We explore the local dynamical characteristics, chaos and bifurcations of a two-dimensional discrete laser model in $ \mathbb{R}_+^2 $. It is shown that for all $ a $, $ b $, $ c $ and $ p $, model has boundary fixed point $ P_{0y}(0, \frac{p}{c}) $, and the unique positive fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $ if $ p > \frac{b c}{a} $. Further, local dynamical characteristics with topological classifications for the fixed points $ P_{0y}(0, \frac{p}{c}) $ and $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $ have explored by stability theory. It is investigated that flip bifurcation exists for the boundary fixed point $ P_{0y}(0, \frac{p}{c}) $, and also there exists a flip bifurcation if parameters vary in a small neighborhood of the unique positive fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $. Moreover, it is also explored that for the fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $, laser model undergoes a Neimark-Sacker bifurcation, and in the meantime stable invariant curve appears. Numerical simulations are implemented to verify not only obtain results but also exhibit complex dynamics of period $ -2 $, $ -3 $, $ -4 $, $ -5 $, $ -8 $ and $ -9 $. Further, maximum lyapunov exponents along with fractal dimension are computed numerically to validate chaotic behavior of the laser model. Lastly, feedback control method is utilized to stabilize chaos exists in the model.
Citation: Abdul Qadeer Khan, Mohammed Bakheet Almatrafi. Two-dimensional discrete-time laser model with chaos and bifurcations[J]. AIMS Mathematics, 2023, 8(3): 6804-6828. doi: 10.3934/math.2023346
We explore the local dynamical characteristics, chaos and bifurcations of a two-dimensional discrete laser model in $ \mathbb{R}_+^2 $. It is shown that for all $ a $, $ b $, $ c $ and $ p $, model has boundary fixed point $ P_{0y}(0, \frac{p}{c}) $, and the unique positive fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $ if $ p > \frac{b c}{a} $. Further, local dynamical characteristics with topological classifications for the fixed points $ P_{0y}(0, \frac{p}{c}) $ and $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $ have explored by stability theory. It is investigated that flip bifurcation exists for the boundary fixed point $ P_{0y}(0, \frac{p}{c}) $, and also there exists a flip bifurcation if parameters vary in a small neighborhood of the unique positive fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $. Moreover, it is also explored that for the fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $, laser model undergoes a Neimark-Sacker bifurcation, and in the meantime stable invariant curve appears. Numerical simulations are implemented to verify not only obtain results but also exhibit complex dynamics of period $ -2 $, $ -3 $, $ -4 $, $ -5 $, $ -8 $ and $ -9 $. Further, maximum lyapunov exponents along with fractal dimension are computed numerically to validate chaotic behavior of the laser model. Lastly, feedback control method is utilized to stabilize chaos exists in the model.
[1] | J. C. Ion, Laser processing of engineering materials: principles, procedure and industrial application, Elsevier, 2005. |
[2] | Z. X. Guo, S. Kumar, Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media, Appl. Opt., 40 (2001), 3156–3163. https://doi.org/10.1364/AO.40.003156 doi: 10.1364/AO.40.003156 |
[3] | X. Y. Jiang, C. M. Soukoulis, Time dependent theory for random lasers, Phys. Rev. Lett., 85 (2000), 70. https://doi.org/10.1103/PhysRevLett.85.70 doi: 10.1103/PhysRevLett.85.70 |
[4] | A. R. Jha, Infrared technology: applications to electro-optics, photonic devices and sensors, New York: Wiley, 2000. |
[5] | B. A. Lengyel, Introduction to laser physics, New York: Wiley, 1966. |
[6] | J. Ohtsubo, Semiconductor lasers: stability, instability and chaos, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-30147-6 |
[7] | M. J. Weber, Science and technology of laser glass, J. Non-Cryst. Solids, 123 (1990), 208–222. https://doi.org/10.1016/0022-3093(90)90786-L doi: 10.1016/0022-3093(90)90786-L |
[8] | P. W. Milonni, J. H. Eberly, Lasers physics, New York: Wiley, 2010. https://doi.org/10.1002/9780470409718 |
[9] | H. Haken, Synergetics, Berlin, Heidelberg: Springer, 1983. https://doi.org/10.1007/978-3-642-88338-5 |
[10] | S. H. Strogatz, Nonlinear dynamics and chaos with student solutions manual: with applications to physics, biology, chemistry, and engineering, Boca Raton: CRC Press, 2018. https://doi.org/10.1201/9780429399640 |
[11] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[12] | Y. A. Kuznetsov, Elements of applied bifurcation theorey, New York: Springer, 2004. https://doi.org/10.1007/978-1-4757-3978-7 |
[13] | Z. Y. Hu, Z. D. Teng, L. Zhang, Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal. Real World Appl., 12 (2011), 2356–2377. https://doi.org/10.1016/j.nonrwa.2011.02.009 doi: 10.1016/j.nonrwa.2011.02.009 |
[14] | A. Q. Khan, J. Y. Ma, D. M. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 185–198. https://doi.org/10.1016/j.cnsns.2016.02.037 doi: 10.1016/j.cnsns.2016.02.037 |
[15] | A. Q. Khan, J. Y. Ma, D. M. Xiao, Global dynamics and bifurcation analysis of a host-parasitoid model with strong Allee effect, J. Biol. Dyn., 11 (2017), 121–146. https://doi.org/10.1080/17513758.2016.1254287 doi: 10.1080/17513758.2016.1254287 |
[16] | Z. J. Jing, J. P. Yang, Bifurcation and chaos in discrete-time predator-prey system, Chaos Solitons Fract., 27 (2006), 259–277. https://doi.org/10.1016/j.chaos.2005.03.040 doi: 10.1016/j.chaos.2005.03.040 |
[17] | C. H. Zhang, X. P. Yan, G. H. Cui, Hopf bifurcations in a predator-prey system with a discrete delay and a distributed delay, Nonlinear Anal. Real World Appl., 11 (2010), 4141–4153. https://doi.org/10.1016/j.nonrwa.2010.05.001 doi: 10.1016/j.nonrwa.2010.05.001 |
[18] | M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complex., 11 (2012), 12–27. https://doi.org/10.1016/j.ecocom.2012.01.002 doi: 10.1016/j.ecocom.2012.01.002 |
[19] | C. D. Huang, J. Wang, X. P. Chen, J. D. Cao, Bifurcations in a fractional-order BAM neural network with four different delays, Neural Netw., 141 (2021), 344–354. https://doi.org/10.1016/j.neunet.2021.04.005 doi: 10.1016/j.neunet.2021.04.005 |
[20] | E. Kaslik, I. R. Radulescu, Stability and bifurcations in fractional-order gene regulatory networks, Appl. Math. Comput., 421 (2022), 126916. https://doi.org/10.1016/j.amc.2022.126916 doi: 10.1016/j.amc.2022.126916 |
[21] | J. Alidousti, Stability and bifurcation analysis for a fractional prey-predator scavenger model, Appl. Math. Model., 81 (2020), 342–355. https://doi.org/10.1016/j.apm.2019.11.025 doi: 10.1016/j.apm.2019.11.025 |
[22] | J. H. E. Cartwright, Nonlinear stiffness, Lyapunov exponents, and attractor dimension, Phys. Lett. A, 264 (1999), 298–302. https://doi.org/10.1016/S0375-9601(99)00793-8 |
[23] | J. L. Kaplan, J. A. Yorke, Preturbulence: a regime observed in a fluid flow model of Lorenz, Commun. Math. Phys., 67 (1979), 93–108. https://doi.org/10.1007/BF01221359 doi: 10.1007/BF01221359 |
[24] | S. N. Elaydi, An introduction to difference equations, New York: Springer, 1996. https://doi.org/10.1007/978-1-4757-9168-6 |
[25] | S. Lynch, Dynamical systems with applications using Mathematica, Boston: Birkhäuser, 2007. |