In this manuscript, a class of implicit impulsive Langevin equation with Hilfer fractional derivatives is considered. Using the techniques of nonlinear functional analysis, we establish appropriate conditions and results to discuss existence, uniqueness, Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stability results of our proposed model, with the help of Banach's fixed point theorem. An example is provided at the end to illustrate our results.
Citation: Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah. Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives[J]. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
In this manuscript, a class of implicit impulsive Langevin equation with Hilfer fractional derivatives is considered. Using the techniques of nonlinear functional analysis, we establish appropriate conditions and results to discuss existence, uniqueness, Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stability results of our proposed model, with the help of Banach's fixed point theorem. An example is provided at the end to illustrate our results.
[1] | R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. doi: 10.1007/s10440-008-9356-6 |
[2] | B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real, 13 (2012), 599–606. doi: 10.1016/j.nonrwa.2011.07.052 |
[3] | B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. doi: 10.1016/j.camwa.2009.07.091 |
[4] | Z. Ali, F. Rabiei, K. Shah, On Ulam's type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions, J. Nonlinear Sci. Appl., 10 (2017), 4760–4775. doi: 10.22436/jnsa.010.09.19 |
[5] | Z. Ali, A. Zada, K. Shah, Ulam satbility to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 1–16. doi: 10.1186/s13661-017-0918-2 |
[6] | Z. Ali, A. Zada, K. Shah, On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations, B. Malays. Math. Sci. So., 42 (2019), 2681–2699. doi: 10.1007/s40840-018-0625-x |
[7] | Z. Bai, On positive solutions of a non-local fractional boundary value problem, Nonlinear Anal. Theor., 72 (2010), 916–924. doi: 10.1016/j.na.2009.07.033 |
[8] | D. Baleanu, H. Khan, H. Jafari, R. A. Khan, M. Alipure, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Differ. Equ., 2015 (2015), 1–14. doi: 10.1186/s13662-014-0331-4 |
[9] | M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87 (2008), 851–863. doi: 10.1080/00036810802307579 |
[10] | M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theo., 8 (2009), 1–14. |
[11] | J. B. Diaz, B. Margolis, A fixesd point theorem of the alternative, for contractions on a generalized complete matric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. doi: 10.1090/S0002-9904-1968-11933-0 |
[12] | K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 061104. doi: 10.1103/PhysRevE.73.061104 |
[13] | M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. doi: 10.1016/j.cnsns.2011.11.017 |
[14] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222 |
[15] | A. Khan, J. F. Gomez–Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos, Soliton. Fract., 122 (2019), 119–128. doi: 10.1016/j.chaos.2019.03.022 |
[16] | Z. G. Hu, W. B. Liu, T. V. Chen, Existence of solutions for a coupled system of fractional differential equations at resonance, Bound. Value Probl., 98 (2012), 1–13. |
[17] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equation, Elsevier Science Inc., 2006. |
[18] | N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63 (2013), 1289–1310. doi: 10.1007/s00025-012-0269-3 |
[19] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009. |
[20] | S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. doi: 10.1016/j.physleta.2008.08.045 |
[21] | F. Mainardi, P. Pironi, The fractional Langevin equation: Brownian motion revisited, Extracta Math., 11 (1996), 140–154. |
[22] | P. A. Naik, Global dynamics of a fractional-order SIR epidemic model with memory, Int. J. Biomath., 13 (2020), 2050071. doi: 10.1142/S1793524520500710 |
[23] | P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos, Soliton. Fract., 140 (2020), 110272. doi: 10.1016/j.chaos.2020.110272 |
[24] | P. A. Naik, M. Yavuz, J. Zu, The role of prostitution on HIV transmission with memory: A modeling approach, Alex. Eng. J., 59 (2020), 2513–2531. doi: 10.1016/j.aej.2020.04.016 |
[25] | P. A. Naik, J. Zu, K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A, 545 (2020), 123816. doi: 10.1016/j.physa.2019.123816 |
[26] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[27] | T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[28] | R. Rizwan, Existence theory and stability snalysis of fractional Langevin equation, Int. J. Nonlin. Sci. Num., 20 (2019). |
[29] | R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses, Adv. Differ. Equ., 2019 (2019), 1–31. doi: 10.1186/s13662-018-1939-6 |
[30] | R. Rizwan, A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Method. Appl. Sci., 43 (2020), 427–442. doi: 10.1002/mma.5902 |
[31] | I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes Bolyai Math., 54 (2009), 125–133. |
[32] | R. Shah, A. Zada, A fixed point approach to the stability of a nonlinear volterra integro diferential equation with delay, Hacet. J. Math. Stat., 47 (2018), 615–623. |
[33] | S. O. Shah, A. Zada, A. E. Hamza, Stability analysis of the first order non–linear impulsive time varying delay dynamic system on time scales, Qual. Theor. Dyn. Syst., 18 (2019), 825–840. doi: 10.1007/s12346-019-00315-x |
[34] | S. Tang, A. Zada, S. Faisal, M. M. A. El-Sheikh, T. Li, Stability of higher–order nonlinear impulsive differential equations, J. Nonlinear Sci. Appl., 9 (2016), 4713–4721. doi: 10.22436/jnsa.009.06.110 |
[35] | V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer-Verlag Berlin Heidelberg, 2010. |
[36] | S. M. Ulam, A collection of mathematical problems, Interscience Publishers Inc., 1968. |
[37] | J. Wang, M. Feckan, Y. Zhou, Ulams type stability of impulsive ordinary differential equation, J. Math. Anal. Appl., 35 (2012), 258–264. |
[38] | J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. doi: 10.1016/j.camwa.2012.02.021 |
[39] | J. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649–657. |
[40] | A. Zada, S. Ali, Stability Analysis of Multi-point Boundary Value Problem for Sequential Fractional Differential Equations with Non-instantaneous Impulses, Int. J. Nonlin. Sci. Num., 19 (2018), 763–774 doi: 10.1515/ijnsns-2018-0040 |
[41] | A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 1–26. doi: 10.1186/s13662-016-1057-2 |
[42] | A. Zada, W. Ali, S. Farina, Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Method. Appl. Sci., 40 (2017), 5502–5514. doi: 10.1002/mma.4405 |
[43] | A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gr$\ddot{o}$nwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60–65. |
[44] | A. Zada, R. Rizwan, J. Xu, Z. Fu, On implicit impulsive Langevin equation involving mixed order derivatives, Adv. Differ. Equ., 2019 (2019), 1–26. doi: 10.1186/s13662-018-1939-6 |
[45] | A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay dierential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205. |
[46] | A. Zada, O. Shah, R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518. |