The purpose of this study is to give some findings on the existence, uniqueness, and Hyers-Ulam stability of the solution of an implicit coupled system of impulsive fractional differential equations possessing a fractional derivative of the Hadamard type. The existence and uniqueness findings are obtained using a fixed point theorem of the type of Kransnoselskii. In keeping with this, many forms of Hyers-Ulam stability are examined. Ultimately, to support main results, an example is provided.
Citation: Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen. Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives[J]. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350
The purpose of this study is to give some findings on the existence, uniqueness, and Hyers-Ulam stability of the solution of an implicit coupled system of impulsive fractional differential equations possessing a fractional derivative of the Hadamard type. The existence and uniqueness findings are obtained using a fixed point theorem of the type of Kransnoselskii. In keeping with this, many forms of Hyers-Ulam stability are examined. Ultimately, to support main results, an example is provided.
[1] | K. Diethelm, A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, Scientific Computing in Chemical Engineering Ⅱ-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 1999,217–224. |
[2] | L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Pr., 5, (1991), 81–88. https://doi.org/10.1016/0888-3270(91)90016-X |
[3] | W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68 (1995), 46–53. https://doi.org/10.1016/S0006-3495(95)80157-8 doi: 10.1016/S0006-3495(95)80157-8 |
[4] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. |
[5] | F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, (1997) 291–348. |
[6] | F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180–7186. |
[7] | K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, New York, London, 1974. https://doi.org/10.1063/1.470346 |
[8] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, Singapore, 1995. |
[9] | M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publishing Corporation, New York, 2006. |
[10] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989. |
[11] | M. Frigon, D. O'Regan, Impulsive differential equations with variable times, Nonlinear Anal., 26 (1996), 1913–1922. |
[12] | M. Frigon, D. O'Regan, First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 233 (1999), 730–739. https://doi.org/10.1006/jmaa.1999.6336 doi: 10.1006/jmaa.1999.6336 |
[13] | J. R. Graef, A. Ouahab, Global existence and uniqueness results for impulsive functional differential equations with variable times and multiple delays, Dynam. Cont. Dis. Ser. A, 16 (2009), 27–40. |
[14] | I. Bajo, E. Liz, Periodic boundary value problem for first order differential equations with impulses at variable times, J. Math. Anal. Appl., 204 (1996), 65–73. |
[15] | K. T. Dinh, D. Loan, Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects, J. Fix. Point Theory A., 19 (2017), 2185–2208. https://doi.org/10.1006/jmaa.1996.0424 doi: 10.1006/jmaa.1996.0424 |
[16] | A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003. |
[17] | B. Wongsaijai, P. Charoensawan, T. Suebcharoen, W. Atiponrat, Common fixed point theorems for auxiliary functions with applications in fractional differential equation, Adv. Diff. Eq., 2021 (2021), 503. |
[18] | H. A. Hammad, H. Aydi, N. Maliki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators, Adv. Diff. Eq., 2021 (2021), 79. https://doi.org/10.1186/s13662-021-03660-x doi: 10.1186/s13662-021-03660-x |
[19] | H. A. Hammad, H. Aydi, M. D. la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. |
[20] | R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued $g$-metric spaces, Inform. Sci. Lett., 8 (2019), 111–119. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853 |
[21] | M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050–3060. |
[22] | D. D. Bainov, A. Dishliev, Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population, Comp. Rend. Bulg. Sci., 42 (1989), 29–32. https://doi.org/10.1016/0096-3003(90)90120-R doi: 10.1016/0096-3003(90)90120-R |
[23] | D. D. Bainov, P. S. Simenov, Systems with impulse effect stability theory and applications, Ellis Horwood Limited, Chichester, UK, 1989. |
[24] | Humaira, H. A. Hammad, M. Sarwar, M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Diff. Eqs., 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0 |
[25] | H. Li, Y. Kao, H. Bao, Y. Chen, Uniform stability of complex-valued neural networks of fractional order with linear impulses and fixed time delays, IEEE T. Neur. Net. Lear., 33 (2022), 5321–5331. https://doi.org/10.1109/TNNLS.2021.3070136 doi: 10.1109/TNNLS.2021.3070136 |
[26] | H. Li, Y. Kao, Global Mittag-Leffler stability and existence of the solution for fractional-order complex-valued NNs with asynchronous time delays, Chaos: Interdiscip. J. Nonlinear Sci., 31 (2021), 113110. https://doi.org/10.1063/5.0059887 doi: 10.1063/5.0059887 |
[27] | H. Li, Y. Kao, I. Stamova, C. Shao, Global asymptotic stability and $S$-asymptotic $\omega$-periodicity of impulsive non-autonomous fractional-order neural networks, Appl. Math. Comput., 410 (2021), 126459. |
[28] | A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Existence and stability analysis of solutions for fractional Langevin equations with nonlocal integral and anti-periodic type boundary conditions, Fractals, 28 (2020), 1–12. |
[29] | J. Wang, X. Li, Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258 (2015), 72–83. https://doi.org/10.1142/S0218348X2040006X doi: 10.1142/S0218348X2040006X |
[30] | A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of non linear differential equations with fractional integrable impulses, Math. Meth. Appl. Sci., 40 (2017), 5502–5514. https://doi.org/10.1016/j.amc.2015.01.111 doi: 10.1016/j.amc.2015.01.111 |
[31] | H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 2022 (2022), 1388. |
[32] | H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388 |
[33] | J. Hadamard, Essai sur letude des fonctions donnees par leur development de Taylor, J. Math. Pures Appl., 8 (1892), 101–186. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0 |
[34] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5 |
[35] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. https://doi.org/10.1016/S0022-247X(02)00001-X doi: 10.1016/S0022-247X(02)00001-X |
[36] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. |
[37] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38, (2011), 1191–1204. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5 |
[38] | M. Klimek, Sequential fractional differential equations with Hadamard derivative, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4689–4697. https://doi.org/10.1016/j.cnsns.2011.01.018 doi: 10.1016/j.cnsns.2011.01.018 |
[39] | M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babeş Bolyai, Math., 62 (2017), 27–38. https://doi.org/10.24193/subbmath.2017.0003 doi: 10.24193/subbmath.2017.0003 |
[40] | Z. Ali, A. Zada, K. Shah, On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations, Bull. Malays. Math. Sci. Soc., 42 (2018), 2681–2699. https://doi.org/10.1007/s40840-018-0625-x doi: 10.1007/s40840-018-0625-x |
[41] | Z. Ali, A. Zada, K. Shah, Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 175. https://doi.org/10.1186/s13661-018-1096-6 doi: 10.1186/s13661-018-1096-6 |
[42] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., Elsevier, Amsterdam, 2006. |
[43] | R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010 |
[44] | J. Wang, Y. Zhang, On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39 (2014), 85–90. https://doi.org/10.1016/j.aml.2014.08.015 doi: 10.1016/j.aml.2014.08.015 |
[45] | P. Thiramanus, S. K. Ntouyas, J. Tariboon, Positive solutions for Hadamard fractional differential equations on infinite domain, Adv. Differ. Equ., 2016 (2016), 83. https://doi.org/10.1186/s13662-016-0813-7 doi: 10.1186/s13662-016-0813-7 |
[46] | M. Altman, A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Pol. Sci., 3 (1955), 409–413. |
[47] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26 (2010), 103–107. |
[48] | A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 101. https://doi.org/10.1186/s13662-019-2047-y doi: 10.1186/s13662-019-2047-y |