In recent years, numerous scholars have investigated the relationship between symmetry and generalized convexity. Due to this close relationship, generalized convexity and symmetry have become new areas of study in the field of inequalities. With the help of fuzzy up and down relation, the class of up and down $ \lambda $-convex fuzzy-number valued mappings is introduced in this study; and weighted Hermite-Hadamard type fuzzy inclusions are demonstrated for these functions. The product of two up and down $ \lambda $-convex fuzzy-number valued mappings also has Hermite-Hadamard type fuzzy inclusions, which is another development. Additionally, by imposing some mild restrictions on up and down $ \lambda $-convex ($ \lambda $-concave) fuzzy number valued mappings, we have introduced two new significant classes of fuzzy number valued up and down $ \lambda $-convexity ($ \lambda $-concavity), referred to as lower up and down $ \lambda $-convex (lower up and down $ \lambda $-concave) and upper up and down $ \lambda $-convex ($ \lambda $-concave) fuzzy number valued mappings. Using these definitions, we have amassed many classical and novel exceptional cases that implement the key findings. Our proven results expand and generalize several previous findings in the literature body. Additionally, we offer appropriate examples to corroborate our theoretical findings.
Citation: Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities[J]. AIMS Mathematics, 2023, 8(3): 6777-6803. doi: 10.3934/math.2023345
In recent years, numerous scholars have investigated the relationship between symmetry and generalized convexity. Due to this close relationship, generalized convexity and symmetry have become new areas of study in the field of inequalities. With the help of fuzzy up and down relation, the class of up and down $ \lambda $-convex fuzzy-number valued mappings is introduced in this study; and weighted Hermite-Hadamard type fuzzy inclusions are demonstrated for these functions. The product of two up and down $ \lambda $-convex fuzzy-number valued mappings also has Hermite-Hadamard type fuzzy inclusions, which is another development. Additionally, by imposing some mild restrictions on up and down $ \lambda $-convex ($ \lambda $-concave) fuzzy number valued mappings, we have introduced two new significant classes of fuzzy number valued up and down $ \lambda $-convexity ($ \lambda $-concavity), referred to as lower up and down $ \lambda $-convex (lower up and down $ \lambda $-concave) and upper up and down $ \lambda $-convex ($ \lambda $-concave) fuzzy number valued mappings. Using these definitions, we have amassed many classical and novel exceptional cases that implement the key findings. Our proven results expand and generalize several previous findings in the literature body. Additionally, we offer appropriate examples to corroborate our theoretical findings.
[1] | H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Feje´r fractional type inequalities for h-convex and harmonically h-convex interval-valued functions, Mathematics, 10 (2021), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074 |
[2] | S. H. Wu, M. Adil Khan, A. Basir, R. Saadati, Some majorization integral inequalities for functions defined on rectangles, J. Inequal. Appl., 2018 (2018), 146. https://doi.org/10.1186/s13660-018-1739-2 doi: 10.1186/s13660-018-1739-2 |
[3] | M. B. Khan, H. G. Zaini, S. Treant˘a, M. S. Soliman, K. Nonlaopon, Riemann–Liouville fractional integral inequalities for generalized preinvex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204 |
[4] | N. Sharma, S. K. Mishra, A. Hamdi, A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functions, Int. J. Adv. Appl. Sci., 7 (2020), 113–118. https://doi.org/10.21833/ijaas.2020.03.012 doi: 10.21833/ijaas.2020.03.012 |
[5] | D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3 |
[6] | Y. C. Kwun, M. S. Saleem, M. Ghafoor, N. Waqas, S. M. Kang, Hermite–Hadamard-type inequalities for functions whose derivatives are η-convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 44. https://doi.org/10.1186/s13660-019-1993-y doi: 10.1186/s13660-019-1993-y |
[7] | M. A. Hanson, On sufficiency of the kuhn-tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. https://doi.org/10.1016/0022-247X(81)90123-2 doi: 10.1016/0022-247X(81)90123-2 |
[8] | B. D. Craven, B. M. Glover, Invex functions and duality, J. Aust. Math. Soc., 39 (1985), 1–20. https://doi.org/10.1017/S1446788700022126 doi: 10.1017/S1446788700022126 |
[9] | A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc., 28 (1986), 1–9. https://doi.org/10.1017/S0334270000005142 doi: 10.1017/S0334270000005142 |
[10] | S. R.Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. https://doi.org/10.1006/jmaa.1995.1057 doi: 10.1006/jmaa.1995.1057 |
[11] | T. Weir, V. Jeyakumar, A class of nonconvex functions and mathematical programming, Bull. Aust. Math. Soc., 38 (1988), 177–189. https://doi.org/10.1017/S0004972700027441 doi: 10.1017/S0004972700027441 |
[12] | T. Weir, B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8 |
[13] | M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131. |
[14] | S. S. Dragomir, On the Hadamard's inequlality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995 |
[15] | M. A. Latif, S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absloute value are preinvex on the coordinates, Facta Univ. Ser. Math. Inform., 28 (2013), 257–270. |
[16] | M. Matłoka, On some Hadamard type inequalities for (h1, h2)-preinvex functions on the coordinates, J. Inequal. Appl., 2013 (2013), 227. https://doi.org/10.1186/1029-242X-2013-227 doi: 10.1186/1029-242X-2013-227 |
[17] | M. Matłoka, On Some new inequalities for differentiable (h1, h2)-preinvex functions on the coordinates, Math. Stat., 2 (2014), 6–14. https://doi.org/10.13189/ms.2014.020102 doi: 10.13189/ms.2014.020102 |
[18] | S. Mehmood, F. Zafar, N. Yasmin, Hermite-Hadamard-Fej´er type inequalities for preinvex functions using fractional integrals, Mathematics, 7 (2019), 467. https://doi.org/10.3390/math7050467 doi: 10.3390/math7050467 |
[19] | M. A. Noor, K. I. Noor, S. Rashid, Some new classes of preinvex functions and inequalities, Mathematics, 7 (2019), 29. https://doi.org/10.3390/math7010029 doi: 10.3390/math7010029 |
[20] | S. Rashid, M. A. Latif, Z. Hammouch, Y. M. Chu, Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions, Symmetry, 11 (2019), 1448. https://doi.org/10.3390/sym11121448 doi: 10.3390/sym11121448 |
[21] | N. Sharma, S. K. Mishra, A. Hamdi, Hermite-Hadamard type inequality for y-Riemann-Liouville fractional integrals via preinvex functions, Int. J. Nonlinear Anal. Appl., 13 (2022), 3333–3345. https://doi.org/10.22075/IJNAA.2021.21475.2262 doi: 10.22075/IJNAA.2021.21475.2262 |
[22] | L. Jaulin, M. Kieffer, O. Didrit, É. Walter, Interval analysis, In: Applied interval analysis, London: Springer, 2001. https://doi.org/10.1007/978-1-4471-0249-6_2 |
[23] | R. E. Moore, Methods and applications of interval analysis, PA: Philadelphia, 1979. https://doi.org/10.1137/1.9781611970906 |
[24] | A. K. Bhurjee, G. Panda, Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions, Opsearch, 52 (2015), 156–167. https://doi.org/10.1007/s12597-014-0175-4 doi: 10.1007/s12597-014-0175-4 |
[25] | J. K. Zhang, S. Y. Liu, L. F. Li, Q. X. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607–631. https://doi.org/10.1007/s11590-012-0601-6 doi: 10.1007/s11590-012-0601-6 |
[26] | D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Sets Syst., 396 (2020), 82–101. https://doi.org/10.1016/j.fss.2019.10.006 doi: 10.1016/j.fss.2019.10.006 |
[27] | Y. T. Guo, G. J. Ye, D. F. Zhao, W. Liu, gH-symmetrically derivative of interval-valued functions and applications in interval-valued optimization, Symmetry, 11 (2019), 1203. https://doi.org/10.3390/sym11101203 doi: 10.3390/sym11101203 |
[28] | R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, SIAM: Philadelphia, 2009. https://doi.org/10.1137/1.9780898717716 |
[29] | E. J. Rothwell, M. J. Cloud, Automatic error analysis using intervals, IEEE T. Educ., 55 (2011), 9–15. https://doi.org/10.1109/TE.2011.2109722 doi: 10.1109/TE.2011.2109722 |
[30] | J. M. Snyder, Interval analysis for computer graphics, Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, 26 (1992), 121–130. https://doi.org/10.1145/142920.134024 doi: 10.1145/142920.134024 |
[31] | Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. https://doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6 |
[32] | N. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129–132. https://doi.org/10.1016/0165-0114(92)90256-4 doi: 10.1016/0165-0114(92)90256-4 |
[33] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite–Hadamard–type inequalities for (h1, h2)–convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 149. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8 |
[34] | M. B. Khan, P. O. Mohammed, M. A. Noor, A. M. Alsharif, K. I. Noor, New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS Mathematics, 6 (2021), 10964–10988. https://doi.org/10.3934/math.2021637 doi: 10.3934/math.2021637 |
[35] | M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-𝒽-convex interval-valued functions by means of pseudo-order relation, Math. Meth. Appl. Sci., 45 (2022), 1310–1340. https://doi.org/10.1002/mma.7855 doi: 10.1002/mma.7855 |
[36] | N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, A. Bamhdi, A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods, Neural Comput. Applic., 34 (2022), 1837–1875. https://doi.org/10.1007/s00521-021-06807-9 doi: 10.1007/s00521-021-06807-9 |
[37] | U. Kulish, W. Miranker, Computer arithmetic in theory and practice, New York: Academic Press, 2014. https://doi.org/10.1016/C2013-0-11018-5 |
[38] | A. Alsaedi, B. Ahmad, A. Assolami, Sotiris K. Ntouyas, On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions, AIMS Mathematics, 7 (2022), 12718–12741. https://doi.org/10.3934/math.2022704 doi: 10.3934/math.2022704 |
[39] | B. Bede, Mathematics of fuzzy sets and fuzzy logic, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-35221-8 |
[40] | P. Diamond, P. E. Kloeden, Metric spaces of fuzzy sets: Theory and applications, Singapore: World Scientific, 1994. https: //doi.org/10.1142/2326 |
[41] | O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7 |
[42] | T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055 |
[43] | W. W. Breckner, Continuity of generalized convex and generalized concave set–valued functions, Rev. Anal. Numér. Théor. Approx., 22 (1993), 39–51. |
[44] | E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Result Math., 32 (1997), 332–337. https://doi.org/10.1007/BF03322144 doi: 10.1007/BF03322144 |
[45] | M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard–Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006 |
[46] | J. P. Aubin, A. Cellina, Differential inclusions: Set-valued maps and viability theory, Berlin Heidelberg: Springer-Verlag, 1984. https://doi.org/10.1007/978-3-642-69512-4 |
[47] | J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birkhäuser, 1990. https://doi.org/10.1007/978-0-8176-4848-0 |
[48] | T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 doi: 10.1016/j.fss.2017.02.001 |
[49] | D. L. Zhang, C. M. Guo, D. G. Chen, G. J. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 187–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003 |
[50] | S. Pal, T. K. L. Wong, Exponentially concave functions and new information geometry, 2016. Available from: https://doi.org/10.48550/arXiv.1605.05819. |
[51] | G. Santos-García, M. B. Khan, H. Alrweili, A. A. Alahmadi, S. S. Ghoneim, Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator, Mathematics, 10 (2022), 2756. https://doi.org/10.3390/math10152756 doi: 10.3390/math10152756 |
[52] | J. E. Macías-Díaz, M. B. Khan, H. Alrweili, M. S. Soliman, Some fuzzy inequalities for harmonically s-convex fuzzy number valued functions in the second sense integral, Symmetry, 14 (2022), 1639. https://doi.org/10.3390/sym14081639 doi: 10.3390/sym14081639 |
[53] | M. B. Khan, M. A. Noor, J. E. Macías-Díaz, M. S. Soliman, H. G. Zaini, Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation, Demonstr. Math., 55 (2022), 387–403. https://doi.org/10.1515/dema-2022-0023 doi: 10.1515/dema-2022-0023 |
[54] | M. B. Khan, M. A. Noor, H. G. Zaini, G. Santos-García, M. S. Soliman, The new versions of Hermite–Hadamard inequalities for pre-invex fuzzy-interval-valued mappings via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 15 (2022), 66. https://doi.org/10.1007/s44196-022-00127-z doi: 10.1007/s44196-022-00127-z |
[55] | M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, New Hermite–Hadamard inequalities for convex fuzzy-number-valued mappings via fuzzy Riemann integrals, Mathematics, 10 (2022), 3251. https://doi.org/10.3390/math10183251 doi: 10.3390/math10183251 |
[56] | M. B. Khan, S. Treanțǎ, M. S. Soliman, Generalized preinvex interval-valued functions and related Hermite–Hadamard type inequalities, Symmetry, 14 (2022), 1901. https://doi.org/10.3390/sym14091901 doi: 10.3390/sym14091901 |
[57] | M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos, Soliton. Fract., 164 (2022), 112692. https://doi.org/10.1016/j.chaos.2022.112692 doi: 10.1016/j.chaos.2022.112692 |
[58] | M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, New class of preinvex fuzzy mappings and related inequalities, Mathematics, 10 (2022), 3753. https://doi.org/10.3390/math10203753 doi: 10.3390/math10203753 |
[59] | M. B. Khan, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some Fejér-type inequalities for generalized interval-valued convex functions, Mathematics, 10 (2022), 3851. https://doi.org/10.3390/math10203851 doi: 10.3390/math10203851 |
[60] | M. B. Khan, G. Santos-García, S. Treanțǎ, M. S. Soliman, New class up and down pre-invex fuzzy number valued mappings and related inequalities via fuzzy Riemann integrals, Symmetry, 14 (2022), 2322. https://doi.org/10.3390/sym14112322 doi: 10.3390/sym14112322 |
[61] | M. B. Khan, J. E. Macías-Díaz, M. S. Soliman, M. A. Noor, Some new integral inequalities for generalized preinvex functions in interval-valued settings, Axioms, 11 (2022), 622. https://doi.org/10.3390/axioms11110622 doi: 10.3390/axioms11110622 |
[62] | M. B. Khan, H. G. Zaini, G. Santos-García, M. A. Noor, M. S. Soliman, New class up and down λ-convex fuzzy-number valued mappings and related fuzzy fractional inequalities, Fractal Fract., 6 (2022), 679. https://doi.org/10.3390/fractalfract6110679 doi: 10.3390/fractalfract6110679 |
[63] | S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086 |
[64] | M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30 |
[65] | R. Kumar, A. Baz, H. Alhakami, W. Alhakami, M. Baz, A. Agrawal, et al., A hybrid model of hesitant fuzzy decision-making analysis for estimating usable-security of software, IEEE Access, 8 (2020), 72694–72712. https://doi.org/10.1109/ACCESS.2020.2987941 doi: 10.1109/ACCESS.2020.2987941 |
[66] | M. Ibrahim, S. Nabi, A. Baz, H. Alhakami, M. S. Raza, A. Hussain, et al., An in-depth empirical investigation of state-of-the-art scheduling approaches for cloud computing, IEEE Access, 8 (2020), 128282–128294. https://doi.org/10.1109/ACCESS.2020.3007201 doi: 10.1109/ACCESS.2020.3007201 |
[67] | N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, A. Bamhdi, Deep Neuro-Fuzzy System application trends, challenges, and future perspectives: A systematic survey, Artif. Intell. Rev., 2022 (2022), 1–49. https://doi.org/10.1007/s10462-022-10188-3 doi: 10.1007/s10462-022-10188-3 |