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Abstract: We explore the local dynamical characteristics, chaos and bifurcations of a two-dimensional
discrete laser model in R2

+. It is shown that for all a, b, c and p, model has boundary fixed point
P0y(0,

p
c ), and the unique positive fixed point P+xy(

ap−bc
ab ,

b
a ) if p > bc

a . Further, local dynamical
characteristics with topological classifications for the fixed points P0y(0,

p
c ) and P+xy(

ap−bc
ab ,

b
a ) have

explored by stability theory. It is investigated that flip bifurcation exists for the boundary fixed
point P0y(0,

p
c ), and also there exists a flip bifurcation if parameters vary in a small neighborhood

of the unique positive fixed point P+xy(
ap−bc

ab ,
b
a ). Moreover, it is also explored that for the fixed point

P+xy(
ap−bc

ab ,
b
a ), laser model undergoes a Neimark-Sacker bifurcation, and in the meantime stable invariant

curve appears. Numerical simulations are implemented to verify not only obtain results but also exhibit
complex dynamics of period −2, −3, −4, −5, −8 and −9. Further, maximum lyapunov exponents
along with fractal dimension are computed numerically to validate chaotic behavior of the laser model.
Lastly, feedback control method is utilized to stabilize chaos exists in the model.
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1. Introduction

Differential and difference equations govern a wide range of physical models. In recent years,
discrete models represented by difference equations have been better examined than continuous
models. During the last few decades, mathematical models of physics, ecology, engineering,
physiology, psychology, chemistry and social sciences have given birth to key research areas.
Furthermore, like the biological model, physical model plays an active role in all fields of engineering
and science; particularly laser model having enormous applications such as in industries for
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manufacturing purposes, e.g., for drilling, welding, cutting, marking, hardening, ablating, engraving
and micromachining etc. The lasers can also be utilized for the applications of optical data storage,
e.g., in DVDs and compact disks (CDs) etc. With regard to communications, the lasers are employed
for long-distance optical data transmission, e.g., for inter-satellite communications. On medical side,
the lasers are used for vision correction (LASIK) and eye surgery, dermatology, dentistry (e.g.,
photodynamic therapy of cancer). In optical metrology, it is used for extremely precise position
measurements and optical surface profiling. Similarly, in energy technology, it is used for electricity
generation and laser-induced nuclear fusion etc. Moreover, in recent times few high-power lasers are
developed for potential use as directed energy weapons in the battle field or for destroying missiles,
mines and projectiles etc. [1–7].

The term laser is used for the phenomena of light production by emission of radiation. Laser is an
appliance that is used for the production of coherent and single wavelength of light called
monochromatic light. The basic principle for the working of laser based upon the theory of light
proposed by Einstein in 1916, and developed by G. Gould in 1957. The first working ruby laser was
introduced in 1960 by Theodore Maiman. One can differentiate laser light from ordinary light easily
as it is very directional and monochromatic, and works on the principles of spontaneous emission,
spontaneous absorption, population inversion and stimulated emission of the light. In nature, an atom
exists in different energy states, when it absorb light it jumps from low energy state E1 to higher
energy state E2. This condition is known as spontaneous absorption. Spontaneous emission represents
the state of an atom as in excited state E2 it does not remains for a long period of the time about 10−8

is a life time of an atom in a excited state and it jumps down from level E2 to the lower lever E1 by
loosing energy in the form of photon of energy h(v) is incoherent and moves in any direction. During
this situation if another photon interacts with another atom which is in excited state, then it emits a
pair of photon in same direction and same phase, and again it goes to its ground state. For the laser
formation, it is necessary to amplify light in the cavity. For achieving population inversion, the atoms
of gain medium accelerate to the high energy state by means of pumping. The chain of photon in
cavity is obtained by population inversion and this chain become so intense that at the end of cavity
reflected mirror cannot reflect them, and hence laser is obtained [8]. So, now we will give the
mathematical formulation of the desired two-dimensional discrete-time laser model. As it is pointed
out in [8], the number of laser photons in the cavity changes mainly for the following two reasons:

(i) Due to stimulated emission, laser photons are continuously being added.
(ii) Mirror transmission, absorption or scattering at the mirrors result continuously lost of laser

photons.

Thus, the rate of change of number of laser photon including loss and gain represented by the equation
as follows:

dx
dt
= gain − loss = axy − bx. (1.1)

The two rates, the rate of increase by means of stimulated emission as well as the rate of decrease by
means of imperfect mirror indicates the rate at which the number of laser photons changes. In Eq (1.1),
x denotes number of laser photon, y is number of atom in excited state, a is gain coefficient and b is
the transmission coefficient. Moreover, equation (1.1) represents that due to stimulated emission the
gain of laser photon is not only proportional to the number of photons already in cavity but also to the
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number of atoms. Thus, the type of atom used and other factors collectively indicate the efficiency of
the stimulated emission while the rate of loss of laser photon is simplify proportional to the number of
laser photon present. Now, one has the following equation for y, that is, the number atom in excited
state where both spontaneous and emission causes y to decrease, and the pump p causes y to increase
at some rate

dy
dt
= −axy − cy + p, (1.2)

where c is the spontaneous emission. Note that with opposite sign the first term appears in both
Eqs (1.1) and (1.2). This shows the increase of x corresponds precisely to the decrease of y and
represents the role of stimulated emission in laser. Furthermore, equations (1.1) and (1.2) describe the
laser action. These equations show the relation of number of laser photon in the cavity and the number
of loosing atoms but do not indicate what happens to the atoms when their electrons jumps to some
other level or the photons that leave the cavity. So, equations (1.1) and (1.2) give the following model
equations of two-dimensional continuous-time laser model [8–10]:

dx
dt
= axy − bx,

dy
dt
= −axy − cy + p. (1.3)

Now, by Euler’s forward scheme, the continuous-time laser model (1.3) becomes

xn+1 = (1 − bh) xn + ahxnyn, yn+1 = (1 − ch) yn − ahxnyn + ph. (1.4)

The goal of this paper is to investigate local dynamical properties, chaos and bifurcations of the laser
model (1.4). Precisely the rest of the paper is structured as follows: Linearized form and existence for
the fixed points of the laser model (1.4) are explored in Section 2. In Section 3, local dynamics for
the fixed points of the laser model (1.4) is explored. The existence of bifurcation for the fixed points
is explored in Section 4. The detailed bifurcation analysis for the fixed points is explore in Section 5.
In Section 6, theoretical results are verified numerically, and this also includes to study the fractal
dimension. In Section 7, chaos control is investigated by feedback control method. Brief summary of
the paper is presented in Section 8.

2. Equilibrium points and linearized form of the laser model (1.4)

Lemma 2.1. Laser model (1.4) has at most two equilibria in R2
+. More specifically,

(i) Laser model (1.4) has a boundary fixed point P0y

(
0, p

c

)
∀ a, b, c, p, h;

(ii) Laser model (1.4) has an interior fixed point P+xy

(
ap−bc

ab ,
b
a

)
if p > bc

a .

Hereafter, for the fixed point Pxy (x∗, y∗), linearized form is explored. The linearized system of (1.4)
for the fixed point Pxy (x∗, y∗) under the map (Φ1,Φ2)→ (xn+1, yn+1) is

Γn+1 = J|(x∗,y∗)Γn, (2.1)

where

J|(x∗,y∗) :=
(

1 − bh + ahy∗ ahx∗

−ahy∗ 1 − ch − ahx∗

)
, (2.2)

and
Φ1 = (1 − bh) xn + ahxnyn, Φ2 = (1 − ch) yn − ahxnyn + ph. (2.3)
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3. Local dynamics for the fixed points of laser model (1.4)

Local dynamics for the fixed points P0y

(
0, p

c

)
and P+xy

(
ap−bc

ab ,
b
a

)
of (1.4) is explored in this section,

as follows.

3.1. Local dynamics for P0y

(
0, p

c

)
The J|P0y(0, pc ) evaluated at P0y

(
0, p

c

)
is

J|P0y(0, pc ) =
(

1 − bh + aph
c 0

−
aph

c 1 − ch

)
. (3.1)

The roots of J|P0y(0, pc ) evaluated at P0y

(
0, p

c

)
are λ1 = 1 − bh + aph

c and λ2 = 1 − ch. So, by stability

theory, dynamics of (1.4) for P0y

(
0, p

c

)
can be stated, as follows.

Lemma 3.1. For P0y

(
0, p

c

)
, following statements hold:

(i) P0y

(
0, p

c

)
of the laser model (1.4) is a sink if

p >
bch − 2c

ah
and c <

2
h

; (3.2)

(ii) P0y

(
0, p

c

)
of the laser model (1.4) is a source if

p <
bch − 2c

ah
and c >

2
h

; (3.3)

(iii) P0y

(
0, p

c

)
of the laser model (1.4) is a saddle if

p <
bch − 2c

ah
and c <

2
h

; (3.4)

(iv) P0y

(
0, p

c

)
of the laser model (1.4) is non-hyperbolic if

p =
bch − 2c

ah
or c =

2
h
. (3.5)

3.2. Local dynamics for P+xy(
ap−bc

ab ,
b
a )

The J|P+xy( ap−bc
ab ,

b
a ) evaluated at P+xy(

ap−bc
ab ,

b
a ) is

J|P+xy( ap−bc
ab ,

b
a ) =

(
1 aph−bch

b
−bh b−aph

b

)
. (3.6)

The corresponding auxiliary equation of (3.6) is

λ2 − p1λ + q1 = 0, (3.7)
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where

p1 =
2b − aph

b
,

q1 =
b − aph

b
+ h2 (ap − bc) .

(3.8)

Finally, the roots of (3.7) are

λ1,2 =
p1 ±

√
∆

2
, (3.9)

where

∆ =

(
2b − aph

b

)2

− 4
(
b − aph

b
+ h2 (ap − bc)

)
=

(
aph

b

)2

− 4h2 (ap − bc) .

(3.10)

Hereafter, local dynamics for the fixed point P+xy

(
ap−bc

ab ,
b
a

)
of the laser model (1.4) can be summarized

according to the sign of ∆ < 0 (∆ ≥ 0), as follows.

Lemma 3.2. If ∆ =
(

aph
b

)2
−4h2 (ap − bc) < 0, then for P+xy

(
ap−bc

ab ,
b
a

)
of the laser model (1.4), following

statements hold:

(i) P+xy

(
ap−bc

ab ,
b
a

)
is a locally asymptotically stable focus if

p <
hb2c

a (bh − 1)
; (3.11)

(ii) P+xy

(
ap−bc

ab ,
b
a

)
is an unstable focus if

p >
hb2c

a (bh − 1)
; (3.12)

(iii) P+xy

(
ap−bc

ab ,
b
a

)
is non-hyperbolic if

p =
hb2c

a (bh − 1)
. (3.13)

Lemma 3.3. If ∆ =
(

aph
b

)2
−4h2 (ap − bc) ≥ 0, then for P+xy

(
ap−bc

ab ,
b
a

)
of the laser model (1.4), following

statements hold:

(i) P+xy

(
ap−bc

ab ,
b
a

)
is a locally asymptotically stable node if

p <
b
(
4 − bh2c

)
ah (2 − bh)

; (3.14)

(ii) P+xy

(
ap−bc

ab ,
b
a

)
is an unstable node if

p >
b
(
4 − bh2c

)
ah (2 − bh)

; (3.15)

(iii) P+xy

(
ap−bc

ab ,
b
a

)
is non-hyperbolic if

p =
b
(
4 − bh2c

)
ah (2 − bh)

. (3.16)
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4. Existence of bifurcations for P0y

(
0, p

c

)
and P+xy

(
ap−bc

ab ,
b
a

)
of the laser model (1.4)

(i) If (3.5) true then one of eigenvalues of J|P0y(0, pc ) evaluated at P0y

(
0, p

c

)
is −1, i.e., λ1|(3.5) = −1 but

λ2|(3.5) = 1−ch , 1 or −1. Thus, laser model (1.4) undergoes a flip bifurcation when (a, b, c, h, p)
passes through the curve

FB|P0y(0, pc ) =
{

(a, b, c, h, p) , p =
bch − 2c

ah

}
; (4.1)

(ii) If (3.13) true then roots of J|P+xy

( ap−bc
ab ,

b
a

) evaluated at P+xy

(
ap−bc

ab ,
b
a

)
satisfying

∣∣∣λ1,2

∣∣∣
(3.13)

= 1. Thus,
laser model (1.4) undergoes Neimark-Sacker bifurcation when (a, b, c, h, p) passes through the
curve

NS B|P+xy

( ap−bc
ab ,

b
a

) =
{

(a, b, c, h, p) , p =
hb2c

a (bh − 1)

}
; (4.2)

(iii) If (3.16) true then one of the eigenvalues of J|P+xy

( ap−bc
ab ,

b
a

) evaluated at P+xy

(
ap−bc

ab ,
b
a

)
is −1, i.e.,

λ1|(3.16) = −1 but λ2|(3.16) =
2−3bh+bch2

2−bh , 1 or −1. So model (1.4) undergoes a flip bifurcation when
(a, b, c, h, p) passes the curve

FB|P+xy

( ap−bc
ab ,

b
a

) =
(a, b, c, h, p) , p =

b
(
4 − bch2

)
ah (2 − bh)

 . (4.3)

5. Bifurcation analysis for fixed points P0y

(
0, p

c

)
and P+xy

(
ap−bc

ab ,
b
a

)
of the laser model (1.4)

We study comprehensive bifurcation analysis for fixed points P0y

(
0, p

c

)
and P+xy

(
ap−bc

ab ,
b
a

)
of the

discrete model (1.4) in this section. This comprises the study of flip bifurcation for P0y(0,
p
c ), Neimark-

Sacker and flip bifurcations for P+xy

(
ap−bc

ab ,
b
a

)
of the discrete laser model (1.4).

5.1. Flip bifurcation for P0y

(
0, p

c

)
Recall that for P0y

(
0, p

c

)
, model (1.4) undergoes a flip bifurcation when (a, b, c, h, p) passes through

the curve (4.1). But by calculation it can not occur, and therefore P0y

(
0, p

c

)
is degenerate with higher

codimension.

5.2. Neimark-Sacker bifurcation for P+xy

(
ap−bc

ab ,
b
a

)
Hereafter, we will give detail Neimark-Sacker bifurcation for P+xy

(
ap−bc

ab ,
b
a

)
of (1.4) by utilizing

bifurcation theory [11–13]. Recall that if (4.2) holds, then |λ1,2| = 1. So, consider p in a small
neighborhood of p∗, i.e., p = p∗ + ϵ where ϵ << 1 and hence (1.4) gives

xn+1 = (1 − bh)xn + ahxnyn, yn+1 = (1 − ch)yn − ahxnyn + h(p∗ + ϵ). (5.1)
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The ϵ-dependence laser model (5.1) has fixed point P+xy

(
a(p∗+ϵ)−bc

ab , b
a

)
and the J|P+xy

( a(p∗+ϵ)−bc
ab , ba

) evaluated

at P+xy

(
a(p∗+ϵ)−bc

ab , b
a

)
is

J|P+xy

( a(p∗+ϵ)−bc
ab , ba

) =
(

1 a(p∗+ϵ)h−bch
b

−hb b−a(p∗+ϵ)h
b

)
. (5.2)

The characteristic equation of J|P+xy

( a(p∗+ϵ)−bc
ab , ba

) evaluated at P+xy

(
a(p∗+ϵ)−bc

ab , b
a

)
is

λ2 − p1(ϵ)λ + q1(ϵ) = 0, (5.3)

where

p1(ϵ) =
2b − a(p∗ + ϵ)h

b
,

q1(ϵ) =
b − a(p∗ + ϵ)h

b
+ h2 (a(p∗ + ϵ) − bc) .

(5.4)

The zeroes of (5.3) become

λ1,2 =
p1(ϵ) ± ι

√
4q1(ϵ) − p2

1(ϵ)

2
,

(5.5)

where

∆ = p2
1(ϵ) − 4q1(ϵ)

=

(
a(p∗ + ϵ)h

b

)2

− 4h2 (a(p∗ + ϵ) − bc) .
(5.6)

Moreover after some computation, one has

d|λ1,2|

dϵ
|ϵ=0 =

bch
2(bh − 1)

, 0. (5.7)

Additionally, it is required that λm
1,2 , 1, m = 1, · · · , 4, that is same to p(0) , −2, 0, 1, 2, and so it is

true by calculation. Using following transformation:

un = xn − x∗, vn = yn − y∗, (5.8)

the fixed point P+xy

(
a(p∗+ϵ)−bc

ab , b
a

)
of system (5.1) transform into P00(0, 0). So, (5.1) becomes

un+1 = (1 − bh)(un + x∗) + ah(un + x∗)(vn + y∗) − x∗,

vn+1 = (1 − ch)(vn + y∗) − ah(un + x∗)(vn + y∗) + h(p∗ + ϵ) − y∗,
(5.9)

where x∗ = a(p∗+ϵ)−bc
ab and y∗ = b

a . Hereafter, if ϵ = 0, then normal form for (5.9) is studied. By Taylor
series expansion at (un, vn) = (0, 0), from (5.9) one has

un+1 =a11un + a12vn + a13unvn,

vn+1 =a21un + a22vn + a23unvn,
(5.10)
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with
a11 = 1 − bh + ahy∗,

a12 = ahx∗,

a13 = ah,

a21 = −ahy∗,

a22 = 1 − ch − ahx∗,

a23 = −ah.

(5.11)

Hereafter, one construct invertible matrix T that put linear part of (5.10) to required canonical form

T :=
(

a12 0
η − a11 −ζ

)
, (5.12)

where

η =
2b − aph

2b
,

ζ =
1
2

√
4h2(ap − bc) −

(
aph

b

)2

.

(5.13)

Hence, system (5.10) then implies

Xn+1 = ηXn − ζYn + P̄,

Yn+1 = ζXn + ηYn + Q̄,
(5.14)

with
P̄(Xn,Yn) = l11X2

t + l12XtYt,

Q̄(Xn,Yn) = l21X2
t + l22XtYt,

(5.15)

and
l11 = (η − a11)a13,

l12 = −ζa13,

l21 =
η − a11

ζ
(a13(η − a11) − a12a23) ,

l22 = (η − a11)(a12a23 − a13),

(5.16)

by (
un

vn

)
:=

(
a12 0
η − a11 −ζ

) (
Xt

Yt

)
. (5.17)

From (5.15), one gets

P̄XtXt |P00(0,0) =2l11, P̄XtYt |P00(0,0) = l12,

P̄YtYt |P00(0,0) =P̄XnXnXn |P00(0,0) = P̄XnXnYn |P00(0,0)

=P̄XnYnYn |P00(0,0) = P̄YnYnYn |P00(0,0) = 0,
Q̄XtXt |P00(0,0) =2l21, Q̄XtYt |P00(0,0) = l22,

Q̄YnYn |P00(0,0) =Q̄XnXnXn |P00(0,0) = Q̄XnXnYn |P00(0,0)

=Q̄XnYnYn |P00(0,0) = Q̄YnYnYn |P00(0,0) = 0.

(5.18)
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Now, in order for system (5.14) undergoes Neimark-Sacker bifurcation, it is necessary that Ω , 0
(see [14–16]),

Ω = −ℜ

(
(1 − 2λ̄)λ̄2

1 − λ
ξ11ξ20

)
−

1
2
∥ξ11∥

2 − ∥ξ02∥
2 +ℜ(λ̄ξ21), (5.19)

where

ξ02 =
1
8

[
P̄XnXn − P̄YnYn + 2Q̄XnYn + ι

(
Q̄XnXn − Q̄YnYn + 2P̄XnYn

)]
|P00(0,0),

ξ11 =
1
4

[
P̄XnXn + P̄YnYn + ι

(
Q̄XnXn + Q̄YnYn

)]
|P00(0,0),

ξ20 =
1
8

[
P̄XnXn − P̄YnYn + 2Q̄XnYn + ι

(
Q̄XnXn − Q̄YnYn − 2P̄XnYn

)]
|P00(0,0),

ξ21 =
1

16

[
P̄XnXnXn + P̄XnYnYn + Q̄XnXnYn + Q̄YnYnYn

+ ι
(
Q̄XnXnXn + Q̄XnYnYn − P̄XnXnYn − PYnYnYn

)]
|P00(0,0).

(5.20)

After manipulation, one gets

ξ02 =
1
4

[l11 − l22 + ι(l21 + l12)] ,

ξ11 =
1
2

[l11 + ιl21] ,

ξ20 =
1
4

[l11 + l22 + ι(l21 − l12)] ,

ξ21 = 0.

(5.21)

So from this analysis and condition(s) for Neimark-Sacker bifurcation discussed in [17, 18], we have
the following result about Neimark-Sacker bifurcation of the model (1.4).

Theorem 5.1. If (3.13) holds, then model (1.4) undergoes Neimark-Sacker bifurcation for the fixed
point P+xy

(
ap−bc

ab ,
b
a

)
as parameters (a, b, c, h, p) goes through the curve (4.2). Additionally, attracting

(repelling) closed curve bifurcates from P+xy

(
ap−bc

ab ,
b
a

)
if Ω < 0 ( Ω > 0).

5.3. Flip bifurcation for P+xy(
ap−bc

ab ,
b
a )

Recall that if parameters (a, b, c, h, p) crosses (4.3), then laser model (1.4) undergoes a flip
bifurcation. Now if p in a neighborhood of p∗, i.e, p = p∗ + ϵ where ϵ << 1, then laser model (1.4)
becomes the form (5.1), that further takes the following form:

un+1 = â11un + â12vn + â13unvn,

vn+1 = â21un + â22vn + â23unvn + γ01ϵ,
(5.22)
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where

â11 = 1 − bh + ahy∗,

â12 = ahx∗,

â13 = ah,

â21 = −ahy∗,

â22 = 1 − ch − ahx∗,

â23 = −ah,

γ01 = h,

(5.23)

by using transformation given in (5.8). Now (5.22) becomes(
Xn+1

Yn+1

)
=

(
−1 0
0 λ2

) (
Xn

Yn

)
+

(
P̂
Q̂

)
, (5.24)

where

P̂ =
â13

(
λ2 − â11

)
− â12â23

â12 (1 + λ2)
unvn −

γ01

(1 + λ2)
ϵ,

Q̂ =
â13

(
1 + â11

)
+ â12â23

â12 (1 + λ2)
unvn +

γ01

(1 + λ2)
ϵ,

unvn = −â12
(
1 + â11

)
X2

n +
(
â12

(
λ2 − â11

)
− â12

(
1 + â11

))
XnYn + â12

(
λ2 − â11

)
Y2

n ,

(5.25)

by the transformation (
un

vn

)
:=

(
â12 â12

−1 − â11 λ2 − â11

) (
Xn

Yn

)
. (5.26)

Hereafter, for (5.24) center manifold Mc|P00(0,0) at P00(0, 0) is explored where

Mc|P00(0,0) =
{
(Xn,Yn) : Yn = c0ϵ + c1X2

n + c2Xnϵ + c3ϵ
3 + O

(
(|Xn| + |ϵ |)3

)}
. (5.27)

After manipulations, we obtain

c0 =
γ01

1 − λ2
2

,

c1 = −
(1 + â11)

(
(1 + â11)â13 + â12â23

)
1 − λ2

2

,

c2 =
γ01

1 − λ2
2

((
(1 + â11)â13 + â12â23

) (
λ2 − 2â12 − 1

))
,

c3 = 0.

(5.28)

Finally, the map (5.24) restricts to Mc|P00(0,0) is

f (xn) = −xn + h1x2
n + h2xnϵ + h3x2

nϵ + h4xnϵ
2 + h5x3

n + O
(
(|Xn| + |ϵ |)4

)
, (5.29)
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where

h1 =
−(1 + â11)

1 + λ2

[(
λ2 − â11

)
â13 − â12â23

]
,

h2 =
co(λ2 − 2â11 − 1)

1 + λ2

[(
λ2 − â11

)
â13 − â12â23

]
,

h3 =

[(
λ2 − â11

)
â13 − â12â23

] [
c2

(
λ2 − 2â11 − 1

)
+ 2coc1

(
λ2 − â11

)]
1 + λ2

,

h4 =
2coc2

(
λ2 − â11

)
1 + λ2

[(
λ2 − â11

)
â13 − â12â23

]
,

h5 =
c1(λ2 − 2â11 − 1)

1 + λ2

[(
λ2 − â11

)
â13 − â12â23

]
.

(5.30)

Thus discriminatory quantities are non-zero in order for (5.29) undergoes flip bifurcation [19–21]

Γ1 =

(
∂2 f
∂xn∂ϵ

+
1
2
∂ f
∂ϵ

∂2 f
∂x2

n

)
|P00(0,0),

Γ2 =

1
6
∂3 f
∂x3

n
+

(
1
2
∂2 f
∂x2

n

)2 |P00(0,0).

(5.31)

By computation, we get

Γ1 =
ah(2 − bh)2(bch2 − 4)(

4 − 4bh + bch2) (b2c2h2 − 4bc + 2b2ch2) (
bch − 2b
2 − bh

+
ap − bc

b

)
, (5.32)

and

Γ2 =
−2a

(
2ah − ah2(ap−bc)

b

) (
bch2−4
2−bh

) (
bch2 − 4

) (
bch−2b
2−bh +

ap−bc
b

)(
4 − 4bh + bch2) (b2c2h2 − 4bc + 2b2ch2)

+
4 (2 − bh)2 a2h4(
4 − 4bh + bch2)2

(
bch − 2b
2 − bh

+
ap − bc

b

)2

. (5.33)

From this analysis, we have the following theorem.

Theorem 5.2. For P+xy

(
ap−bc

ab ,
b
a

)
, map (5.1) undergoes a flip bifurcation if ϵ varies in a small

neighborhood of P00(0, 0). Moreover, if Γ2 > 0 (Γ2 < 0), then period-2 orbits bifurcate from
P+xy

(
ap−bc

ab ,
b
a

)
are stable (unstable).

6. Numerical simulations

In this section, obtained theoretical results are illustrated numerically. Let a = 0.5, b = 1.6,
c = 0.03, h = 1.12, then from (3.13) one gets p = 0.217212. In this case, P+xy

(
ap−bc

ab ,
b
a

)
of (1.4) is a

stable focus if p < 0.217212, loss its stability if p = 0.217212 and meanwhile it is an unstable focus if
p > 0.217212. For this, if p = 0.11 < 0.217212, then from Figure 1a it is clear that
P+xy

(
d
c ,

r(c−d)
bc

)
=P+xy (0.07575757575757576, 3.2) of laser model (1.4) is a stable focus.
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Correspondingly, for the remaining values of p, if p < 0.217212, then, respective equilibrium point is
also a stable focus (Figure 1b–1l). But if p = 0.217212, then P+xy(

ap−bc
ab ,

b
a ) change the behavior and

thus an unstable focus if p > 0.217212, and as a consequence, stable curve appears, which indicates
that laser model (1.4) undergoes supercritical Neimark-Sacker bifurcation. To prove this, if
p = 0.217222 > 0.217212, then roots of JP+xy

( ap−bc
ab ,

b
a

) evaluated at P+xy

(
ap−bc

ab ,
b
a

)
are

λ1,2 = 0.961986 ± 0.273103ι. (6.1)

Moreover, from (5.7) one gets bch
2(bh−1) = 0.033939393939393936 > 0. After some manipulation,

from (5.21) one gets

ξ02 = 0.000225798 + 0.0381484ι,
ξ11 = −0.0106439 − 0.000172025ι,
ξ20 = −0.0108697 − 0.0383205ι,
ξ21 = 0.

(6.2)

Using (6.1) and (6.2) in (5.19), we obtain Ω = −0.0016523767625482892 < 0. Hence, laser
model (1.4) undergoes supercritical a Neimark-Sacker bifurcation if p = 0.217222 > 0.217212 and
meanwhile stable curve appear (Figure 2a). Similarly, if p > 0.217212, then Ω < 0 (See Table 1) and
their corresponding closed curves are drawn in Figure 2b–2l. Moreover, M.L.E and bifurcation
diagrams are drawn in Figure 3. Finally, bifurcation diagrams in 3D are presented in Figure 4.

Hereafter, we will give simulation in order to validate obtained results in Section 5.3 by fixing
a = 1.13, b = 1.012, c = 1.5 and 0.02 ≤ p ≤ 4.9. If a = 1.13, b = 1.012, c = 1.5, then from (3.16)
one gets p = 1.72336. So, P+xy

(
ap−bc

ab ,
b
a

)
= P+xy (0.375491, 0.895575) is a stable node if p < 1.72336,

non-hyperbolic if p = 1.72336, an unstable node if p > 1.72336, and thus flip bifurcation exists if
p > 1.72336. Figure 5a and 5b indicates that fixed point is a stable if p < 1.72336 and loss stability at
p = 1.72336. Now corresponding to Figure 5a and 5b, M.L.E are drawn in Figure 5c. Additionally 3D
flip bifurcation diagrams equivalent to Figure 5a and 5b are presented in Figure 6a–6h. Finally, more
plots of laser model (1.4) that related with Figure 5a and 5b are drawn in Figure 7a–7f, that shows
model (1.4) yields a complex dynamics having orbits of period −2, −3, −4, −5, −8 and −9.

Table 1. Numerical values of Ω for p > 0.217212.
Bifurcation values if p > 0.217212 Values of Ω
0.217222 −0.0016523767625482892 < 0
0.2172124 −0.0016523096396154336 < 0
0.217412 −0.001653861096012872 < 0
0.217612 −0.0016549900334033758 < 0
0.220 −0.0016707992836875582 < 0
0.217812 −0.0016563267520259238 < 0
0.2179912 −0.0016575224832815231 < 0
0.21889 −0.0016634917766999676‘ < 0
0.219 −0.0016642191214841734 < 0
0.2189 −0.0016635579278594646 < 0
0.218899 −0.001663551313003689 < 0
0.21889 −0.0016634917766999676 < 0
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Figure 1. Phase portrait for the laser model (1.4).
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Figure 2. Closed curves of the laser model (1.4).
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Figure 3. Bifurcation diagram and their corresponding M.L.E of laser model (1.4) for
P+xy

(
ap−bc

ab ,
b
a

)
. (a, b) Bifurcation diagram of (1.4) if 0.000089 ≤ p ≤ 0.47 and initial condition

(0.00549, 4.037654). (c) M.L.E corresponding to (a) and (b).
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Figure 4. 3D bifurcation diagrams.
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Figure 5. Bifurcation diagram and their corresponding M.L.E of (1.4) for P+xy

(
ap−bc

ab ,
b
a

)
.

(a, b) Bifurcation diagram of the model if 0.02 ≤ p ≤ 4.9 and (0.712, 0.4). (c) M.L.E
corresponding to (a) and (b).
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Figure 6. 3D flip bifurcation diagrams of the model (1.4).
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Figure 7. Complex dynamics behaviors of (1.4).

6.1. Fractal dimension

The strange attractors designated by fractal dimension for discrete system takes the following
form [22, 23]:

dL = l +

∑l
j=1 λl

|λl|
, (6.3)

where Lyapunov exponents are λi (i = 1, · · · , n) and l is the largest integer for which
∑l

j=1 λl ≥ 0 and∑l+1
j=1 λl < 0. For the model (1.4), (6.3) becomes

dL = 1 +
λ1

|λ2|
, λ1 > 0 > λ2. (6.4)
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Fixing a = 1.13, b = 1.012, c = 1.5, h = 1.2, then two Lyapunov exponents are commuted
numerically, and one gets λ1 = 0.647622569300813 (λ1 = 0.5786643421204638) and
λ2 = −1.0393814625814453 (λ2 = −1.1111149350058382) if p = 1.785 (p = 1.89). The fractal
dimension for (1.4) becomes

dL = 1 +
0.647622569300813

1.0393814625814453
= 1.6230858781196482 for p = 1.785,

dL = 1 +
0.5786643421204638
1.1111149350058382

= 1.5208028080280802 for p = 1.89.
(6.5)

Finally, for above chosen values, strange attractors are also plotted in Figure 8a and 8b, which shows
that (1.4) gives complex dynamics if p increases.

(a) (b)

Figure 8. Strange attractor of (1.4) if p = 1.785 (p = 1.89) with (0.040, 1.04).

7. Chaos control

We explore chaos control by utilizing state feedback control method [24, 25] in this section. On
adding un as a control force to (1.4), one has

xn+1 = (1 − bh) xn + ahxnyn + un,

yn+1 = (1 − ch) yn − ahxnyn + ph.
(7.1)

The control force depicted in (7.1) given by

un = −l1(xn − x∗) − l2(yn − y∗), (7.2)

where l1 and l2 denotes feedback gains, and x∗ = ap−bc
ab and y∗ = b

a . The JC|Pxy(x∗,y∗) of (7.1) is

JC|Pxy(x∗,y∗) =

(
n11 − l1 n12 − l2

n21 n22

)
, (7.3)

where

n11 = 1,

n12 =
aph − bch

b
,

n21 = −bh,

n22 =
b − aph

b
.

(7.4)
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Moreover, characteristic equation of JC|Pxy(x∗,y∗) evaluated at Pxy(x∗, y∗) is

λ2 − tr
(
JC|Pxy(x∗,y∗)

)
λ + det

(
JC|Pxy(x∗,y∗)

)
= 0, (7.5)

where

tr
(
JC|Pxy(x∗,y∗)

)
= n11 + n22 − l1,

det
(
JC|Pxy(x∗,y∗)

)
= n22(n11 − l1) − n21(n12 − l2).

(7.6)

If λ1,2 are roots of (7.5), then

λ1 + λ2 = n11 + n22 − l1, (7.7)

and

λ1λ2 = n22(n11 − l1) − n21(n12 − l2). (7.8)

Now lines of marginal stability determines from the solution of λ1 = ±1 and λ1λ2 = 1, which confirm
that |λ1,2| < 1. If λ1λ2 = 1, then from (7.8), one gets

L1 :
(
1 −

aph
b

)
(1 − l1) + aph2 − bch2 − bhl2 − 1 = 0. (7.9)

If λ1 = 1, then from (7.7) and (7.8) one gets

L2 :
aph

b
l1 + aph2 − bch2 − bhl2 = 0. (7.10)

Finally if λ1 = −1, then from (7.7) and (7.8) one gets

L3 : (2 − l1) (2b − aph) + bh (aph − bch − bl2) = 0. (7.11)

Hence L1, L2 and L3 in (l1, l2)-plane gives a triangular region which give |λ1,2| < 1 (Figure 9a).

To justify how this method works and also control chaos at unstable state, we presented simulation.
Figure 9b and 9c shows that for P+xy(

ap−bc
ab ,

b
a ) the chaotic trajectories is stabilized.
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Figure 9. Control of chaotic trajectories of (7.1) for a = 1.13, b = 1.012, c = 2.4, h =
1.2, p = 1.32 with (0.01, 0.723), (a) Stability region in (l1, l2)-plan. (b, c) Behavior for xn and
yn, respectively.

8. Conclusions

We have explored the local dynamical properties, bifurcations and chaos in the laser model (1.4) in
the interior of R2

+. We have explored that for all parametric values, model (1.4) has a boundary
equilibrium P0y

(
0, p

c

)
and if p > bc

a then it has a unique positive equilibrium point P+xy

(
ap−bc

ab ,
b
a

)
. By

linear stability theory, local dynamics with different topological classifications for fixed points
P0y

(
0, p

c

)
and P+xy

(
ap−bc

ab ,
b
a

)
are studied, and main finding are presented in Table 2. We have also

explored existence of possible bifurcations for fixed points P0y

(
0, p

c

)
and P+xy

(
ap−bc

ab ,
b
a

)
. By

computation, it is proved that for P0y

(
0, p

c

)
discrete model (1.4) cannot undergoes a flip bifurcation

when parameters (a, b, c, h, p) goes through the curve (4.1). But for P+xy

(
ap−bc

ab ,
b
a

)
, laser model (1.4)

undergoes both Neimark-Saker and flip bifurcations when (a, b, c, h, p) respectively goes through the
parametric curves (4.2) and (4.3). It is important here to mention that the existence of Neimark-Sacker
bifurcation for the unique positive equilibrium point P+xy

(
ap−bc

ab ,
b
a

)
of discrete laser model (1.4) means

that there exists a periodic or quasi-periodic oscillations between laser photon and number of atom in
the excited state. Some numerical simulations have been implemented to validate not only obtain
results but also exhibit complex dynamics of period −2, −3, −4, −5, −8 and −9. The M.L.E as well as
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fractal dimension has computed numerically to validate chaotic behaviors of the laser model. Finally,
feedback control method is applied to stabilized chaos exists in laser model (1.4). The chaos control
and bifurcation analysis of a discrete fractional-order laser model are our next aim to study.

Table 2. Fixed points P0y

(
0, p

c

)
and P+xy

(
ap−bc

ab ,
b
a

)
along their behavior of model (1.4).

Fixed points Corresponding behavior
P0y

(
0, p

c

)
sink if p > bch−2c

ah and c < 2
h ;

source if p < bch−2c
ah and c > 2

h ;
saddle if p < bch−2c

ah and c < 2
h ;

non-hyperbolic if p = bch−2c
ah or c = 2

h .
P+xy

(
ap−bc

ab ,
b
a

)
locally asymptotically stable focus if
p < hb2c

a(bh−1) ;
an unstable focus if
p > hb2c

a(bh−1) ;
non-hyperbolic if
p = hb2c

a(bh−1) ;
locally asymptotically stable node if

p < b(4−bh2c)
ah(2−bh) ;

an unstable node if

p > b(4−bh2c)
ah(2−bh) ;

non-hyperbolic if

p = b(4−bh2c)
ah(2−bh) .
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