }\widetilde{L}_{\psi }+L_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\simeq 0.537. \end{equation*} |
Therefore problem (6.1) has a unique solution. Further
\begin{array}{l} \beth = 1- \\ \frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } \\ = 0.023 > 0. \end{array} |
Therefore, according to Theorem 5.1, the coupled system (6.1) is HU stable and consequently GHU stable. Similarly, we can confirm that Theorems 4.3 and 5.2 are true.
In this manuscript, we used fixed point results of Banach and Kransnoselskii to give necessary and sufficient conditions for the existence of a unique positive solution for a system of impulsive fractional differential equations intervening a fractional derivative of the Hadamard type. We also studied some Hyers-Ulam (HU) stabilities such as generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities. At the end, we provided a concrete example making effective the obtained results.
The authors thank the Basque Government for Grant IT1555-22. This work was supported in part by the Basque Government under Grant IT1555-22.
The authors declare that they have no competing interests.
[1] | K. Diethelm, A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, Scientific Computing in Chemical Engineering Ⅱ-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 1999,217–224. |
[2] | L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Pr., 5, (1991), 81–88. https://doi.org/10.1016/0888-3270(91)90016-X |
[3] |
W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68 (1995), 46–53. https://doi.org/10.1016/S0006-3495(95)80157-8 doi: 10.1016/S0006-3495(95)80157-8
![]() |
[4] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. |
[5] | F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, (1997) 291–348. |
[6] | F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180–7186. |
[7] | K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, New York, London, 1974. https://doi.org/10.1063/1.470346 |
[8] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, Singapore, 1995. |
[9] | M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publishing Corporation, New York, 2006. |
[10] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989. |
[11] | M. Frigon, D. O'Regan, Impulsive differential equations with variable times, Nonlinear Anal., 26 (1996), 1913–1922. |
[12] |
M. Frigon, D. O'Regan, First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 233 (1999), 730–739. https://doi.org/10.1006/jmaa.1999.6336 doi: 10.1006/jmaa.1999.6336
![]() |
[13] | J. R. Graef, A. Ouahab, Global existence and uniqueness results for impulsive functional differential equations with variable times and multiple delays, Dynam. Cont. Dis. Ser. A, 16 (2009), 27–40. |
[14] | I. Bajo, E. Liz, Periodic boundary value problem for first order differential equations with impulses at variable times, J. Math. Anal. Appl., 204 (1996), 65–73. |
[15] |
K. T. Dinh, D. Loan, Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects, J. Fix. Point Theory A., 19 (2017), 2185–2208. https://doi.org/10.1006/jmaa.1996.0424 doi: 10.1006/jmaa.1996.0424
![]() |
[16] | A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003. |
[17] | B. Wongsaijai, P. Charoensawan, T. Suebcharoen, W. Atiponrat, Common fixed point theorems for auxiliary functions with applications in fractional differential equation, Adv. Diff. Eq., 2021 (2021), 503. |
[18] |
H. A. Hammad, H. Aydi, N. Maliki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators, Adv. Diff. Eq., 2021 (2021), 79. https://doi.org/10.1186/s13662-021-03660-x doi: 10.1186/s13662-021-03660-x
![]() |
[19] | H. A. Hammad, H. Aydi, M. D. la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. |
[20] |
R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued g-metric spaces, Inform. Sci. Lett., 8 (2019), 111–119. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853
![]() |
[21] | M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050–3060. |
[22] |
D. D. Bainov, A. Dishliev, Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population, Comp. Rend. Bulg. Sci., 42 (1989), 29–32. https://doi.org/10.1016/0096-3003(90)90120-R doi: 10.1016/0096-3003(90)90120-R
![]() |
[23] | D. D. Bainov, P. S. Simenov, Systems with impulse effect stability theory and applications, Ellis Horwood Limited, Chichester, UK, 1989. |
[24] |
Humaira, H. A. Hammad, M. Sarwar, M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Diff. Eqs., 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0
![]() |
[25] |
H. Li, Y. Kao, H. Bao, Y. Chen, Uniform stability of complex-valued neural networks of fractional order with linear impulses and fixed time delays, IEEE T. Neur. Net. Lear., 33 (2022), 5321–5331. https://doi.org/10.1109/TNNLS.2021.3070136 doi: 10.1109/TNNLS.2021.3070136
![]() |
[26] |
H. Li, Y. Kao, Global Mittag-Leffler stability and existence of the solution for fractional-order complex-valued NNs with asynchronous time delays, Chaos: Interdiscip. J. Nonlinear Sci., 31 (2021), 113110. https://doi.org/10.1063/5.0059887 doi: 10.1063/5.0059887
![]() |
[27] | H. Li, Y. Kao, I. Stamova, C. Shao, Global asymptotic stability and S-asymptotic \omega-periodicity of impulsive non-autonomous fractional-order neural networks, Appl. Math. Comput., 410 (2021), 126459. |
[28] | A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Existence and stability analysis of solutions for fractional Langevin equations with nonlocal integral and anti-periodic type boundary conditions, Fractals, 28 (2020), 1–12. |
[29] |
J. Wang, X. Li, Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258 (2015), 72–83. https://doi.org/10.1142/S0218348X2040006X doi: 10.1142/S0218348X2040006X
![]() |
[30] |
A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of non linear differential equations with fractional integrable impulses, Math. Meth. Appl. Sci., 40 (2017), 5502–5514. https://doi.org/10.1016/j.amc.2015.01.111 doi: 10.1016/j.amc.2015.01.111
![]() |
[31] | H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 2022 (2022), 1388. |
[32] |
H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
![]() |
[33] |
J. Hadamard, Essai sur letude des fonctions donnees par leur development de Taylor, J. Math. Pures Appl., 8 (1892), 101–186. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
![]() |
[34] |
P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5
![]() |
[35] |
P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. https://doi.org/10.1016/S0022-247X(02)00001-X doi: 10.1016/S0022-247X(02)00001-X
![]() |
[36] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. |
[37] |
A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38, (2011), 1191–1204. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5
![]() |
[38] |
M. Klimek, Sequential fractional differential equations with Hadamard derivative, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4689–4697. https://doi.org/10.1016/j.cnsns.2011.01.018 doi: 10.1016/j.cnsns.2011.01.018
![]() |
[39] |
M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babeş Bolyai, Math., 62 (2017), 27–38. https://doi.org/10.24193/subbmath.2017.0003 doi: 10.24193/subbmath.2017.0003
![]() |
[40] |
Z. Ali, A. Zada, K. Shah, On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations, Bull. Malays. Math. Sci. Soc., 42 (2018), 2681–2699. https://doi.org/10.1007/s40840-018-0625-x doi: 10.1007/s40840-018-0625-x
![]() |
[41] |
Z. Ali, A. Zada, K. Shah, Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 175. https://doi.org/10.1186/s13661-018-1096-6 doi: 10.1186/s13661-018-1096-6
![]() |
[42] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., Elsevier, Amsterdam, 2006. |
[43] |
R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
![]() |
[44] |
J. Wang, Y. Zhang, On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39 (2014), 85–90. https://doi.org/10.1016/j.aml.2014.08.015 doi: 10.1016/j.aml.2014.08.015
![]() |
[45] |
P. Thiramanus, S. K. Ntouyas, J. Tariboon, Positive solutions for Hadamard fractional differential equations on infinite domain, Adv. Differ. Equ., 2016 (2016), 83. https://doi.org/10.1186/s13662-016-0813-7 doi: 10.1186/s13662-016-0813-7
![]() |
[46] | M. Altman, A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Pol. Sci., 3 (1955), 409–413. |
[47] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26 (2010), 103–107. |
[48] |
A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 101. https://doi.org/10.1186/s13662-019-2047-y doi: 10.1186/s13662-019-2047-y
![]() |
1. | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators, 2023, 8, 2473-6988, 11325, 10.3934/math.2023574 | |
2. | Hasanen A Hammad, Hassen Aydi, Doha A Kattan, Integro-differential equations implicated with Caputo-Hadamard derivatives under nonlocal boundary constraints, 2024, 99, 0031-8949, 025207, 10.1088/1402-4896/ad185b | |
3. | Hasanen A. Hammad, Manuel De la Sen, Existence of a mild solution and approximate controllability for fractional random integro-differential inclusions with non-instantaneous impulses, 2025, 111, 11100168, 306, 10.1016/j.aej.2024.10.017 | |
4. | Feryal Aladsani, Ahmed Gamal Ibrahim, Existence and Stability of Solutions for p-Proportional ω-Weighted κ-Hilfer Fractional Differential Inclusions in the Presence of Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 475, 10.3390/fractalfract8080475 | |
5. | Kaihong Zhao, Juqing Liu, Xiaojun Lv, A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory, 2024, 8, 2504-3110, 111, 10.3390/fractalfract8020111 | |
6. | Hasanen A. Hammad, Najla M. Aloraini, Mahmoud Abdel-Aty, Existence and stability results for delay fractional deferential equations with applications, 2024, 92, 11100168, 185, 10.1016/j.aej.2024.02.060 | |
7. | Hasanen A. Hammad, Maryam G. Alshehri, Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives, 2024, 182, 09600779, 114775, 10.1016/j.chaos.2024.114775 | |
8. | Doha A. Kattan, Hasanen A. Hammad, Solving fractional integro-differential equations with delay and relaxation impulsive terms by fixed point techniques, 2024, 2024, 1687-2770, 10.1186/s13661-024-01957-w | |
9. | Hasanen A. Hammad, Saleh Fahad Aljurbua, Solving Fractional Random Differential Equations by Using Fixed Point Methodologies under Mild Boundary Conditions, 2024, 8, 2504-3110, 384, 10.3390/fractalfract8070384 | |
10. | Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen, Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions, 2024, 9, 2473-6988, 15505, 10.3934/math.2024750 | |
11. | Hasanen A. Hammad, Hassen Aydi, Mohra Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, 2023, 2023, 1029-242X, 10.1186/s13660-023-03018-9 | |
12. | Maryam G. Alshehri, Hassen Aydi, Hasanen A. Hammad, Solving delay integro-differential inclusions with applications, 2024, 9, 2473-6988, 16313, 10.3934/math.2024790 | |
13. | Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen, Involvement of three successive fractional derivatives in a system of pantograph equations and studying the existence solution and MLU stability, 2024, 57, 2391-4661, 10.1515/dema-2024-0035 | |
14. | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, Refined stability of the additive, quartic and sextic functional equations with counter-examples, 2023, 8, 2473-6988, 14399, 10.3934/math.2023736 | |
15. | Hasanen A. Hammad, Montasir Qasymeh, Mahmoud Abdel-Aty, Existence and stability results for a Langevin system with Caputo–Hadamard fractional operators, 2024, 21, 0219-8878, 10.1142/S0219887824502189 | |
16. | Muath Awadalla, Manigandan Murugesan, Manikandan Kannan, Jihan Alahmadi, Feryal AlAdsani, Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems, 2024, 9, 2473-6988, 14130, 10.3934/math.2024687 | |
17. | Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Analysis of Neutral Implicit Stochastic Hilfer Fractional Differential Equation Involving Lévy Noise with Retarded and Advanced Arguments, 2024, 12, 2227-7390, 3406, 10.3390/math12213406 | |
18. | Hasanen A. Hammad, Mohammed E. Dafaalla, Kottakkaran Sooppy Nisar, A Grammian matrix and controllability study of fractional delay integro-differential Langevin systems, 2024, 9, 2473-6988, 15469, 10.3934/math.2024748 | |
19. | Hasanen A. Hammad, Hassen Aydi, Doha A. Kattan, Hybrid interpolative mappings for solving fractional Navier–Stokes and functional differential equations, 2023, 2023, 1687-2770, 10.1186/s13661-023-01807-1 | |
20. | Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri, Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases, 2024, 9, 2473-6988, 14574, 10.3934/math.2024709 | |
21. | Doha A. Kattan, Hasanen A. Hammad, Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays, 2023, 7, 2504-3110, 644, 10.3390/fractalfract7090644 | |
22. | Doha A. Kattan, Hasanen A. Hammad, Advanced fixed point techniques for solving fractional p−Laplacian boundary value problems with impulsive effects, 2025, 16, 20904479, 103254, 10.1016/j.asej.2024.103254 |