It is an interesting question to investigate the integral solutions for the Egyptian fraction equation $ \frac{a}{p} = \frac{1}{x}+\frac{1}{y}+\frac{1}{z} $, which is known as Erdős-Straus equation when $ a = 4 $. Recently, Lazar proved that this equation has not integral solutions with $ xy < \sqrt{z/2} $ and $ \gcd(x, y) = 1 $ when $ a = 4 $. But his method is difficult to get an analogous result for arbitrary $ \frac{a}{p} $, especially when $ p $ and $ a $ are lager numbers. In this paper, we extend Lazar's result to arbitrary integer $ a $ with $ 4\le a\leq\frac{1+\sqrt{1+6p^3}}{p} $, and release the condition $ \gcd(x, y) = 1 $. We show that $ \frac{a}{p} = \frac{1}{x}+\frac{1}{y}+\frac{1}{z} $ has no integral solutions satisfying that $ xy < \sqrt{lz} $, where $ l\leq\frac{(3p+a)p}{a^2} $ when $ p\nmid y $ and $ l\leq\frac{3p^2+a}{pa^2} $ when $ p\mid y $. Besides, we extend Monks and Velingker's result to the case $ 4\le a < p $.
Citation: Wei Zhao, Jian Lu, Lin Wang. On the integral solutions of the Egyptian fraction equation $ \frac ap = \frac 1x+\frac 1y+\frac 1z $[J]. AIMS Mathematics, 2021, 6(5): 4930-4937. doi: 10.3934/math.2021289
It is an interesting question to investigate the integral solutions for the Egyptian fraction equation $ \frac{a}{p} = \frac{1}{x}+\frac{1}{y}+\frac{1}{z} $, which is known as Erdős-Straus equation when $ a = 4 $. Recently, Lazar proved that this equation has not integral solutions with $ xy < \sqrt{z/2} $ and $ \gcd(x, y) = 1 $ when $ a = 4 $. But his method is difficult to get an analogous result for arbitrary $ \frac{a}{p} $, especially when $ p $ and $ a $ are lager numbers. In this paper, we extend Lazar's result to arbitrary integer $ a $ with $ 4\le a\leq\frac{1+\sqrt{1+6p^3}}{p} $, and release the condition $ \gcd(x, y) = 1 $. We show that $ \frac{a}{p} = \frac{1}{x}+\frac{1}{y}+\frac{1}{z} $ has no integral solutions satisfying that $ xy < \sqrt{lz} $, where $ l\leq\frac{(3p+a)p}{a^2} $ when $ p\nmid y $ and $ l\leq\frac{3p^2+a}{pa^2} $ when $ p\mid y $. Besides, we extend Monks and Velingker's result to the case $ 4\le a < p $.
[1] | C. Elsholtz, S. Planitzer, The number of solutions of the Erdős-Straus Equation and sums of $k$ unit fractions, Proc. R. Soc. Edinburgh, 150 (2020), 1401–1427. doi: 10.1017/prm.2018.137 |
[2] | P. Erdős, Az $1/x_1+1/x_2+\ldots+1/x_n = a/b$ egyenlet egész számú megoldásairól, Mat. Lapok 1, (1950), 192–210. |
[3] | R. Guy, Unsolved problems in number theory, 2nd ed, New York, Springer-Verlag, 1994,158–166. |
[4] | R. M. Jollensten, A note on the Egyption problem, In: F. Hoffman, et al. (Eds.), Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory and Computing, Inc., Winnipeg Utilitas Math., 1976,578–589. |
[5] | C. Ko, Q. Sun, S. J. Chang, On equations $4/n = 1/x+1/y+1/z$, Acta. Sci. Natur. Szechuanensis., 2 (1964), 23–37. |
[6] | Y. Lazar, A remark on a conjecture of Erdős and Straus, (2020), arXiv: 2003.01237. |
[7] | M. Monks, A. Velingker, On the Erdős-Straus conjecture: Properties of solutions to its underlying diophantine equation, 2008. Available from: https://pdfs.semanticscholar.org/b65e/60f1528dfc9751ee4d7b3240dd6dd8e3fbc2.pdf. |
[8] | L. J. Mordell, Diophantine equations, London: Academic Press, 1969,287–290. |
[9] | G. Palamà, Su di una congettura di Sierpiński relativa alla possibilità in, numeri naturali della $5/n = 1/x_1+1/x_2+1/x_3$, Boll. Un. Mat. Ital., (1958), 65–72. |
[10] | B. M. Stewart, W. A. Webb, Sums of fractions with bounded numerators, Can. Math. Bull., 18 (1966), 999–1003. doi: 10.4153/CJM-1966-100-4 |
[11] | S. Salez, The Erdős-Straus conjecture: New modular equations and checking up to $N = 10^{17}$, (2014), arXiv: 1406.6307. |
[12] | W. Sierpiński, On the decomposition of rational numbers into unit fractions (Polish), P$\acute{a}$nstwowe Wydawnictwo Nankowe, Warsaw, 1957. |