Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article

Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities

  • Received: 13 August 2022 Revised: 12 December 2022 Accepted: 15 December 2022 Published: 09 January 2023
  • MSC : 26A33, 26A51, 26D10

  • In recent years, numerous scholars have investigated the relationship between symmetry and generalized convexity. Due to this close relationship, generalized convexity and symmetry have become new areas of study in the field of inequalities. With the help of fuzzy up and down relation, the class of up and down λ-convex fuzzy-number valued mappings is introduced in this study; and weighted Hermite-Hadamard type fuzzy inclusions are demonstrated for these functions. The product of two up and down λ-convex fuzzy-number valued mappings also has Hermite-Hadamard type fuzzy inclusions, which is another development. Additionally, by imposing some mild restrictions on up and down λ-convex (λ-concave) fuzzy number valued mappings, we have introduced two new significant classes of fuzzy number valued up and down λ-convexity (λ-concavity), referred to as lower up and down λ-convex (lower up and down λ-concave) and upper up and down λ-convex (λ-concave) fuzzy number valued mappings. Using these definitions, we have amassed many classical and novel exceptional cases that implement the key findings. Our proven results expand and generalize several previous findings in the literature body. Additionally, we offer appropriate examples to corroborate our theoretical findings.

    Citation: Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities[J]. AIMS Mathematics, 2023, 8(3): 6777-6803. doi: 10.3934/math.2023345

    Related Papers:

    [1] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [2] Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and δ1-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327
    [3] Tareq Saeed . Intuitionistic fuzzy variational inequalities and their applications. AIMS Mathematics, 2024, 9(12): 34289-34310. doi: 10.3934/math.20241634
    [4] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [5] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [6] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241
    [7] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089
    [8] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
    [9] Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374
    [10] Dawood Khan, Saad Ihsan Butt, Asfand Fahad, Yuanheng Wang, Bandar Bin Mohsin . Analysis of superquadratic fuzzy interval valued function and its integral inequalities. AIMS Mathematics, 2025, 10(1): 551-583. doi: 10.3934/math.2025025
  • In recent years, numerous scholars have investigated the relationship between symmetry and generalized convexity. Due to this close relationship, generalized convexity and symmetry have become new areas of study in the field of inequalities. With the help of fuzzy up and down relation, the class of up and down λ-convex fuzzy-number valued mappings is introduced in this study; and weighted Hermite-Hadamard type fuzzy inclusions are demonstrated for these functions. The product of two up and down λ-convex fuzzy-number valued mappings also has Hermite-Hadamard type fuzzy inclusions, which is another development. Additionally, by imposing some mild restrictions on up and down λ-convex (λ-concave) fuzzy number valued mappings, we have introduced two new significant classes of fuzzy number valued up and down λ-convexity (λ-concavity), referred to as lower up and down λ-convex (lower up and down λ-concave) and upper up and down λ-convex (λ-concave) fuzzy number valued mappings. Using these definitions, we have amassed many classical and novel exceptional cases that implement the key findings. Our proven results expand and generalize several previous findings in the literature body. Additionally, we offer appropriate examples to corroborate our theoretical findings.



    Abbreviations: H-H inequalities: Hermite-Hadamard inequalities; i-v-ms: Interval-valued mappings; UD order: Up and down order; LR order: Left and Right order; H-H Fejér inequality: Hermite-Hadamard Fejér inequality; IA-integrable: Aumann integrable; FA-integrable: Fuzzy Aumann integrable

    Numerous academics have been working to generalize and extend the classical convexity in various ways recently, and they have found new integral inequalities for this convexity that has been generalized and extended; for examples, see [1,2,3,4,5,6]. Invex functions, a helpful extension of convex functions, were first presented by Hanson [7] in 1981. The class of invex functions is identical to the class of functions whose stationary points are global minima, as demonstrated by Craven and Glover [8]. Ben-Israel and Mond [9] established the idea of preinvex functions. Preinvex functions are nonconvex functions, as is common knowledge. The study and applications of this newly defined nonconvex function in optimization theory and related domains were the subject of several research articles that were motivated by this idea, see [10,11,12].

    Hermite-Hadamard (H-H) inequality, an extension of the traditional H-H inequality, was derived by Noor [13] for the preinvex functions. The idea of classical convex functions on coordinates was developed by Dragomir [14], who also illustrated H-H type inequalities for these functions. Additionally, Latif and Dragomir [15] discovered several H-H type inequalities for functions whose second-order partial derivatives in absolute value are preinvex on the coordinates and defined preinvex functions on the coordinates. Using the symmetry of the positive function, Matoka [16] proposed the class of (h1, h2)-preinvex functions on the coordinates and proved H-H and Fej'er type inequalities. See [17,18,19,20,21] for further information on preinvex functions and associated inequalities.

    Moore was the first person to think about interval analysis [22]. Moore [23] conducted research on interval techniques for finding upper and lower limits on the precise values of integrals of interval-valued mappings (i-v-ms) in 1979. He also explored the integration of interval-valued mappings. In order to find effective solutions, Bhurjee and Panda [24] established a generic multi-objective fractional programming problem whose parameters in the objective functions and constraints are intervals. In order to develop KKT optimality requirements for LU-prinvex and invex optimization problems with an interval-valued objective function, Zhang et al. [25] expanded the notions of invexity and preinvexity to interval-valued mappings. For interval-valued mappings, Zhao et al. [26] established the interval double integral and provided Chebyshev type inequalities. Areas of economics, chemical engineering, beam physics, control circuitry design, global optimization, robotics, error analysis, signal processing, and computer graphics are among the practical uses of interval analysis (see [27,28,29,30,31]).

    Remember that fuzzy interval-valued functions are fuzzy number valued mappings. On the other hand, Nanda and Kar [32] were the first to introduce the idea of convex fuzzy number valued mappings. In order to offer new versions of H-H and fractional type of inequalities, Khan et al. [33,34] presented h-convex fuzzy number valued mappings and (h1, h 2)-convex fuzzy number valued functions and got some by utilizing fuzzy Riemann Liouville Fractional Integrals and fuzzy Riemannian integrals, respectively. Similarly, using fuzzy order relations and fuzzy Riemann Liouville Fractional Integrals, Sana and Khan et al. [35] developed new iterations of fuzzy fractional H-H inequalities for harmonically convex fuzzy number valued mappings. We direct the readers to [36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67] and the references therein for further information on extended convex functions, fuzzy intervals, and fuzzy integrals.

    Zhao et al. [5,26] and Zhang et al. [49] serve as major sources of inspiration for the work in this study report. As an extension of classical convex functions, we introduce the concept of up and down λ-convex fuzzy-number valued mapping via up and down fuzzy relation and provide new H-H type fuzzy inclusions for these functions. For the result of two up and down λ-convex fuzzy-number valued mappings, we additionally give H-H type fuzzy inclusions. Moreover, we use some appropriate cases to highlight our findings. As a specific situation, the results for up and down λ-convex fuzzy-number valued mapping are included in the conclusions drawn in this study. Using fuzzy Riemann integrals, we can look at H-H type inclusions for up and down λ-convex fuzzy-number valued mapping that have fuzzy number values.

    The following is how this paper is organized: We provide a few important introductions in Section 2. Moreover, Section 2 also provides the definition of up and down λ-convex fuzzy-number valued mapping and some related basic concepts. Section 3 provides an analysis of H-H type fuzzy inclusions. In addition, we provide H-H type fuzzy inclusions for the product of two up and down λ-convex fuzzy-number valued mappings. Moreover, we have proved the weighted H-H type fuzzy inclusions for up and down λ-convex fuzzy-number valued mapping. In Section 3, certain unique instances of these results are also examined. We examine the study's findings and potential directions in Section 4.

    Let XI be the space of all closed and bounded intervals of R and wXI be defined by

    w=[w,w]={ϰR|wϰw},(w,wR). (1)

    If w=w, then w is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If w0, then [w,w] is called a positive interval. The set of all positive intervals is denoted by X+I and defined as X+I={[w,w]:[w,w]XIandw0}.

    Let ςR and ςw be defined by

    ςw={[ςw,ςw]ifς>0,{0}ifς=0,[ςw,ςw]ifς<0.. (2)

    Then the Minkowski difference xw, addition w+x and w×x for w,xXI are defined by

    [x,x]+[w,w]=[x+w,x+w], (3)
    [x,x]×[w,w]=[min{xw,xw,xw,xw},max{xw,xw,xw,xw}], (4)
    [x,x][w,w]=[xw,xw], (5)

    Remark 1. (ⅰ) For given [x,x],[w,w]XI, the relation "I" defined on XI by

    [w,w]I[x,x]ifandonlyif,wx,xw, (6)

    for all [x,x],[w,w]XI, it is a partial interval inclusion relation. The relation [w,w]I[x,x] coincident to [w,w][x,x] on XI. It can be easily seen that "I" looks like "up and down" on the real line R, so we call "I" is "up and down" (or "UD" order, in short) [49].

    (ⅱ) For given [x,x],[w,w]XI, we say that [x,x]I[w,w] if and only if xw,xw or xw,x<w, it is an partial interval order relation. The relation [x,x]I[w,w] coincident to [x,x][w,w] on XI. It can be easily seen that "I" looks like "left and right" on the real line R, so we call "I" is "left and right" (or "LR" order, in short) [48,49].

    For [x,x],[w,w]XI, the Hausdorff-Pompeiu distance between intervals [x,x] and [w,w] is defined by

    dH([x,x],[w,w])=max{|xw|,|xw|}. (7)

    It is familiar fact that (XI,dH) is a complete metric space [40,46,47].

    Definition 1. [39,40] A fuzzy subset L of R is distinguished by a mapping ˜w:R[0,1] called the membership mapping of L. That is, a fuzzy subset L of R is a mapping ˜w:R[0,1]. So for further study we have choosed this notation. We appoint E to denote the set of all fuzzy subsets of R.

    Definition 2. [39,40] Given ˜wEC, the level sets or cut sets are given by [˜w]i={ϰR|˜w(ϰ)>i} for all i[0,1] and by [˜w]0={ϰR|˜w(ϰ)>0}. These sets are known as i-level sets or i-cut sets of ˜w.

    Definition 3. [41] Let ˜wE. Then, ˜w is known as fuzzy number or fuzzy number if following properties are satisfied by ˜w:

    (1) ˜w should be normal if there exists ϰR and ˜w(ϰ)=1;

    (2) ˜w should be upper semi continuous on R if for given ϰR, there exist ϵ>0 there exist δ>0 such that ˜w(ϰ)˜w(s)<ϵ for all ϰ,sR with |ϰs|<δ;

    (3) ˜w should be fuzzy convex that is ˜w((1ς)ϰ+ςs)min(˜w(ϰ),˜w(s)), for all ϰ,sR and ς[0,1];

    (4) ˜w should be compactly supported that is cl{ςR|˜w(ϰ)>0} is compact.

    We appoint EC to denote the set of all fuzzy numbers of R.

    Proposition 1. [42] Let ˜w,˜xEC. Then relation "F" given on EC by

    ˜wF˜xifandonlyif,[˜w]iI[˜x]i,foreveryi[0,1], (8)

    it is left and right order relation.

    Proposition 2. [57] Let ˜w,˜xEC. Then relation "F" given on EC by

    ˜wF˜xifandonlyif,[˜w]iI[˜x]i,foreveryi[0,1], (9)

    it is up and down order relation on EC.

    Remember the approaching notions, which are offered in literature. If ˜w,˜xEC and iR, then, for every i[0,1], the arithmetic operations are defined by

    [ς˜w]i=ς.[˜w]i. (10)
    [˜w˜x]i=[˜w]i+[˜x]i, (11)
    [˜w˜x]i=[˜w]i×[˜x]i. (12)

    These operations follow directly from the Eqs. (2)–(4), respectively.

    Theorem 1. [40] The space EC dealing with a supremum metric i.e., for ˜w,˜xEC

    d(˜w,˜x)=sup0i1dH([˜w]i,[˜x]i), (13)

    is a complete metric space, where H denote the well-known Hausdorff metric on space of intervals.

    Now we define and discuss some properties fractional integral operators of interval and fuzzy-number valued mappings.

    Theorem 2. [40,41] If Υ:[τ,ϑ]RXI is an interval-valued mapping (i-v-m) satisfying that Υ(ϰ)=[Υ(ϰ),Υ(ϰ)], then Υ is Aumann integrable (IA-integrable) over [τ,ϑ] if and only if, Υ(ϰ) and Υ(ϰ) both are integrable over [τ,ϑ] such that

    (IA)ϑτΥ(ϰ)dϰ=[ϑτΥ(ϰ)dϰ,ϑτΥ(ϰ)dϰ]. (14)

    Definition 4. [48] Let ˜Υ:IREC is called fuzzy-number valued mapping. Then, for every i[0,1], as well as i-levels define the family of i-v-ms Υi:IRXI satisfying that Υi(ϰ)=[Υ(ϰ,i),Υ(ϰ,i)] for every ϰI. Here, for every i[0,1], the endpoint real-valued mappings Υ(,i),Υ(,i):IR are called lower and upper mappings of Υ.

    Definition 5. [48] Let ˜Υ:IREC be a fuzzy-number valued mapping. Then ˜Υ(ϰ) is said to be continuous at ϰI, if for every i[0,1], Υi(ϰ) is continuous if and only if, both endpoint mappings Υ(ϰ,i) and Υ(ϰ,i) are continuous at ϰI.

    Definition 6. [41] Let ˜Υ:[τ,ϑ]REC is fuzzy-number valued mapping. The fuzzy Aumann integral ((FA)-integral) of ˜Υ over [τ,ϑ], denoted by (FA)ϑτ˜Υ(ϰ)dϰ, is defined level-wise by

    [(FA)ϑτ˜Υ(ϰ)dϰ]i=(IA)ϑτΥi(ϰ)dϰ={ϑτΥ(ϰ,i)dϰ:Υ(ϰ,i)S(Υi)}, (15)

    where S(Υi)={Υ(.,i)R:Υ(.,i)isintegrableandΥ(ϰ,i)Υi(ϰ)}, for every i[0,1]. ˜Υ is (FA)-integrable over [τ,ϑ] if (FA)ϑτ˜Υ(ϰ)dϰEC.

    Theorem 3. [42] Let ˜Υ:[τ,ϑ]REC be a fuzzy-number valued mapping, as well as i-levels, define the family of i-v-ms Υi:[τ,ϑ]RXI satisfying that Υi(ϰ)=[Υ(ϰ,i),Υ(ϰ,i)] for every ϰ[τ,ϑ] and for every i[0,1]. Then ˜Υ is (FA)-integrable over [τ,ϑ] if and only if, Υ(ϰ,i) and Υ(ϰ,i) both are integrable over [τ,ϑ]. Moreover, if ˜Υ is (FA)-integrable over [τ,ϑ], then

    [(FA)ϑτ˜Υ(ϰ)dϰ]i=[ϑτΥ(ϰ,i)dϰ,ϑτΥ(ϰ,i)dϰ]=(IA)ϑτΥi(ϰ)dϰ, (16)

    for every i[0,1].

    The family of all (FA)-integrable fuzzy-number valued mappings over [τ,ϑ] are denoted by FA([τ,ϑ],i).

    Breckner discussed the coming emerging idea of interval-valued convexity in [43].

    A i-v-m Υ:I=[τ,ϑ]XI is called convex i-v-m if

    Υ(ςϰ+(1ς)s)ςΥ(ϰ)+(1ς)Υ(s), (17)

    for all ϰ,y[τ,ϑ],ς[0,1], where XI is the collection of all real valued intervals. If (17) is reversed, then Υ is called concave.

    Definition 7. [32] The fuzzy-number valued mapping Υ:[τ,ϑ]EC is called convex fuzzy-number valued mapping on [τ,ϑ] if

    ˜Υ(ςϰ+(1ς)s)Fς˜Υ(ϰ)(1ς)˜Υ(s), (18)

    for all ϰ,s[τ,ϑ],ς[0,1], where ˜Υ(ϰ)F˜0 for all ϰ[τ,ϑ]. If (18) is reversed then, ˜Υ is called concave fuzzy-number valued mapping on [τ,ϑ]. ˜Υ is affine if and only if it is both convex and concave fuzzy-number valued mapping.

    Definition 8. [49] The fuzzy-number valued mapping ˜Υ:[τ,ϑ]EC is called up and down convex fuzzy-number valued mapping on [τ,ϑ] if

    ˜Υ(ςϰ+(1ς)s)Fς˜Υ(ϰ)(1ς)˜Υ(s), (19)

    for all ϰ,s[τ,ϑ],ς[0,1], where ˜Υ(ϰ)F˜0 for all ϰ[τ,ϑ]. If (19) is reversed then, ˜Υ is called up and down concave fuzzy-number valued mapping on [τ,ϑ]. ˜Υ is up and down affine fuzzy-number valued mapping if and only if it is both up and down convex and, up and down concave fuzzy-number valued mapping.

    Definition 9. [62] Let K be convex set and λ:[0,1]KR+ such that λ0. Then fuzzy-number valued mapping ˜Υ:KEC is said to be up and down λ-convex on K if

    ˜Υ(ςϰ+(1ς)s)Fλ(ς)˜Υ(ϰ)λ(1ς)˜Υ(s), (20)

    for all ϰ,sK,ς[0,1], where ˜Υ(ϰ)˜0. The fuzzy-number valued mapping ˜Υ:KEC is said to be up and down λ-concave on K if inequality (20) is reversed. Moreover, ˜Υ is known as affine up and down λ-convex fuzzy-number valued mapping on K if

    ˜Υ(ςϰ+(1ς)s)=λ(ς)˜Υ(ϰ)λ(1ς)˜Υ(s), (21)

    for all ϰ,sK,ς[0,1], where ˜Υ(ϰ)˜0.

    Remark 2. The up and down λ-convex fuzzy-number valued mappings have some very nice properties similar to convex fuzzy-number valued mapping,

    1) if ˜Υ is up and down λ-convex fuzzy-number valued mapping, then α˜Υ is also up and down λ-convex for α0.

    2) if ˜Υ and ˜T both are up and down λ-convex fuzzy-number valued mappings, then max(˜Υ(ϰ),˜T(ϰ)) is also up and down λ-convex fuzzy-number valued mapping.

    Here, we will go through a few unique exceptional cases of up- and down-convex fuzzy-number valued mappings:

    (ⅰ) If λ(ς)=ςs, then up and down λ-convex fuzzy-number valued mapping becomes up and down s-convex fuzzy-number valued mapping, that is

    ˜Υ(ςϰ+(1ς)s)Fςs˜Υ(ϰ)(1ς)s˜Υ(s),ϰ,sK,ς[0,1].

    (ⅱ) If λ(ς)=ς, then up and down λ-convex fuzzy-number valued mapping becomes up and down convex fuzzy-number valued mapping, see [49], that is

    ˜Υ(ςϰ+(1ς)s)Fς˜Υ(ϰ)(1ς)˜Υ(s),ϰ,sK,ς[0,1].

    (ⅲ) If λ(ς)1, then up and down λ-convex fuzzy-number valued mapping becomes up and down P-convex fuzzy-number valued mapping, that is

    ˜Υ(ςϰ+(1ς)s)F˜Υ(ϰ)˜Υ(s),ϰ,sK,ς[0,1].

    Note that, there are also new special cases (ⅰ) and (ⅲ) as well.

    Theorem 4. [62] Let K be convex set, non-negative real valued function λ:[0,1]KR such that λ0 and let ˜Υ:KEC be a fuzzy-number valued mapping, whose i-levels define the family of i-v-ms Υi:KRX+IXI are given by

    Υi(ϰ)=[Υ(ϰ,i),Υ(ϰ,i)], (22)

    for all ϰK and for all i[0,1]. Then ˜Υ is up and down λ-convex on K, if and only if, for all i[0,1], Υ(ϰ,i) is λ-convex and Υ(ϰ,i) is λ-concave.

    Remark 3. If Υ(ϰ,i)=Υ(ϰ,i) with i=1, then up and down λ-convex fuzzy number valued function reduces to the λ-convex function.

    If Υ(ϰ,i)=Υ(ϰ,i) with i=1 and λ(ς)=ςs with s(0,1), then up and down λ-convex fuzzy number valued function reduces to the s-convex function.

    If Υ(ϰ,i)=Υ(ϰ,i) with i=1 and λ(ς)=ς with s(0,1), then up and down λ-convex fuzzy number valued function reduces to the convex function.

    If Υ(ϰ,i)=Υ(ϰ,i) with i=1 and λ(ς)=1, then up and down λ-convex fuzzy number valued function reduces to the P-convex function.

    Example 1. We consider λ(ς)=ς, for ς[0,1] and the fuzzy-number valued mapping ˜Υ:[0,1]EC defined by

    ˜Υ(ϰ)(σ)={σ2ϰ2σ[0,2ϰ2]4ϰ2σ2ϰ2σ(2ϰ2,4ϰ2]0otherwise.

    Then, for each i[0,1], we have Υi(ϰ)=[2iϰ2,(42i)ϰ2]. Since end point functions Υ(ϰ,i), Υ(ϰ,i) are λ-convex and λ-concave functions for each i[0,1], respectively. Hence ˜Υ(ϰ) is up and down λ-convex fuzzy-number valued mapping.

    Definition 10. [62] Let ˜Υ:[τ,ϑ]EC be a fuzzy-number valued mapping, whose i-levels define the family of i-v-ms Υi:[τ,ϑ]X+CXC are given by

    Υi(ϰ)=[Υ(ϰ,i),Υ(ϰ,i)], (23)

    for all ϰ[τ,ϑ] and for all i[0,1]. Then, ˜Υ is lower up and down λ-convex (λ-concave) fuzzy-number valued mapping on [τ,ϑ], if and only if, for all i[0,1], Υ(ϰ,i) is a λ-convex (λ-concave) mapping and Υ(ϰ,λ) is a λ-affine mapping.

    Definition 11. [62] Let ˜Υ:[τ,ϑ]EC be a fuzzy-number valued mapping, whose i-levels define the family of i-v-ms Υi:[τ,ϑ]X+CXC are given by

    Υi(ϰ)=[Υ(ϰ,i),Υ(ϰ,i)], (24)

    for all ϰ[τ,ϑ] and for all i[0,1]. Then, ˜Υ is an upper up and down λ-convex (λ-concave) fuzzy-number valued mapping on [τ,ϑ], if and only if, for all i[0,1], Υ(ϰ,i) is an λ-affine mapping and Υ(ϰ,i) is a λ-convex (λ-concave) mapping.

    Remark 4. If λ(ς)=ς, then both concepts "up and down λ-convex fuzzy-number valued mapping" and classical "convex fuzzy-number valued mapping, see [32]" behave alike when ˜Υ is lower up and down convex fuzzy-number valued mapping.

    Both concepts "convex interval-valued mapping, see [43]" and "left and right λ-convex interval-valued mapping, see [49]" are coincident when Υ is lower up and down λ-convex fuzzy-number valued mapping with i=1.

    The fuzzy Hermite-Hadamard inequalities for up and down λ-convex fuzzy-number valued mappings are established in this section. Additionally, several instances are provided to support the theory produced in this study's application.

    Theorem 5. Let ˜Υ:[τ,ϑ]EC be an up and down λ-convex fuzzy-number valued mapping with non-negative real valued function λ:[0,1]R+ and λ(12)0, whose i-levels define the family of i-v-ms Υi:[τ,ϑ]RX+I are given by Υi(ϰ)=[Υ(ϰ,i),Υ(ϰ,i)] for all ϰ[τ,ϑ] and for all i[0,1]. If ˜ΥFA([τ,ϑ],i), then

    12λ(12)˜Υ(τ+ϑ2)F1ϑτ(FA)ϑτ˜Υ(ϰ)dϰF[˜Υ(τ)˜Υ(ϑ)]10λ(ς)dς. (25)

    If ˜Υ is up and down λ-concave fuzzy-number valued mapping, then (25) is reversed.

    12λ(12)˜Υ(τ+ϑ2)F1ϑτ(FA)ϑτ˜Υ(ϰ)dϰF[˜Υ(τ)˜Υ(ϑ)]10λ(ς)dς. (26)

    Proof. Let ˜Υ:[τ,ϑ]EC be an up and down λ-convex fuzzy-number valued mapping. Then, for a,b[τ,ϑ], we have

    ˜Υ(ςa+(1ς)b)Fλ(ς)˜Υ(a)λ(1ς)˜Υ(b),

    If ς=12, then we have

    1λ(12)˜Υ(a+b2)F˜Υ(a)˜Υ(b).

    Let a=ςτ+(1ς)ϑ and b=(1ς)τ+ςϑ. Then, above inequality we have

    1λ(12)˜Υ(τ+ϑ2)F˜Υ(ςτ+(1ς)ϑ)˜Υ((1ς)τ+ςϑ).

    Therefore, for every i[0,1], we have

    1λ(12)Υ(τ+ϑ2,i)Υ(ςτ+(1ς)ϑ,i)+Υ((1ς)τ+ςϑ,i),1λ(12)Υ(τ+ϑ2,i)Υ(ςτ+(1ς)ϑ,i)+Υ((1ς)τ+ςϑ,i).

    Then

    1λ(12)10Υ(τ+ϑ2,i)dς10Υ(ςτ+(1ς)ϑ,i)dς+10Υ((1ς)τ+ςϑ,i)dς,1λ(12)10Υ(τ+ϑ2,i)dς10Υ(ςτ+(1ς)ϑ,i)dς+10Υ((1ς)τ+ςϑ,i)dς.

    It follows that

    1λ(12)Υ(τ+ϑ2,i)2ϑτϑτΥ(ϰ,i)dϰ,1λ(12)Υ(τ+ϑ2,i)2ϑτϑτΥ(ϰ,i)dϰ.

    That is

    1λ(12)[Υ(τ+ϑ2,i),Υ(τ+ϑ2,i)]I2ϑτ[ϑτΥ(ϰ,i)dϰ,ϑτΥ(ϰ,i)dϰ].

    Thus,

    12λ(12)˜Υ(τ+ϑ2)F1ϑτ(FA)ϑτ˜Υ(ϰ)dϰ. (27)

    In a similar way as above, we have

    1ϑτ(FA)ϑτ˜Υ(ϰ)dϰF[˜Υ(τ)˜Υ(ϑ)]10λ(ς)dς. (28)

    Combining (27) and (28), we have

    12λ(12)˜Υ(τ+ϑ2)F1ϑτ(FA)ϑτ˜Υ(ϰ)dϰF[˜Υ(τ)˜Υ(ϑ)]10λ(ς)dς.

    Hence, the required result.

    Note that, by using same steps, the formula (26) can be proved with the help of up and down λ-concave fuzzy-number valued mapping.

    Remark 5. If λ(ς)=ςs, then Theorem 5 reduces to the result for up and down s-convex fuzzy-number valued mapping which is also new one:

    2s1˜Υ(τ+ϑ2)F1ϑτ(FA)ϑτ˜Υ(ϰ)dϰF1s+1[˜Υ(τ)˜Υ(ϑ)]. (29)

    If λ(ς)=ς, then Theorem 5 reduces to the result for up and down convex fuzzy-number valued mapping which is also new one:

    ˜Υ(τ+ϑ2)F1ϑτ(FA)ϑτ˜Υ(ϰ)dϰF˜Υ(τ)˜Υ(ϑ)2. (30)

    If λ(ς)1 then Theorem 5 reduces to the result for up and down P-convex fuzzy-number valued mapping which is also new one:

    12˜Υ(τ+ϑ2)F1ϑτ(FA)ϑτ˜Υ(ϰ)dϰF˜Υ(τ)˜Υ(ϑ). (31)

    If Υ(ϰ,i)=Υ(ϰ,i) with i=1, then Theorem 5 reduces to the result for classical λ-convex function, see [5]:

    12λ(12)Υ(τ+ϑ2)1ϑτ(IA)ϑτΥ(ϰ)dϰ[Υ(τ)+Υ(ϑ)]10λ(ς)dς. (32)

    If Υ(ϰ,i)Υ(ϰ,i) with i=1 and λ(ς)=ς, then Theorem 5 reduces to the result for classical convex function, see [5]:

    Υ(τ+ϑ2)1ϑτ(IA)ϑτΥ(ϰ)dϰΥ(τ)+Υ(ϑ)2. (33)

    If Υ(ϰ,i)=Υ(ϰ,i) with i=1, then Theorem 5 reduces to the result for classical λ-convex function, see [64]:

    12λ(12)Υ(τ+ϑ2)1ϑτϑτΥ(ϰ)dϰ[Υ(τ)+Υ(ϑ)]10λ(ς)dς. (34)

    If Υ(ϰ,i)=Υ(ϰ,i) with i=1 and λ(ς)=ςs, then Theorem 5 reduces to the result for classical s-convex function, see [64]:

    2s1Υ(τ+ϑ2)1ϑτϑτΥ(ϰ)dϰ1s+1[Υ(τ)+Υ(ϑ)]. (35)

    If Υ(ϰ,i)=Υ(ϰ,i) with i=1 and λ(ς)=ς, then Theorem 5 reduces to the result for classical convex function:

    Υ(τ+ϑ2)1ϑτϑτΥ(ϰ)dϰΥ(τ)+Υ(ϑ)2. (36)

    If Υ(ϰ,i)=Υ(ϰ,i) with i=1 and λ(ς)1 then Theorem 5 reduces to the result for classical P-convex function:

    12Υ(τ+ϑ2)1ϑτϑτΥ(ϰ)dϰΥ(τ)+Υ(ϑ). (37)

    Example 2. We consider λ(ς)=ς, for ς[0,1], and the fuzzy-number valued mapping ˜Υ:[τ,ϑ]=[2,3]EC defined by,

    ˜Υ(ϰ)(θ)={θ2+ϰ121ϰ12θ[2ϰ12,3]2+ϰ12θϰ121θ(3,2+ϰ12]0otherwise.

    Then, for each i[0,1], we have Υi(ϰ)=[(1i)(2ϰ12)+3i,(1i)(2+ϰ12)+3i]. Since left and right end point mappings Υ(ϰ,i)=(1i)(2ϰ12)+3i, Υ(ϰ,i)=(1i)(2+ϰ12)+3i, are convex mappings for each i[0,1], then ˜Υ(ϰ) is up and down convex fuzzy-number valued mapping. We clearly see that ΥL([τ,ϑ],EC). Now computing the following

    12λ(12)Υ(τ+ϑ2,i)1ϑτϑτΥ(ϰ,i)dϰ[Υ(τ,i)+Υ(ϑ,i)]10λ(ς)dς.
    12λ(12)Υ(τ+ϑ2,i)=Υ(52,i)=4102(1i)+3i,
    1ϑτϑτΥ(ϰ,i)dϰ=32((1i)(2ϰ12)+3i)dϰ=(6+4263)3(1i)+3i,
    [Υ(τ,i)+Υ(ϑ,i)]10λ(ς)dς=(423)2(1i)+3i,

    for all i[0,1]. That means

    4102(1i)+3i(6+4263)3(1i)+3i(423)2(1i)+3i.

    Similarly, it can be easily show that

    12λ(12)Υ(τ+ϑ2,i)1ϑτϑτΥ(ϰ,i)dϰ[Υ(τ,i)+Υ(ϑ,i)]10λ(ς)dς.

    for all i[0,1], such that

    12λ(12)Υ(τ+ϑ2,i)=Υ(52,i)=4+102(1i)+3i,
    1ϑτϑτΥ(ϰ,i)dϰ=32((1i)(2+ϰ12)+3i)dϰ=(642+63)3(1i)+3i,
    [Υ(τ,i)+Υ(ϑ,i)]10λ(ς)dς=(4+2+3)2(1i)+3i.

    From which, we have

    4+102(1i)+3i(642+63)3(1i)+3i(4+2+3)2(1i)+3i,

    that is

    [4102(1i)+3i,4+102(1i)+3i]I[(6+4263)3(1i)+3i,(642+63)3(1i)+3i]I[(423)2(1i),(4+2+3)2(1i)+3i],

    for all i[0,1].

    Hence,

    12λ(12)˜Υ(τ+ϑ2)F1ϑτ(FA)ϑτ˜Υ(ϰ)dϰF[˜Υ(τ)˜Υ(ϑ)]10λ(ς)dς.

    Theorem 6. Let ˜Υ:[τ,ϑ]EC be an up and down λ-convex fuzzy-number valued mapping with non-negative real valued function λ:[0,1]R+ and λ(12)0, whose i-levels define the family of i-v-ms Υi:[τ,ϑ]RX+I are given by Υi(ϰ)=[Υ(ϰ,i),Υ(ϰ,i)] for all ϰ[τ,ϑ] and for all i[0,1]. If ˜ΥFA([τ,ϑ],i), then

    \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right){\supseteq }_{\mathbb{F}}{⪧}_{2}{\supseteq }_{\mathbb{F}}\frac{1}{\vartheta -\tau }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)d\varkappa \\ {\supseteq }_{\mathbb{F}}{⪧}_{1}{\supseteq }_{\mathbb{F}}\left[\widetilde {\mathit{\Upsilon }}\left(\tau \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)\right]\odot \left[\frac{1}{2}+\lambda \left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma , (38)

    where

    {⪧}_{1} = \left[\frac{\widetilde {\mathit{\Upsilon }}\left(\tau \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)}{2} \oplus \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right)\right]\odot {\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma ,
    {⪧}_{2} = \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\odot \left[\widetilde {\mathit{\Upsilon }}\left(\frac{3\tau +\vartheta }{4}\right) \oplus \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +3\vartheta }{4}\right)\right],

    and {⪧}_{1} = \left[{{⪧}_{1}}_{*}, {{⪧}_{1}}^{*}\right] , {⪧}_{2} = \left[{{⪧}_{2}}_{*}, {{⪧}_{2}}^{*}\right].

    Proof. Take \left[\tau, \frac{\tau +\vartheta }{2}\right], we have

    \frac{1}{\lambda \left(\frac{1}{2}\right)}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{\varsigma \tau +\left(1-\varsigma \right)\frac{\tau +\vartheta }{2}}{2}+\frac{(1-\varsigma )\tau +\varsigma \frac{\tau +\vartheta }{2}}{2}\right){\supseteq }_{\mathbb{F}}\widetilde {\mathit{\Upsilon }}\left(\varsigma \tau +\left(1-\varsigma \right)\frac{\tau +\vartheta }{2}\right) \oplus \widetilde {\mathit{\Upsilon }}\left(\left(1-\varsigma \right)\tau +\varsigma \frac{\tau +\vartheta }{2}\right).

    Therefore, for every \mathcal{i}\in [0, 1] , we have

    \begin{array}{c}\frac{1}{\lambda \left(\frac{1}{2}\right)}{\mathit{\Upsilon }}_{*}\left(\frac{\varsigma \tau +\left(1-\varsigma \right)\frac{\tau +\vartheta }{2}}{2}+\frac{\left(1-\varsigma \right)\tau +\varsigma \frac{\tau +\vartheta }{2}}{2}, \mathcal{i}\right)\le {\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\frac{\tau +\vartheta }{2}, \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \frac{\tau +\vartheta }{2}, \mathcal{i}\right), \\ \frac{1}{\lambda \left(\frac{1}{2}\right)}{\mathit{\Upsilon }}^{*}\left(\frac{\varsigma \tau +\left(1-\varsigma \right)\frac{\tau +\vartheta }{2}}{2}+\frac{\left(1-\varsigma \right)\tau +\varsigma \frac{\tau +\vartheta }{2}}{2}, \mathcal{i}\right)\ge {\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\frac{\tau +\vartheta }{2}, \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \frac{\tau +\vartheta }{2}, \mathcal{i}\right).\end{array}

    In consequence, we obtain

    \begin{array}{c}\frac{1}{4\lambda \left(\frac{1}{2}\right)}{\mathit{\Upsilon }}_{*}\left(\frac{3\tau +\vartheta }{4}, \mathcal{i}\right)\le \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\frac{\tau +\vartheta }{2}}{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)d\varkappa , \\ \frac{1}{4\lambda \left(\frac{1}{2}\right)}{\mathit{\Upsilon }}^{*}\left(\frac{3\tau +\vartheta }{4}, \mathcal{i}\right)\ge \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\frac{\tau +\vartheta }{2}}{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)d\varkappa .\end{array}

    That is

    \frac{1}{4\lambda \left(\frac{1}{2}\right)}\left[{\mathit{\Upsilon }}_{*}\left(\frac{3\tau +\vartheta }{4}, \mathcal{i}\right), {\mathit{\Upsilon }}^{*}\left(\frac{3\tau +\vartheta }{4}, \mathcal{i}\right)\right]{\supseteq }_{I}\frac{1}{\vartheta -\tau }\left[{\int }_{\tau }^{\frac{\tau +\vartheta }{2}}{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)d\varkappa , {\int }_{\tau }^{\frac{\tau +\vartheta }{2}}{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)d\varkappa \right].

    It follows that

    \frac{1}{4\lambda \left(\frac{1}{2}\right)}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{3\tau +\vartheta }{4}\right){\supseteq }_{\mathbb{F}}\frac{1}{\vartheta -\tau }\odot {\int }_{\tau }^{\frac{\tau +\vartheta }{2}}\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)d\varkappa . (39)

    In a similar way as above, we have

    \frac{1}{4\lambda \left(\frac{1}{2}\right)}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +3\vartheta }{4}\right){\supseteq }_{\mathbb{F}}\frac{1}{\vartheta -\tau }\odot {\int }_{\frac{\tau +\vartheta }{2}}^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)d\varkappa . (40)

    Combining (39) and (40), we have

    \frac{1}{4\lambda \left(\frac{1}{2}\right)}\odot \left[\widetilde {\mathit{\Upsilon }}\left(\frac{3\tau +\vartheta }{4}\right) \oplus \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +3\vartheta }{4}\right)\right]{\supseteq }_{\mathbb{F}}\frac{1}{\vartheta -\tau }\odot {\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)d\varkappa .

    By using Theorem 5, we have

    \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right) = \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{1}{2}.\frac{3\tau +\vartheta }{4}+\frac{1}{2}.\frac{\tau +3\vartheta }{4}\right).

    Therefore, for every \mathcal{i}\in [0, 1] , we have

    \begin{array}{c}\frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right) = \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}{\mathit{\Upsilon }}_{*}\left(\frac{1}{2}.\frac{3\tau +\vartheta }{4}+\frac{1}{2}.\frac{\tau +3\vartheta }{4}, \mathcal{i}\right), \\ \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}{\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right) = \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}{\mathit{\Upsilon }}^{*}\left(\frac{1}{2}.\frac{3\tau +\vartheta }{4}+\frac{1}{2}.\frac{\tau +3\vartheta }{4}, \mathcal{i}\right), \end{array} \\ \begin{array}{c}\le \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\left[\lambda \left(\frac{1}{2}\right){\mathit{\Upsilon }}_{*}\left(\frac{3\tau +\vartheta }{4}, \mathcal{i}\right)+\lambda \left(\frac{1}{2}\right){\mathit{\Upsilon }}_{*}\left(\frac{\tau +3\vartheta }{4}, \mathcal{i}\right)\right], \\ \:\;\;\;\;\;\;\;\;\;\; \ge \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\left[\lambda \left(\frac{1}{2}\right){\mathit{\Upsilon }}^{*}\left(\frac{3\tau +\vartheta }{4}, \mathcal{i}\right)+\lambda \left(\frac{1}{2}\right){\mathit{\Upsilon }}^{*}\left(\frac{\tau +3\vartheta }{4}, \mathcal{i}\right)\right], \end{array} \\ \:\;\;\;\;\;\;\;\;\;\;\begin{array}{c} = {{⪧}_{2}}_{*}, \\ \:\;\;\;\;\;\;\;\;\;\; = {{⪧}_{2}}^{*}, \end{array}\\ \:\;\;\;\;\;\;\;\;\;\;\begin{array}{c}\le \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)d\varkappa , \\ \:\;\;\;\;\;\;\;\;\;\; \ge \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)d\varkappa , \end{array} \\ \:\;\;\;\;\;\;\;\;\;\; \begin{array}{c}\le \left[\frac{{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)}{2}+{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma , \\ \:\;\;\;\;\;\;\;\;\;\; \ge \left[\frac{{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)}{2}+{\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma , \end{array} \\ \:\;\;\;\;\;\;\;\;\;\;\begin{array}{c} = {{⪧}_{1}}_{*}, \\ \:\;\;\;\;\;\;\;\;\;\; = {{⪧}_{1}}^{*}, \end{array} \\ \:\;\;\;\;\;\;\;\;\;\;\begin{array}{c}\le \left[\frac{{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)}{2}+\lambda \left(\frac{1}{2}\right)\left({\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma , \\ \:\;\;\;\;\;\;\;\;\;\; \ge \left[\frac{{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)}{2}+\lambda \left(\frac{1}{2}\right)\left({\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma , \end{array} \\ \:\;\;\;\;\;\;\;\;\;\;\begin{array}{c} = \left[{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\right]\left[\frac{1}{2}+\lambda \left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma , \\ \:\;\;\;\;\;\;\;\;\;\; = \left[{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right]\left[\frac{1}{2}+\lambda \left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma , \end{array}

    that is

    \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right){\supseteq }_{\mathbb{F}}{⪧}_{2}{\supseteq }_{\mathbb{F}}\frac{1}{\vartheta -\tau }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)d\varkappa \\ {\supseteq }_{\mathbb{F}}{⪧}_{1}{\supseteq }_{\mathbb{F}}\left[\widetilde {\mathit{\Upsilon }}\left(\tau \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)\right]\odot \left[\frac{1}{2}+\lambda \left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma ,

    hence, the result follows.

    Example 3. We consider \lambda \left(\varsigma \right) = \varsigma, for \varsigma \in \left[0, 1\right] , and the fuzzy-number valued mapping \widetilde {\mathit{\Upsilon }}:\left[\tau, \vartheta \right] = [2, 3]\to {\mathbb{E}}_{C} defined by, {\mathit{\Upsilon }}_{\mathcal{i}}\left(\varkappa \right) = \left[\left(1-\mathcal{i}\right)\left(2-{\varkappa }^{\frac{1}{2}}\right)+3\mathcal{i}, \left(1-\mathcal{i}\right)\left(2+{\varkappa }^{\frac{1}{2}}\right)+3\mathcal{i}\right], as in Example 2, then \widetilde {\mathit{\Upsilon }}\left(\varkappa \right) is \lambda -convex fuzzy-number valued mapping and satisfying (25). We have {\mathit{\Upsilon }}_{*}\left(\varkappa, \mathcal{i}\right) = \left(1-\mathcal{i}\right)\left(2-{\varkappa }^{\frac{1}{2}}\right)+3\mathcal{i} and {\mathit{\Upsilon }}^{*}\left(\varkappa, \mathcal{i}\right) = \left(1-\mathcal{i}\right)\left(2+{\varkappa }^{\frac{1}{2}}\right)+3\mathcal{i} . We now compute the following:

    \begin{array}{c}\frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right) = {\mathit{\Upsilon }}_{*}\left(\frac{5}{2}, \mathcal{i}\right) = \frac{4-\sqrt{10}}{2}\left(1-\mathcal{i}\right)+3i, \\ \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}{\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right) = {\mathit{\Upsilon }}^{*}\left(\frac{5}{2}, \mathcal{i}\right) = \frac{4+\sqrt{10}}{2}\left(1-\mathcal{i}\right)+3i, \end{array} \\ \begin{array}{c}{{⪧}_{2}}_{*} = \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\left[\lambda \left(\frac{1}{2}\right){\mathit{\Upsilon }}_{*}\left(\frac{3\tau +\vartheta }{4}, \mathcal{i}\right)+\lambda \left(\frac{1}{2}\right){\mathit{\Upsilon }}_{*}\left(\frac{\tau +3\vartheta }{4}, \mathcal{i}\right)\right] = \frac{5-\sqrt{11}}{4}\left(1-\mathcal{i}\right)+3i, \\ {{⪧}_{2}}^{*} = \frac{1}{4{\left[\lambda \left(\frac{1}{2}\right)\right]}^{2}}\left[\lambda \left(\frac{1}{2}\right){\mathit{\Upsilon }}^{*}\left(\frac{3\tau +\vartheta }{4}, \mathcal{i}\right)+\lambda \left(\frac{1}{2}\right){\mathit{\Upsilon }}^{*}\left(\frac{\tau +3\vartheta }{4}, \mathcal{i}\right)\right] = \frac{7+\sqrt{11}}{4}\left(1-\mathcal{i}\right)+3i.\end{array} \\ \begin{array}{c}{{⪧}_{1}}_{*} = \left[\frac{{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)}{2}+{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma = \frac{\left(8-\sqrt{2}-\sqrt{3}-\sqrt{10}\right)}{4}\left(1-\mathcal{i}\right)+3i, \\ {{⪧}_{1}}^{*} = \left[\frac{{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)}{2}+{\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma = \frac{\left(8+\sqrt{2}+\sqrt{3}+\sqrt{10}\right)}{4}\left(1-\mathcal{i}\right)+3i, \end{array} \\ \begin{array}{c}\left[{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\right]\left[\frac{1}{2}+\lambda \left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma = \frac{\left(4-\sqrt{2}-\sqrt{3}\right)}{2}\left(1-\mathcal{i}\right)+3i, \\ \left[{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right]\left[\frac{1}{2}+\lambda \left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\lambda \left(\varsigma \right)d\varsigma = \frac{\left(4+\sqrt{2}+\sqrt{3}\right)}{2}\left(1-\mathcal{i}\right)+3i.\end{array}

    Then we obtain that

    \begin{array}{c}\left(1-\mathcal{i}\right)\frac{4-\sqrt{10}}{2}+3i\le \frac{5-\sqrt{11}}{4}\left(1-\mathcal{i}\right)+3i\le \frac{\left(6+4\sqrt{2}-6\sqrt{3}\right)}{3}\left(1-\mathcal{i}\right)+3i\\ \le \frac{\left(8-\sqrt{2}-\sqrt{3}-\sqrt{10}\right)}{4}\left(1-\mathcal{i}\right)+3i\le \frac{\left(1-\mathcal{i}\right)\left(4-\sqrt{2}-\sqrt{3}\right)}{2}+3i\\ \left(1-\mathcal{i}\right)\frac{4+\sqrt{10}}{2}+3i\ge \frac{7+\sqrt{11}}{4}\left(1-\mathcal{i}\right)+3i\ge \frac{\left(6-4\sqrt{2}+6\sqrt{3}\right)}{3}\left(1-\mathcal{i}\right)+3i\\ \ge \frac{\left(8+\sqrt{2}+\sqrt{3}+\sqrt{10}\right)}{4}\left(1-\mathcal{i}\right)+3i\ge \frac{\left(1-\mathcal{i}\right)\left(4+\sqrt{2}+\sqrt{3}\right)}{2}+3i.\end{array}

    Hence, Theorem 6 is verified.

    The novel fuzzy Hermite-Hadamard inequalities for the product of two up and down \lambda -convex fuzzy-number valued mappings are found in the results.

    Theorem 7. Let \widetilde {\mathit{\Upsilon }}, \widetilde {\mathcal{J}}:\left[\tau, \vartheta \right]\to {\mathbb{E}}_{C} be two up and down \lambda -convex fuzzy-number valued mappings with non-negative real valued functions {\lambda }_{1}, {\lambda }_{2}:[0, 1]\to {\mathbb{R}}^{+} and {\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\ne 0, whose \mathcal{i} -levels define the family of i-v-ms {\mathit{\Upsilon }}_{\mathcal{i}}, {\mathcal{J}}_{\mathcal{i}}:\left[\tau, \vartheta \right]\subset \mathbb{R}\to {\mathcal{X}}_{I}^{+} are given by {\mathit{\Upsilon }}_{\mathcal{i}}\left(\varkappa \right) = \left[{\mathit{\Upsilon }}_{*}\left(\varkappa, \mathcal{i}\right), {\mathit{\Upsilon }}^{*}\left(\varkappa, \mathcal{i}\right)\right] and {\mathcal{J}}_{\mathcal{i}}\left(\varkappa \right) = \left[{\mathcal{J}}_{\mathcal{*}}\left(\varkappa, \mathcal{i}\right), {\mathcal{J}}^{\mathcal{*}}\left(\varkappa, \mathcal{i}\right)\right] for all \varkappa \in \left[\tau, \vartheta \right] and for all \mathcal{i}\in \left[0, 1\right] . If \widetilde {\mathit{\Upsilon }}, \widetilde {\mathcal{J}} and \widetilde {\mathit{\Upsilon }}\otimes \widetilde {\mathcal{J}}\in {\mathcal{F}\mathcal{A}}_{\left(\left[\tau, \vartheta \right], \mathcal{i}\right)} , then

    \frac{1}{\vartheta -\tau }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\otimes \widetilde {\mathcal{J}}\left(\varkappa \right)d\varkappa \\ {\supseteq }_{\mathbb{F}}\widetilde {\mathcal{M}}\left(\tau , \vartheta \right)\odot {\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma \oplus \widetilde {\mathcal{N}}\left(\tau , \vartheta \right)\odot {\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma , (41)

    where \widetilde {\mathcal{M}}\left(\tau, \vartheta \right) = \widetilde {\mathit{\Upsilon }}\left(\tau \right)\otimes \widetilde {\mathcal{J}}\left(\tau \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)\otimes \widetilde {\mathcal{J}}\left(\vartheta \right), \widetilde {\mathcal{N}}\left(\tau, \vartheta \right) = \widetilde {\mathit{\Upsilon }}\left(\tau \right)\otimes \widetilde {\mathcal{J}}\left(\vartheta \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)\otimes \widetilde {\mathcal{J}}\left(\tau \right), and {\mathcal{M}}_{\mathcal{i}}\left(\tau, \vartheta \right) = \left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\tau, \vartheta \right), \mathcal{i}\right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\tau, \vartheta \right), \mathcal{i}\right)\right] and {\mathcal{N}}_{\mathcal{i}}\left(\tau, \vartheta \right) = \left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\tau, \vartheta \right), \mathcal{i}\right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\tau, \vartheta \right), \mathcal{i}\right)\right].

    Proof. Let \widetilde {\mathit{\Upsilon }}, \widetilde {\mathcal{J}}:\left[\tau, \vartheta \right]\to {\mathbb{E}}_{C} be two up and down {\lambda }_{1} -convex and {\lambda }_{2} -convex fuzzy-number valued mappings. Then, we have

    \begin{array}{c} {\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\le {\lambda }_{1}\left(\varsigma \right){\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\lambda }_{1}\left(1-\varsigma \right){\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right), \\ {\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\ge {\lambda }_{1}\left(\varsigma \right){\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\lambda }_{1}\left(1-\varsigma \right){\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right).\end{array}

    And

    \begin{array}{c} {\mathcal{J}}_{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\le {\lambda }_{2}\left(\varsigma \right){\mathcal{J}}_{\mathcal{*}}\left(\tau , \mathcal{i}\right)+{\lambda }_{2}\left(1-\varsigma \right){\mathcal{J}}_{\mathcal{*}}\left(\vartheta , \mathcal{i}\right), \\ {\mathcal{J}}^{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\ge {\lambda }_{2}\left(\varsigma \right){\mathcal{J}}^{\mathcal{*}}\left(\tau , \mathcal{i}\right)+{\lambda }_{2}\left(1-\varsigma \right){\mathcal{J}}^{\mathcal{*}}\left(\vartheta , \mathcal{i}\right).\end{array}

    From the definition of up and down \lambda -convex fuzzy number valued mapping it follows that \widetilde {\mathit{\Upsilon }}\left(x\right){\begin{array}{c}\begin{array}{c}\ge \end{array}\end{array}}_{\mathbb{F}}0 and \widetilde {\mathcal{J}}\left(x\right){\begin{array}{c}\begin{array}{c}\ge \end{array}\end{array}}_{\mathbb{F}}0 , so

    \begin{array}{c} {\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\\ \le \left(\begin{array}{c}{\lambda }_{1}\left(\varsigma \right){\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\lambda }_{1}\left(1-\varsigma \right){\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\end{array}\right)\left(\begin{array}{c}{\lambda }_{2}\left(\varsigma \right){\mathcal{J}}_{\mathcal{*}}\left(\tau , \mathcal{i}\right)+{\lambda }_{2}\left(1-\varsigma \right){\mathcal{J}}_{\mathcal{*}}\left(\vartheta , \mathcal{i}\right)\end{array}\right)\\ = {\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\tau , \mathcal{i}\right)\left[{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)\right]+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\vartheta , \mathcal{i}\right)\left[{\lambda }_{1}\left(1-\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)\right]\\ +{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\vartheta , \mathcal{i}\right){\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\tau , \mathcal{i}\right){\lambda }_{1}\left(1-\varsigma \right){\lambda }_{2}\left(\varsigma \right), \\ {\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\\ \ge \left(\begin{array}{c}{\lambda }_{1}\left(\varsigma \right){\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\lambda }_{1}\left(1-\varsigma \right){\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\end{array}\right)\left(\begin{array}{c}{\lambda }_{2}\left(\varsigma \right){\mathcal{J}}^{\mathcal{*}}\left(\tau , \mathcal{i}\right)+{\lambda }_{2}\left(1-\varsigma \right){\mathcal{J}}^{\mathcal{*}}\left(\vartheta , \mathcal{i}\right)\end{array}\right)\\ = {\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\tau , \mathcal{i}\right)\left[{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)\right]+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\vartheta , \mathcal{i}\right)\left[{\lambda }_{1}\left(1-\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)\right]\\ +{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\vartheta , \mathcal{i}\right){\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\tau , \mathcal{i}\right){\lambda }_{1}\left(1-\varsigma \right){\lambda }_{2}\left(\varsigma \right).\end{array}

    Integrating both sides of above inequality over [0, 1] we get

    \begin{array}{l} {\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right) = \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(x, \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(x, \mathcal{i}\right)dx\\ \le \left({\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\vartheta , \mathcal{i}\right)\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma \\ +\left({\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\vartheta , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(\tau , \mathcal{i}\right)\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma , \\ {\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right) = \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(x, \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(x, \mathcal{i}\right)dx\\ \ge \left({\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\vartheta , \mathcal{i}\right)\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma \\ +\left({\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\vartheta , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(\tau , \mathcal{i}\right)\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma .\end{array}

    It follows that,

    \begin{array}{c} \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(x, \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(x, \mathcal{i}\right)dx\le {\mathcal{M}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma \\ +{\mathcal{N}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right)\right), i{\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma , \\ \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(x, \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(x, \mathcal{i}\right)dx\ge {\mathcal{M}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma \\ +{\mathcal{N}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma , \end{array}

    that is

    \frac{1}{\vartheta -\tau }\left[{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(x, \mathcal{i}\right){\mathcal{J}}_{\mathcal{*}}\left(x, \mathcal{i}\right)dx, {\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(x, \mathcal{i}\right){\mathcal{J}}^{\mathcal{*}}\left(x, \mathcal{i}\right)dx\right] \\ {\supseteq }_{I}\left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right)\right]{\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma \\ +\left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right)\right]{\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma .

    Thus,

    \frac{1}{\vartheta -\tau }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(x\right)\otimes \widetilde {\mathcal{J}}\left(x\right)dx \\ {\supseteq }_{\mathbb{F}}\widetilde {\mathcal{M}}\left(\tau , \vartheta \right)\odot {\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma \oplus \widetilde {\mathcal{N}}\left(\tau , \vartheta \right)\odot {\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma ,

    and the theorem has been established.

    Example 4. We consider {\lambda }_{1}\left(\varsigma \right) = \varsigma, {\lambda }_{2}\left(\varsigma \right) = \varsigma, for \varsigma \in \left[0, 1\right] , and the fuzzy-number valued mappings \widetilde {\mathit{\Upsilon }}, \widetilde {\mathcal{J}}:\left[\tau, \vartheta \right] = [0, 2]\to {\mathbb{E}}_{C} defined by,

    \widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\left(\sigma \right) = \left\{\begin{array}{l}\frac{\theta }{\varkappa }\;\;\;\;\;\;\theta \in \left[0, \varkappa \right]\\ \frac{2\varkappa -\theta }{\varkappa }\;\;\;\theta \in (\varkappa , 2\varkappa ]\\ 0\;\;\;\;\;\; {\rm{otherwise}}, \end{array}\right.
    \widetilde {\mathcal{J}}\left(\varkappa \right)\left(\sigma \right) = \left\{\begin{array}{c}\frac{\theta -\varkappa }{2-\varkappa }\;\;\;\;\;\;\theta \in \left[\varkappa , 2\right]\\ \frac{8-{e}^{\varkappa }-\theta }{8-{e}^{\varkappa }-2}\;\;\;\theta \in (2, 8-{e}^{\varkappa }]\\ 0 \;\;\;\;\;\;{\rm{otherwise}}.\end{array}\right.

    Then, for each \mathcal{i}\in \left[0, \mathrm{ }1\right], we have {\mathit{\Upsilon }}_{\mathcal{i}}\left(\varkappa \right) = \left[\mathcal{i}\varkappa, (2-\mathcal{i})\varkappa \right] and {\mathcal{J}}_{\mathcal{i}}\left(\varkappa \right) = \left[\left(1-\mathcal{i}\right)\varkappa +2\mathcal{i}, \left(1-\mathcal{i}\right)\left(8-{e}^{\varkappa }\right)+2\mathcal{i}\right]. Since end point functions {\mathit{\Upsilon }}_{\mathrm{*}}\left(\varkappa, \mathcal{i}\right) = \mathcal{i}\varkappa, {\mathit{\Upsilon }}^{\mathrm{*}}\left(\varkappa, \mathcal{i}\right) = (2-\mathcal{i})\varkappa and {\mathcal{J}}_{\mathcal{*}}\left(\varkappa, \mathcal{i}\right) = \left(1-\mathcal{i}\right)\varkappa +2\mathcal{i} , {\mathcal{J}}^{\mathcal{*}}\left(\varkappa, \mathcal{i}\right) = \left(1-\mathcal{i}\right)\left(8-{e}^{\varkappa }\right)+2\mathcal{i} {\lambda }_{1}, {\lambda }_{2} -convex functions for each \mathcal{i}\in [0, \mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }1] . Hence \widetilde {\mathit{\Upsilon }}, \widetilde {\mathcal{J}} both are up and down \lambda -convex fuzzy-number valued mappings. We now computing the following

    \begin{array}{c}\frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\varkappa , \mathcal{i}\right)d\varkappa = \frac{1}{2}\underset{0}{\overset{2}{\int }}\left(\mathcal{i}\left(1-\mathcal{i}\right){\varkappa }^{2}+2{\mathcal{i}}^{2}\varkappa \right)d\varkappa = \frac{2}{3}i\left(2+\mathcal{i}\right)\\ \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\varkappa , \mathcal{i}\right)d\varkappa = \frac{1}{2}\underset{0}{\overset{2}{\int }}\left(\left(1-\mathcal{i}\right)\left(2-\mathcal{i}\right)\varkappa \left(8-{e}^{\varkappa }\right)+2\mathcal{i}\left(2-\mathcal{i}\right)\varkappa \right)d\varkappa \\ \approx \frac{\left(2-\mathcal{i}\right)}{2}\left(\frac{1903}{250}-\frac{903}{250}\mathcal{i}\right), \end{array}
    \begin{array}{c}{\mathcal{M}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma = \frac{4\mathcal{i}}{3}\\ {\mathcal{M}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma = \frac{2\left(2-\mathcal{i}\right)\left[\left(1-\mathcal{i}\right)\left(8-{e}^{2}\right)+2\mathcal{i}\right]}{3}, \end{array}
    \begin{array}{c}{\mathcal{N}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma = \frac{2{\mathcal{i}}^{2}}{3}\\ {\mathcal{N}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma = \frac{\left(2-\mathcal{i}\right)\left(7-5\mathcal{i}\right)}{3}, \end{array}

    for each \mathcal{i}\in \left[0, 1\right], that means

    [\frac{2}{3}\mathcal{i}\left(1+2\mathcal{i}\right), \frac{\left(2-\mathcal{i}\right)}{2}\left(\frac{1903}{250}-\frac{903}{250}\mathcal{i}\right)]{\supseteq }_{I}\frac{1}{3}\left[2\mathcal{i}\left(2+\mathcal{i}\right), \left(2-\mathcal{i}\right)\left[2\left(1-\mathcal{i}\right)\left(8-{e}^{2}\right)-\mathcal{i}+7\right]\right] .

    Hence, Theorem 7 is demonstrated.

    Theorem 8. Let \widetilde {\mathit{\Upsilon }}, \widetilde {\mathcal{J}}:\left[\tau, \vartheta \right]\to {\mathbb{E}}_{C} be two up and down {\lambda }_{1} -convex and {\lambda }_{2} -convex fuzzy-number valued mappings with non-negative real-valued functions {\lambda }_{1}, {\lambda }_{2}:[0, 1]\to {\mathbb{R}}^{+} , respectively and {\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\ne 0, respectively, whose \mathcal{i} -levels define the family of i-v-ms {\mathit{\Upsilon }}_{\mathcal{i}}, {\mathcal{J}}_{\mathcal{i}}:\left[\tau, \vartheta \right]\subset \mathbb{R}\to {\mathcal{X}}_{I}^{+} are given, respectively, by {\mathit{\Upsilon }}_{\mathcal{i}}\left(\varkappa \right) = \left[{\mathit{\Upsilon }}_{*}\left(\varkappa, \mathcal{i}\right), {\mathit{\Upsilon }}^{*}\left(\varkappa, \mathcal{i}\right)\right] and {\mathcal{J}}_{\mathcal{i}}\left(\varkappa \right) = \left[{\mathcal{J}}_{\mathcal{*}}\left(\varkappa, \mathcal{i}\right), {\mathcal{J}}^{\mathcal{*}}\left(\varkappa, \mathcal{i}\right)\right] for all \varkappa \in \left[\tau, \vartheta \right] and for all \mathcal{i}\in \left[0, 1\right] . If \widetilde {\mathit{\Upsilon }}\otimes \widetilde {\mathcal{J}}\in {\mathcal{F}\mathcal{A}}_{\left(\left[\tau, \vartheta \right], \mathcal{i}\right)} , then

    \frac{1}{2{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right)\otimes \widetilde {\mathcal{J}}\left(\frac{\tau +\vartheta }{2}\right){\supseteq }_{\mathbb{F}}\frac{1}{\vartheta -\tau }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\otimes \widetilde {\mathcal{J}}\left(\varkappa \right)d\varkappa\\ \oplus \widetilde {\mathcal{M}}\left(\tau , \vartheta \right)\odot {\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma \oplus \widetilde {\mathcal{N}}\left(\tau , \vartheta \right)\odot {\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma , (42)

    where \widetilde {\mathcal{M}}\left(\tau, \vartheta \right) = \widetilde {\mathit{\Upsilon }}\left(\tau \right)\otimes \widetilde {\mathcal{J}}\left(\tau \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)\otimes \widetilde {\mathcal{J}}\left(\vartheta \right), \widetilde {\mathcal{N}}\left(\tau, \vartheta \right) = \widetilde {\mathit{\Upsilon }}\left(\tau \right)\otimes \widetilde {\mathcal{J}}\left(\vartheta \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)\otimes \widetilde {\mathcal{J}}\left(\tau \right), and {\mathcal{M}}_{\mathcal{i}}\left(\tau, \vartheta \right) = \left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\tau, \vartheta \right), \mathcal{i}\right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\tau, \vartheta \right), \mathcal{i}\right)\right] and {\mathcal{N}}_{\mathcal{i}}\left(\tau, \vartheta \right) = \left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\tau, \vartheta \right), \mathcal{i}\right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\tau, \vartheta \right), \mathcal{i}\right)\right].

    Proof. By hypothesis, for each \mathcal{i}\in \left[0, 1\right], we have

    \begin{array}{l}{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2},\mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\frac{\tau +\vartheta }{2},\mathcal{i}\right)\\ {\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2},\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\frac{\tau +\vartheta }{2},\mathcal{i}\right)\end{array}
    \begin{array}{l}\le {\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\\ +{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\end{array}\right]\\ +{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\\ +{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\end{array}\right],\\ \ge {\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\\ +{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\end{array}\right]\\ +{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\\ +{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\end{array}\right],\end{array}
    \begin{array}{l}\le {\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right){\times \mathcal{J}}_{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\\ +{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\end{array}\right]\\ +{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}\left({\lambda }_{1}\left(\varsigma \right){\mathit{\Upsilon }}_{*}\left(\tau ,\mathcal{i}\right)+{\lambda }_{1}\left(1-\varsigma \right){\mathit{\Upsilon }}_{*}\left(\vartheta ,\mathcal{i}\right)\right)\\ \times \left({\lambda }_{2}\left(1-\varsigma \right){\mathcal{J}}_{\mathcal{*}}\left(\tau ,\mathcal{i}\right)+{\lambda }_{2}\left(\varsigma \right){\mathcal{J}}_{\mathcal{*}}\left(\vartheta ,\mathcal{i}\right)\right)\\ +\left({{\lambda }_{1}\left(1-\varsigma \right){\mathit{\Upsilon }}}_{*}\left(\tau ,\mathcal{i}\right)+{\lambda }_{1}\left(\varsigma \right){\mathit{\Upsilon }}_{*}\left(\vartheta ,\mathcal{i}\right)\right)\\ \times \left({\lambda }_{2}\left(\varsigma \right){\mathcal{J}}_{\mathcal{*}}\left(\tau ,\mathcal{i}\right)+{\lambda }_{2}\left(1-\varsigma \right){\mathcal{J}}_{\mathcal{*}}\left(\vartheta ,\mathcal{i}\right)\right)\end{array}\right],\\ \ge {\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\\ +{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\end{array}\right]\\ +{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}\left({\lambda }_{1}\left(\varsigma \right){\mathit{\Upsilon }}^{*}\left(\tau ,\mathcal{i}\right)+{\lambda }_{1}\left(1-\varsigma \right){\mathit{\Upsilon }}^{*}\left(\vartheta ,\mathcal{i}\right)\right)\\ \times \left({\lambda }_{2}\left(1-\varsigma \right){\mathcal{J}}^{\mathcal{*}}\left(\tau ,\mathcal{i}\right)+{\lambda }_{2}\left(\varsigma \right){\mathcal{J}}^{\mathcal{*}}\left(\vartheta ,\mathcal{i}\right)\right)\\ +\left({\lambda }_{1}\left(1-\varsigma \right){\mathit{\Upsilon }}^{*}\left(\tau ,\mathcal{i}\right)+{\lambda }_{1}\left(\varsigma \right){\mathit{\Upsilon }}^{*}\left(\vartheta ,\mathcal{i}\right)\right)\\ \times \left({\lambda }_{2}\left(\varsigma \right){\mathcal{J}}^{\mathcal{*}}\left(\tau ,\mathcal{i}\right)+{\lambda }_{2}\left(1-\varsigma \right){\mathcal{J}}^{\mathcal{*}}\left(\vartheta ,\mathcal{i}\right)\right)\end{array}\right],\end{array}
    \begin{array}{l}={\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\\ +{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right){\times \mathcal{J}}_{\mathcal{*}}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\end{array}\right]\\ +2{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}\left\{{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)+{\lambda }_{1}\left(1-\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)\right\}{\mathcal{N}}_{\mathcal{*}}\left(\left(\tau ,\vartheta \right),\mathcal{i}\right)\\ +\left\{{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)+{\lambda }_{1}\left(1-\varsigma \right){\lambda }_{2}\left(\varsigma \right)\right\}{\mathcal{M}}_{\mathcal{*}}\left(\left(\tau ,\vartheta \right),\mathcal{i}\right)\end{array}\right],\\ ={\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta ,\mathcal{i}\right)\\ +{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta ,\mathcal{i}\right)\end{array}\right]\\ +2{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}\left\{{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)+{\lambda }_{1}\left(1-\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)\right\}{\mathcal{N}}^{\mathcal{*}}\left(\left(\tau ,\vartheta \right),\mathcal{i}\right)\\ +\left\{{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)+{\lambda }_{1}\left(1-\varsigma \right){\lambda }_{2}\left(\varsigma \right)\right\}{\mathcal{M}}^{\mathcal{*}}\left(\left(\tau ,\vartheta \right),\mathcal{i}\right)\end{array}\right].\end{array}

    Integrating over \left[0, 1\right], we have

    \begin{array}{c} \frac{1}{2{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)}{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\le \frac{1}{\vartheta -\tau }\left(R\right){\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\varkappa , \mathcal{i}\right)d\varkappa \\ +{\mathcal{M}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma \\ +{\mathcal{N}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma , \\ \frac{1}{2{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)}{\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\ge \frac{1}{\vartheta -\tau }\left(R\right){\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right){\times \mathcal{J}}^{\mathcal{*}}\left(\varkappa , \mathcal{i}\right)d\varkappa \\ +{\mathcal{M}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma \\ +{\mathcal{N}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma , \end{array}

    that is

    \frac{1}{2{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)}\odot \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right)\otimes \widetilde {\mathcal{J}}\left(\frac{\tau +\vartheta }{2}\right){\supseteq }_{\mathbb{F}}\frac{1}{\vartheta -\tau }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\otimes \widetilde {\mathcal{J}}\left(\varkappa \right)d\varkappa \\ \oplus \widetilde {\mathcal{M}}\left(\tau , \vartheta \right)\odot {\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma \oplus \widetilde {\mathcal{N}}\left(\tau , \vartheta \right)\odot {\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma ,

    hence, the required result.

    Example 5. We consider {\lambda }_{1}\left(\varsigma \right) = \varsigma, {\lambda }_{2}\left(\varsigma \right) = \varsigma, for \varsigma \in \left[0, 1\right] , and the fuzzy-number valued mappings \widetilde {\mathit{\Upsilon }}, \widetilde {\mathcal{J}}:\left[\tau, \vartheta \right] = \left[0, 1\right]\to {\mathbb{E}}_{C}, as in Example 4. Then, for each \mathcal{i}\in \left[0, 1\right], we have {\mathit{\Upsilon }}_{\mathcal{i}}\left(\varkappa \right) = \left[\mathcal{i}\varkappa, (2-\mathcal{i})\varkappa \right] and {\mathcal{J}}_{\mathcal{i}}\left(\varkappa \right) = \left[\left(1-\mathcal{i}\right)\varkappa +2\mathcal{i}, \left(1-\mathcal{i}\right)\left(8-{e}^{\varkappa }\right)+2\mathcal{i}\right] and, \widetilde {\mathit{\Upsilon }}\left(\varkappa \right), \widetilde {\mathcal{J}}\left(\varkappa \right) are up and down {\lambda }_{1} -convex and up and down {\lambda }_{2} -convex fuzzy-number valued mappings, respectively. We have {\mathit{\Upsilon }}_{*}\left(\varkappa, \mathcal{i}\right) = \mathcal{i}\varkappa, {\mathit{\Upsilon }}^{*}\left(\varkappa, \mathcal{i}\right) = (2-\mathcal{i})\varkappa and {\mathcal{J}}_{\mathcal{*}}\left(\varkappa, \mathcal{i}\right) = \left(1-\mathcal{i}\right)\varkappa +2\mathcal{i} , {\mathcal{J}}^{\mathcal{*}}\left(\varkappa, \mathcal{i}\right) = \left(1-\mathcal{i}\right)\left(8-{e}^{\varkappa }\right)+2\mathcal{i} . We now computing the following

    \begin{array}{c}\frac{1}{2{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)}{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right) = 2i\left(1+\mathcal{i}\right), \\ \frac{1}{2{\lambda }_{1}\left(\frac{1}{2}\right){\lambda }_{2}\left(\frac{1}{2}\right)}{\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right) = 2\left[16-20\mathcal{i}+6{\mathcal{i}}^{2}+\left(2-3\mathcal{i}+{\mathcal{i}}^{2}\right)e\right].\end{array}
    \begin{array}{c}\frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\varkappa , \mathcal{i}\right)d\varkappa = \frac{1}{2}\underset{0}{\overset{2}{\int }}\left(\mathcal{i}\left(1-\mathcal{i}\right){\varkappa }^{2}+2{\mathcal{i}}^{2}\varkappa \right)d\varkappa = \frac{4}{3}i\left(3-\mathcal{i}\right), \\ \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\varkappa , \mathcal{i}\right)d\varkappa = \frac{1}{2}\underset{0}{\overset{2}{\int }}\left(\left(1-\mathcal{i}\right)\left(2-\mathcal{i}\right)\varkappa \left(8-{e}^{\varkappa }\right)+2\mathcal{i}\left(2-\mathcal{i}\right)\varkappa \right)d\varkappa \\ \approx \frac{\left(2-\mathcal{i}\right)}{2}\left(\frac{1903}{250}-\frac{903}{250}\mathcal{i}\right).\end{array}
    \begin{array}{c}{\mathcal{M}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma = \frac{2\mathcal{i}}{3}, \\ {\mathcal{M}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(1-\varsigma \right)d\varsigma = \frac{\left(2-\mathcal{i}\right)\left[\left(1-\mathcal{i}\right)\left(8-{e}^{2}\right)+2\mathcal{i}\right]}{3}, \end{array}
    \begin{array}{c}{\mathcal{N}}_{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma = \frac{4{\mathcal{i}}^{2}}{3}, \\ {\mathcal{N}}^{\mathcal{*}}\left(\left(\tau , \vartheta \right), \mathcal{i}\right){\int }_{0}^{1}{\lambda }_{1}\left(\varsigma \right){\lambda }_{2}\left(\varsigma \right)d\varsigma = \frac{2\left(2-\mathcal{i}\right)\left(7-5\mathcal{i}\right)}{3}, \end{array}

    for each \mathcal{i}\in \left[0, 1\right], that means

    2\left[\mathcal{i}\left(1+\mathcal{i}\right), \left[16-20\mathcal{i}+6{\mathcal{i}}^{2}+\left(2-3\mathcal{i}+{\mathcal{i}}^{2}\right)e\right]\right]{\supseteq }_{I}\left[\frac{2}{3}\mathcal{i}\left(2+\mathcal{i}\right), \\\frac{\left(2-\mathcal{i}\right)}{2}\left(\frac{1903}{250}-\frac{903}{250}\mathcal{i}\right)\right] +\frac{1}{3}\left[2\mathcal{i}\left(1+2\mathcal{i}\right), \left(2-\mathcal{i}\right)\left[\left(1-\mathcal{i}\right)\left(8-{e}^{2}\right)-8\mathcal{i}+14\right]\right] ,

    hence, Theorem 8 is demonstrated.

    The H-H Fejér inequalities for up and down \lambda -convex fuzzy number valued mappings are now presented. The second H-H Fejér inequality for up and down \lambda -convex fuzzy number valued mapping is firstly obtained.

    Theorem 9. Let \widetilde {\mathit{\Upsilon }}:\left[\tau, \vartheta \right]\to {\mathbb{E}}_{C} be an up and down \lambda -convex fuzzy number valued mapping with \lambda :[0, 1]\to {\mathbb{R}}^{+} , whose \mathcal{i} -levels define the family of i-v-ms {\mathit{\Upsilon }}_{\mathcal{i}}:\left[\tau, \vartheta \right]\subset \mathbb{R}\to {\mathcal{X}}_{I}^{+} are given by {\mathit{\Upsilon }}_{\mathcal{i}}\left(\varkappa \right) = \left[{\mathit{\Upsilon }}_{*}\left(\varkappa, \mathcal{i}\right), {\mathit{\Upsilon }}^{*}\left(\varkappa, \mathcal{i}\right)\right] for all \varkappa \in \left[\tau, \vartheta \right] and for all \mathcal{i}\in \left[0, 1\right] . If \widetilde {\mathit{\Upsilon }}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\tau, \vartheta \right], \mathcal{i}\right)} and \mathfrak{B}:\left[\tau, \vartheta \right]\to \mathbb{R}, \mathfrak{B}\left(\varkappa \right)\ge 0, symmetric with respect to \frac{\tau +\vartheta }{2}, then

    \frac{1}{\vartheta -\tau }\odot \left(FA\right){\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}\left(\varkappa \right)\oplus \mathfrak{B}\left(\varkappa \right)d\varkappa {\supseteq }_{\mathbb{F}}\left[{\mathit{\Upsilon }}\left(\tau \right) \oplus {\mathit{\Upsilon }}\left(\vartheta \right)\right]\odot {\int }_{0}^{1}\varsigma \mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma . (43)

    Proof. Let \widetilde {\mathit{\Upsilon }} be an up and down \lambda -convex fuzzy number valued mapping. Then, for each \mathcal{i}\in \left[0, 1\right], we have

    \begin{array}{c} {\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)B\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)\\ \le \left(\lambda \left(\varsigma \right){\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+\lambda \left(1-\varsigma \right){\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\right)B\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right), \\ {\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)B\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)\\ \ge \left(\lambda \left(\varsigma \right){\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+\lambda \left(1-\varsigma \right){\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right)B\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right).\end{array} (44)

    And

    \begin{array}{c} {\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\\ \le \left(\lambda \left(1-\varsigma \right){\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+\lambda \left(\varsigma \right){\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right), \\ {\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\\ \ge \left(\lambda \left(1-\varsigma \right){\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+\lambda \left(\varsigma \right){\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right).\end{array} (45)

    After adding (44) and (45), and integrating over \left[0, 1\right], we get

    \begin{array}{c} {\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma +{\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)\left\{\lambda \left(\varsigma \right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)+\lambda \left(1-\varsigma \right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\right\}\\ +{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\left\{\lambda \left(1-\varsigma \right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)+\lambda \left(\varsigma \right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\right\}\end{array}\right]d\varsigma , \\ {\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma +{\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ \ge {\int }_{0}^{1}\left[\begin{array}{c}{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)\left\{\lambda \left(\varsigma \right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)+\lambda \left(1-\varsigma \right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\right\}\\ +{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\left\{\lambda \left(1-\varsigma \right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)+\lambda \left(\varsigma \right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\right\}\end{array}\right]d\varsigma , \end{array}
    \begin{array}{c} = 2{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right){\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)\end{array}d\varsigma +2{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right){\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\end{array}d\varsigma , \\ = 2{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right){\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)\end{array}d\varsigma +2{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right){\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\end{array}d\varsigma .\end{array}

    Since \mathfrak{B} is symmetric, then

    \begin{array}{c} {\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ +{\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ \le 2\left[{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\right]{\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\end{array}d\varsigma , \\ {\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ +{\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ \ge 2\left[{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right]{\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\end{array}d\varsigma .\end{array} (46)

    Since

    \begin{array}{c} {\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ = {\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ = \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa \\ {\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ = {\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ = \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa .\end{array} (47)

    Then from (47), (46) we have

    \begin{array}{c} \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa \le \left[{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\right]{\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\end{array}d\varsigma , \\ \\ \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa \ge \left[{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right]{\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\end{array}d\varsigma , \end{array}

    that is

    \left[\frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa , \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa \right]
    {\supseteq }_{I}\left[{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right), {\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right]{\int }_{0}^{1}\begin{array}{c}\lambda \left(\varsigma \right)B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\end{array}d\varsigma ,

    hence

    \frac{1}{\vartheta -\tau }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\odot \mathfrak{B}\left(\varkappa \right)d\varkappa {\supseteq }_{\mathbb{F}}\left[\widetilde {\mathit{\Upsilon }}\left(\tau \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)\right]\odot {\int }_{0}^{1}\lambda \left(\varsigma \right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma .

    Now, generalizing the first H-H Fejér inequalities for classical convex functions and we build the first H-H Fejér inequality for up and down \lambda -convex fuzzy number valued mapping.

    Theorem 10. Let \widetilde {\mathit{\Upsilon }}:\left[\tau, \vartheta \right]\to {\mathbb{E}}_{C} be an up and down \lambda -convex fuzzy number valued mapping with \lambda :[0, 1]\to {\mathbb{R}}^{+} , whose \mathcal{i} -levels define the family of i-v-ms {\mathit{\Upsilon }}_{\mathcal{i}}:\left[\tau, \vartheta \right]\subset \mathbb{R}\to {\mathcal{X}}_{I}^{+} are given by {\mathit{\Upsilon }}_{\mathcal{i}}\left(\varkappa \right) = \left[{\mathit{\Upsilon }}_{*}\left(\varkappa, \mathcal{i}\right), {\mathit{\Upsilon }}^{*}\left(\varkappa, \mathcal{i}\right)\right] for all \varkappa \in \left[\tau, \vartheta \right] and for all \mathcal{i}\in \left[0, 1\right] . If \widetilde {\mathit{\Upsilon }}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\tau, \vartheta \right], \mathcal{i}\right)} and \mathfrak{B}:\left[\tau, \vartheta \right]\to \mathbb{R}, \mathfrak{B}\left(\varkappa \right)\ge 0, symmetric with respect to \frac{\tau +\vartheta }{2}, and {\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa > 0 , then

    \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right){\supseteq }_{\mathbb{F}}\frac{2\lambda \left(\frac{1}{2}\right)}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\odot \mathfrak{B}\left(\varkappa \right)d\varkappa . (48)

    Proof. Since \widetilde {\mathit{\Upsilon }} is an up and down \lambda -convex, then for \mathcal{i}\in \left[0, 1\right], we have

    \begin{array}{c} {\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\le \lambda \left(\frac{1}{2}\right)\left({\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\right), \\ {\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\ge \lambda \left(\frac{1}{2}\right)\left({\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\right).\end{array} (49)

    Since \mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right) = \mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right) , then by multiplying (48) by \mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right) and integrate it with respect to \varsigma over \left[0, 1\right], we obtain

    \begin{array}{c} {\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right){\int }_{0}^{1}\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ \le \lambda \left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ +{\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \end{array}\right), \\ {\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right){\int }_{0}^{1}\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ \ge \lambda \left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ +{\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \end{array}\right).\end{array} (50)

    Since

    \begin{array}{c} {\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ = {\int }_{0}^{1}{\mathit{\Upsilon }}_{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ = \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa \\ {\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta , \mathcal{i}\right)\mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ = {\int }_{0}^{1}{\mathit{\Upsilon }}^{*}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta , \mathcal{i}\right)\mathfrak{B}\left(\varsigma \tau +\left(1-\varsigma \right)\vartheta \right)d\varsigma \\ = \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa .\\ \end{array} (51)

    Then from (51), (50) we have

    \begin{array}{c} {\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\le \frac{2\lambda \left(\frac{1}{2}\right)}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa , \\ {\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\ge \frac{2\lambda \left(\frac{1}{2}\right)}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa , \end{array}

    from which, we have

    \begin{array}{c} \left[{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right), {\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right)\right]{\supseteq }_{I}\frac{2\lambda \left(\frac{1}{2}\right)}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }\left[{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa , {\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa \right], \end{array}

    that is

    \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right){\supseteq }_{\mathbb{F}}\frac{2\lambda \left(\frac{1}{2}\right)}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\odot \mathfrak{B}\left(\varkappa \right)d\varkappa .

    This completes the proof.

    Remark 6. From Theorem 9 and 10, we clearly see that:

    If \mathfrak{B}\left(\varkappa \right) = 1 , then we acquire the inequality (25).

    Let \mathcal{i} = 1 and \lambda \left(\varsigma \right) = \varsigma . Then from (43) and (48), we acquire the following inequality, see [1]:

    {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right)\supseteq \frac{1}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }\left(IA\right){\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}\left(\varkappa \right)\mathfrak{B}\left(\varkappa \right)d\varkappa \supseteq \frac{{\mathit{\Upsilon }}\left(\tau \right)+{\mathit{\Upsilon }}\left(\vartheta \right)}{2} . (52)

    If \widetilde {\mathit{\Upsilon }} is lower up and down convex fuzzy-number valued mapping on [\tau, \vartheta] and \lambda \left(\varsigma \right) = \varsigma, then we acquire the following coming inequality, see [33]:

    \widetilde {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right){\le }_{\mathbb{F}}\frac{1}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }\odot \left(FA\right){\int }_{\tau }^{\vartheta }\widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\odot \mathfrak{B}\left(\varkappa \right)d\varkappa {\le }_{\mathbb{F}}\frac{\widetilde {\mathit{\Upsilon }}\left(\tau \right) \oplus \widetilde {\mathit{\Upsilon }}\left(\vartheta \right)}{2} . (53)

    If \widetilde {\mathit{\Upsilon }} is lower up and down convex fuzzy-number valued mapping on [\tau, \vartheta] with \mathcal{i} = 1 and \lambda \left(\varsigma \right) = \varsigma, then from (43) and (48) we acquire the following coming inequality, see [45]:

    {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right){\le }_{I}\frac{1}{\vartheta -\tau }\left(IA\right){\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}\left(\varkappa \right)d\varkappa {\le }_{I}\frac{{\mathit{\Upsilon }}\left(\tau \right)+{\mathit{\Upsilon }}\left(\vartheta \right)}{2} . (54)

    If \widetilde {\mathit{\Upsilon }} is lower up and down convex fuzzy-number valued mapping on [\tau, \vartheta] with \mathcal{i} = 1 and \lambda \left(\varsigma \right) = \varsigma , then from (43) and (48) we acquire the following coming inequality, see [45]:

    {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right){\le }_{I}\frac{1}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }\left(IA\right){\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}\left(\varkappa \right)\mathfrak{B}\left(\varkappa \right)d\varkappa {\le }_{I}\frac{{\mathit{\Upsilon }}\left(\tau \right)+{\mathit{\Upsilon }}\left(\vartheta \right)}{2} . (55)

    Let \lambda \left(\varsigma \right) = \varsigma, and {\mathit{\Upsilon }}_{*}(\varkappa, \mathcal{i}) = {\mathit{\Upsilon }}^{*}(\varkappa, \mathcal{i}) with \mathcal{i} = 1 . Then from (43) and (48), we obtain following classical Fejér inequality.

    {\mathit{\Upsilon }}\left(\frac{\tau +\vartheta }{2}\right)\le \frac{1}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}\left(\varkappa \right)\mathfrak{B}\left(\varkappa \right)d\varkappa \le \frac{{\mathit{\Upsilon }}\left(\tau \right)+{\mathit{\Upsilon }}\left(\vartheta \right)}{2} . (56)

    Example 6. We consider \lambda \left(\varsigma \right) = \varsigma, for \varsigma \in \left[0, 1\right] , and the fuzzy-number valued mapping {\mathit{\Upsilon }}:\left[0, 2\right]\to {\mathbb{E}}_{C} defined by,

    \widetilde {\mathit{\Upsilon }}\left(\varkappa \right)\left(\theta \right) = \left\{\begin{array}{c}\frac{\theta -2+{\varkappa }^{\frac{1}{2}}}{\frac{3}{2}-2-{\varkappa }^{\frac{1}{2}}} \;\;\;\theta \in \left[2-{\varkappa }^{\frac{1}{2}}, \frac{3}{2}\right]\\ \frac{2+{\varkappa }^{\frac{1}{2}}-\theta }{2+{\varkappa }^{\frac{1}{2}}-\frac{3}{2}} \;\;\;\theta \in (\frac{3}{2}, 2+{\varkappa }^{\frac{1}{2}}]\\ 0 \;\;\;\;\;\;{\rm{otherwise}}\end{array}\right. .

    Then, for each \mathcal{i}\in \left[0, 1\right], we have {\mathit{\Upsilon }}_{\mathcal{i}}\left(\varkappa \right) = \left[\left(1-\mathcal{i}\right)\left(2-{\varkappa }^{\frac{1}{2}}\right)+\frac{3}{2}\mathcal{i}, \left(1-\mathcal{i}\right)\left(2+{\varkappa }^{\frac{1}{2}}\right)+\frac{3}{2}\mathcal{i}\right] . Since end point mappings {\mathit{\Upsilon }}_{*}\left(\varkappa, \mathcal{i}\right), {\mathit{\Upsilon }}^{*}\left(\varkappa, \mathcal{i}\right) are convex mappings for each \mathcal{i}\in [0, 1] , then {\mathit{\Upsilon }}\left(\varkappa \right) is up and down convex fuzzy-number valued mapping. If

    \mathfrak{B}\left(\varkappa \right) = \left\{\begin{array}{c}\sqrt{\varkappa }, \sigma \in \left[0, 1\right], \\ \sqrt{2-\varkappa }, \sigma \in \left(1, 2\right], \end{array}\right.

    then \mathfrak{B}\left(2-\varkappa \right) = \mathfrak{B}\left(\varkappa \right)\ge 0 , for all \varkappa \in \left[0, 2\right] . Since {\mathit{\Upsilon }}_{*}\left(\varkappa, \mathcal{i}\right) = \left(1-\mathcal{i}\right)\left(2-{\varkappa }^{\frac{1}{2}}\right)+\frac{3}{2}\mathcal{i} and {\mathit{\Upsilon }}^{*}\left(\varkappa, \mathcal{i}\right) = \left(1-\mathcal{i}\right)\left(2+{\varkappa }^{\frac{1}{2}}\right)+\frac{3}{2}\mathcal{i} . Now we compute the following:

    \begin{array}{c}\frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }\left[{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\right]\mathfrak{B}\left(\varkappa \right)d\varkappa = \frac{1}{2}{\int }_{0}^{2}\left[{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\right]\mathfrak{B}\left(\varkappa \right)d\varkappa \\ = \frac{1}{2}{\int }_{0}^{1}\left[{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\right]\mathfrak{B}\left(\varkappa \right)d\varkappa +\frac{1}{2}{\int }_{1}^{2}{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa \\ \frac{1}{\vartheta -\tau }{\int }_{\tau }^{\vartheta }\left[{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\right]\mathfrak{B}\left(\varkappa \right)d\varkappa = \frac{1}{2}{\int }_{0}^{2}\left[{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\right]\mathfrak{B}\left(\varkappa \right)d\varkappa \\ = \frac{1}{2}{\int }_{0}^{1}\left[{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\right]\mathfrak{B}\left(\varkappa \right)d\varkappa +\frac{1}{2}{\int }_{1}^{2}{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa , \end{array}
    \begin{array}{l} = \frac{1}{2}{\int }_{0}^{1}\left[\left(1-\mathcal{i}\right)\left(2-{\varkappa }^{\frac{1}{2}}\right)+\frac{3}{2}\mathcal{i}\right]\left(\sqrt{\varkappa }\right)d\varkappa +\frac{1}{2}{\int }_{1}^{2}\left[\left(1-\mathcal{i}\right)\left(2-{\varkappa }^{\frac{1}{2}}\right)+\frac{3}{2}\mathcal{i}\right]\left(\sqrt{2-\varkappa }\right)d\varkappa \\ = \frac{\mathcal{i}+5}{12}+\frac{1}{24}\left[3\pi \left(\mathcal{i}-1\right)-4\left(\mathcal{i}-4\right)\right], \\ = \frac{1}{2}{\int }_{0}^{1}\left[\left(1-\mathcal{i}\right)\left(2+{\varkappa }^{\frac{1}{2}}\right)+\frac{3}{2}\mathcal{i}\right]\left(\sqrt{\varkappa }\right)d\varkappa +\frac{1}{2}{\int }_{1}^{2}\left[\left(1-\mathcal{i}\right)\left(2+{\varkappa }^{\frac{1}{2}}\right)+\frac{3}{2}\mathcal{i}\right]\left(\sqrt{2-\varkappa }\right)d\varkappa \\ = \frac{1}{12}\left[11-5\mathcal{i}\right]+\frac{1}{24}\left[-3\pi \mathcal{i}-4\mathcal{i}+3\pi +16\right].\end{array} (57)

    And

    \begin{array}{l}\left[{\mathit{\Upsilon }}_{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}_{*}\left(\vartheta , \mathcal{i}\right)\right]{\int }_{0}^{1}\begin{array}{c}\varsigma B\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)\end{array}d\varsigma \\ = \left[4\left(1-\mathcal{i}\right)-\sqrt{2}\left(1-\mathcal{i}\right)+3\mathcal{i}\right]\left[{\int }_{0}^{\frac{1}{2}}\varsigma \sqrt{2\varsigma }d\varsigma +{\int }_{\frac{1}{2}}^{1}\varsigma \sqrt{2\left(1-\varsigma \right)}d\varsigma \right]\\ = \frac{1}{3}\left(4\left(1-\mathcal{i}\right)-\sqrt{2}\left(1-\mathcal{i}\right)+3\mathcal{i}\right), \\ \left[{\mathit{\Upsilon }}^{*}\left(\tau , \mathcal{i}\right)+{\mathit{\Upsilon }}^{*}\left(\vartheta , \mathcal{i}\right)\right]{\int }_{0}^{1}\varsigma \mathfrak{B}\left(\left(1-\varsigma \right)\tau +\varsigma \vartheta \right)d\varsigma \\ = \left[4\left(1-\mathcal{i}\right)+\sqrt{2}\left(1-\mathcal{i}\right)+3\mathcal{i}\right]\left[{\int }_{0}^{\frac{1}{2}}\varsigma \sqrt{2\varsigma }d\varsigma +{\int }_{\frac{1}{2}}^{1}\varsigma \sqrt{2\left(1-\varsigma \right)}d\varsigma \right]\\ = \frac{1}{3}\left(4\left(1-\mathcal{i}\right)+\sqrt{2}\left(1-\mathcal{i}\right)+3\mathcal{i}\right).\end{array} (58)

    From (57) and (58), we have

    \left[\frac{\mathcal{i}+5}{12}+\frac{1}{24}\left[3\pi \left(\mathcal{i}-1\right)-4\left(\mathcal{i}-4\right)\right], \frac{1}{12}\left[11-5\mathcal{i}\right]+\frac{1}{24}\left[-3\pi \mathcal{i}-4\mathcal{i}+3\pi +16\right]\right] {\supseteq }_{I}\left[\frac{1}{3}\left(4\left(1-\mathcal{i}\right)-\sqrt{2}\left(1-\mathcal{i}\right)+3\mathcal{i}\right), \frac{1}{3}\left(4\left(1-\mathcal{i}\right)+\sqrt{2}\left(1-\mathcal{i}\right)+3\mathcal{i}\right)\right], for all \mathcal{i}\in \left[0, 1\right].

    Hence, Theorem 9 is verified.

    For Theorem 10, we have

    \begin{array}{c}{\mathit{\Upsilon }}_{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right) = {\mathit{\Upsilon }}_{*}\left(1, \mathcal{i}\right) = \frac{2+\mathcal{i}}{2}, \\ {\mathit{\Upsilon }}^{*}\left(\frac{\tau +\vartheta }{2}, \mathcal{i}\right) = {\mathit{\Upsilon }}^{*}\left(1, \mathcal{i}\right) = \frac{3\left(2-\mathcal{i}\right)}{2}, \\ \end{array} (59)
    {\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa = {\int }_{0}^{\begin{array}{c}\\ 1\end{array}}\sqrt{\varkappa }d\varkappa +{\int }_{1}^{2}\sqrt{2-\varkappa }d\varkappa = \frac{4}{3},
    \begin{array}{c} \frac{1}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}_{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa = \frac{3}{4}\left[\frac{13-\mathcal{i}}{6}+\frac{\pi \left(\mathcal{i}-1\right)}{4}\right], \\ \frac{1}{{\int }_{\tau }^{\vartheta }\mathfrak{B}\left(\varkappa \right)d\varkappa }{\int }_{\tau }^{\vartheta }{\mathit{\Upsilon }}^{*}\left(\varkappa , \mathcal{i}\right)\mathfrak{B}\left(\varkappa \right)d\varkappa = \frac{3}{24}\left[\left[11-5\mathcal{i}\right]+\frac{1}{2}\left[-3\pi \mathcal{i}-4\mathcal{i}+3\pi +16\right]\right].\\ \end{array} (60)

    From (59) and (60), we have

    \left[\frac{2+\mathcal{i}}{2}, \frac{3\left(2-\mathcal{i}\right)}{2}\right]{\supseteq }_{I}\left[\frac{3}{4}\left[\frac{13-\mathcal{i}}{6}+\frac{\pi \left(\mathcal{i}-1\right)}{4}\right], \frac{3}{24}\left[\left[11-5\mathcal{i}\right]+\frac{1}{2}\left[-3\pi \mathcal{i}-4\mathcal{i}+3\pi +16\right]\right]\right].

    Hence, Theorem 10 has been verified.

    In this work, the class of up and down \lambda -convex fuzzy-number valued mappings is introduced s an extension of classical convex functions and some new Hermite-Hadamard inequalities are established by means of fuzzy order relation on fuzzy-number space. Useful examples that verify the applicability of theory developed in this study are presented. We intend to use various types of up and down convex fuzzy-number valued mappings to construct fuzzy inequalities for fuzzy-number valued mappings. We hope that this concept will be helpful for other authors to pay their roles in different fields of sciences. Future work will explore fuzzy fractional integrals to study H-H type and weighted H-H type fuzzy inclusions for up and down convex fuzzy-number valued mappings.

    The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments. The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4330052DSR12 and also, the research was funded by the project ProCode-UCM (PID2019-108528RB-C22) from the Spanish Ministerio de Ciencia e Innovación.

    The authors declare that they have no competing interests.



    [1] H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Feje´r fractional type inequalities for h-convex and harmonically h-convex interval-valued functions, Mathematics, 10 (2021), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074
    [2] S. H. Wu, M. Adil Khan, A. Basir, R. Saadati, Some majorization integral inequalities for functions defined on rectangles, J. Inequal. Appl., 2018 (2018), 146. https://doi.org/10.1186/s13660-018-1739-2 doi: 10.1186/s13660-018-1739-2
    [3] M. B. Khan, H. G. Zaini, S. Treant˘a, M. S. Soliman, K. Nonlaopon, Riemann–Liouville fractional integral inequalities for generalized preinvex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204
    [4] N. Sharma, S. K. Mishra, A. Hamdi, A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functions, Int. J. Adv. Appl. Sci., 7 (2020), 113–118. https://doi.org/10.21833/ijaas.2020.03.012 doi: 10.21833/ijaas.2020.03.012
    [5] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [6] Y. C. Kwun, M. S. Saleem, M. Ghafoor, N. Waqas, S. M. Kang, Hermite–Hadamard-type inequalities for functions whose derivatives are η-convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 44. https://doi.org/10.1186/s13660-019-1993-y doi: 10.1186/s13660-019-1993-y
    [7] M. A. Hanson, On sufficiency of the kuhn-tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. https://doi.org/10.1016/0022-247X(81)90123-2 doi: 10.1016/0022-247X(81)90123-2
    [8] B. D. Craven, B. M. Glover, Invex functions and duality, J. Aust. Math. Soc., 39 (1985), 1–20. https://doi.org/10.1017/S1446788700022126 doi: 10.1017/S1446788700022126
    [9] A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc., 28 (1986), 1–9. https://doi.org/10.1017/S0334270000005142 doi: 10.1017/S0334270000005142
    [10] S. R.Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. https://doi.org/10.1006/jmaa.1995.1057 doi: 10.1006/jmaa.1995.1057
    [11] T. Weir, V. Jeyakumar, A class of nonconvex functions and mathematical programming, Bull. Aust. Math. Soc., 38 (1988), 177–189. https://doi.org/10.1017/S0004972700027441 doi: 10.1017/S0004972700027441
    [12] T. Weir, B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8
    [13] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131.
    [14] S. S. Dragomir, On the Hadamard's inequlality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
    [15] M. A. Latif, S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absloute value are preinvex on the coordinates, Facta Univ. Ser. Math. Inform., 28 (2013), 257–270.
    [16] M. Matłoka, On some Hadamard type inequalities for (h1, h2)-preinvex functions on the coordinates, J. Inequal. Appl., 2013 (2013), 227. https://doi.org/10.1186/1029-242X-2013-227 doi: 10.1186/1029-242X-2013-227
    [17] M. Matłoka, On Some new inequalities for differentiable (h1, h2)-preinvex functions on the coordinates, Math. Stat., 2 (2014), 6–14. https://doi.org/10.13189/ms.2014.020102 doi: 10.13189/ms.2014.020102
    [18] S. Mehmood, F. Zafar, N. Yasmin, Hermite-Hadamard-Fej´er type inequalities for preinvex functions using fractional integrals, Mathematics, 7 (2019), 467. https://doi.org/10.3390/math7050467 doi: 10.3390/math7050467
    [19] M. A. Noor, K. I. Noor, S. Rashid, Some new classes of preinvex functions and inequalities, Mathematics, 7 (2019), 29. https://doi.org/10.3390/math7010029 doi: 10.3390/math7010029
    [20] S. Rashid, M. A. Latif, Z. Hammouch, Y. M. Chu, Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions, Symmetry, 11 (2019), 1448. https://doi.org/10.3390/sym11121448 doi: 10.3390/sym11121448
    [21] N. Sharma, S. K. Mishra, A. Hamdi, Hermite-Hadamard type inequality for y-Riemann-Liouville fractional integrals via preinvex functions, Int. J. Nonlinear Anal. Appl., 13 (2022), 3333–3345. https://doi.org/10.22075/IJNAA.2021.21475.2262 doi: 10.22075/IJNAA.2021.21475.2262
    [22] L. Jaulin, M. Kieffer, O. Didrit, É. Walter, Interval analysis, In: Applied interval analysis, London: Springer, 2001. https://doi.org/10.1007/978-1-4471-0249-6_2
    [23] R. E. Moore, Methods and applications of interval analysis, PA: Philadelphia, 1979. https://doi.org/10.1137/1.9781611970906
    [24] A. K. Bhurjee, G. Panda, Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions, Opsearch, 52 (2015), 156–167. https://doi.org/10.1007/s12597-014-0175-4 doi: 10.1007/s12597-014-0175-4
    [25] J. K. Zhang, S. Y. Liu, L. F. Li, Q. X. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607–631. https://doi.org/10.1007/s11590-012-0601-6 doi: 10.1007/s11590-012-0601-6
    [26] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Sets Syst., 396 (2020), 82–101. https://doi.org/10.1016/j.fss.2019.10.006 doi: 10.1016/j.fss.2019.10.006
    [27] Y. T. Guo, G. J. Ye, D. F. Zhao, W. Liu, gH-symmetrically derivative of interval-valued functions and applications in interval-valued optimization, Symmetry, 11 (2019), 1203. https://doi.org/10.3390/sym11101203 doi: 10.3390/sym11101203
    [28] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, SIAM: Philadelphia, 2009. https://doi.org/10.1137/1.9780898717716
    [29] E. J. Rothwell, M. J. Cloud, Automatic error analysis using intervals, IEEE T. Educ., 55 (2011), 9–15. https://doi.org/10.1109/TE.2011.2109722 doi: 10.1109/TE.2011.2109722
    [30] J. M. Snyder, Interval analysis for computer graphics, Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, 26 (1992), 121–130. https://doi.org/10.1145/142920.134024 doi: 10.1145/142920.134024
    [31] Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. https://doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6
    [32] N. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129–132. https://doi.org/10.1016/0165-0114(92)90256-4 doi: 10.1016/0165-0114(92)90256-4
    [33] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite–Hadamard–type inequalities for (h1, h2)–convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 149. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8
    [34] M. B. Khan, P. O. Mohammed, M. A. Noor, A. M. Alsharif, K. I. Noor, New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS Mathematics, 6 (2021), 10964–10988. https://doi.org/10.3934/math.2021637 doi: 10.3934/math.2021637
    [35] M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-𝒽-convex interval-valued functions by means of pseudo-order relation, Math. Meth. Appl. Sci., 45 (2022), 1310–1340. https://doi.org/10.1002/mma.7855 doi: 10.1002/mma.7855
    [36] N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, A. Bamhdi, A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods, Neural Comput. Applic., 34 (2022), 1837–1875. https://doi.org/10.1007/s00521-021-06807-9 doi: 10.1007/s00521-021-06807-9
    [37] U. Kulish, W. Miranker, Computer arithmetic in theory and practice, New York: Academic Press, 2014. https://doi.org/10.1016/C2013-0-11018-5
    [38] A. Alsaedi, B. Ahmad, A. Assolami, Sotiris K. Ntouyas, On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions, AIMS Mathematics, 7 (2022), 12718–12741. https://doi.org/10.3934/math.2022704 doi: 10.3934/math.2022704
    [39] B. Bede, Mathematics of fuzzy sets and fuzzy logic, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-35221-8
    [40] P. Diamond, P. E. Kloeden, Metric spaces of fuzzy sets: Theory and applications, Singapore: World Scientific, 1994. https: //doi.org/10.1142/2326
    [41] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [42] T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055
    [43] W. W. Breckner, Continuity of generalized convex and generalized concave set–valued functions, Rev. Anal. Numér. Théor. Approx., 22 (1993), 39–51.
    [44] E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Result Math., 32 (1997), 332–337. https://doi.org/10.1007/BF03322144 doi: 10.1007/BF03322144
    [45] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard–Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006
    [46] J. P. Aubin, A. Cellina, Differential inclusions: Set-valued maps and viability theory, Berlin Heidelberg: Springer-Verlag, 1984. https://doi.org/10.1007/978-3-642-69512-4
    [47] J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birkhäuser, 1990. https://doi.org/10.1007/978-0-8176-4848-0
    [48] T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 doi: 10.1016/j.fss.2017.02.001
    [49] D. L. Zhang, C. M. Guo, D. G. Chen, G. J. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 187–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [50] S. Pal, T. K. L. Wong, Exponentially concave functions and new information geometry, 2016. Available from: https://doi.org/10.48550/arXiv.1605.05819.
    [51] G. Santos-García, M. B. Khan, H. Alrweili, A. A. Alahmadi, S. S. Ghoneim, Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator, Mathematics, 10 (2022), 2756. https://doi.org/10.3390/math10152756 doi: 10.3390/math10152756
    [52] J. E. Macías-Díaz, M. B. Khan, H. Alrweili, M. S. Soliman, Some fuzzy inequalities for harmonically s-convex fuzzy number valued functions in the second sense integral, Symmetry, 14 (2022), 1639. https://doi.org/10.3390/sym14081639 doi: 10.3390/sym14081639
    [53] M. B. Khan, M. A. Noor, J. E. Macías-Díaz, M. S. Soliman, H. G. Zaini, Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation, Demonstr. Math., 55 (2022), 387–403. https://doi.org/10.1515/dema-2022-0023 doi: 10.1515/dema-2022-0023
    [54] M. B. Khan, M. A. Noor, H. G. Zaini, G. Santos-García, M. S. Soliman, The new versions of Hermite–Hadamard inequalities for pre-invex fuzzy-interval-valued mappings via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 15 (2022), 66. https://doi.org/10.1007/s44196-022-00127-z doi: 10.1007/s44196-022-00127-z
    [55] M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, New Hermite–Hadamard inequalities for convex fuzzy-number-valued mappings via fuzzy Riemann integrals, Mathematics, 10 (2022), 3251. https://doi.org/10.3390/math10183251 doi: 10.3390/math10183251
    [56] M. B. Khan, S. Treanțǎ, M. S. Soliman, Generalized preinvex interval-valued functions and related Hermite–Hadamard type inequalities, Symmetry, 14 (2022), 1901. https://doi.org/10.3390/sym14091901 doi: 10.3390/sym14091901
    [57] M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos, Soliton. Fract., 164 (2022), 112692. https://doi.org/10.1016/j.chaos.2022.112692 doi: 10.1016/j.chaos.2022.112692
    [58] M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, New class of preinvex fuzzy mappings and related inequalities, Mathematics, 10 (2022), 3753. https://doi.org/10.3390/math10203753 doi: 10.3390/math10203753
    [59] M. B. Khan, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some Fejér-type inequalities for generalized interval-valued convex functions, Mathematics, 10 (2022), 3851. https://doi.org/10.3390/math10203851 doi: 10.3390/math10203851
    [60] M. B. Khan, G. Santos-García, S. Treanțǎ, M. S. Soliman, New class up and down pre-invex fuzzy number valued mappings and related inequalities via fuzzy Riemann integrals, Symmetry, 14 (2022), 2322. https://doi.org/10.3390/sym14112322 doi: 10.3390/sym14112322
    [61] M. B. Khan, J. E. Macías-Díaz, M. S. Soliman, M. A. Noor, Some new integral inequalities for generalized preinvex functions in interval-valued settings, Axioms, 11 (2022), 622. https://doi.org/10.3390/axioms11110622 doi: 10.3390/axioms11110622
    [62] M. B. Khan, H. G. Zaini, G. Santos-García, M. A. Noor, M. S. Soliman, New class up and down λ-convex fuzzy-number valued mappings and related fuzzy fractional inequalities, Fractal Fract., 6 (2022), 679. https://doi.org/10.3390/fractalfract6110679 doi: 10.3390/fractalfract6110679
    [63] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [64] M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30
    [65] R. Kumar, A. Baz, H. Alhakami, W. Alhakami, M. Baz, A. Agrawal, et al., A hybrid model of hesitant fuzzy decision-making analysis for estimating usable-security of software, IEEE Access, 8 (2020), 72694–72712. https://doi.org/10.1109/ACCESS.2020.2987941 doi: 10.1109/ACCESS.2020.2987941
    [66] M. Ibrahim, S. Nabi, A. Baz, H. Alhakami, M. S. Raza, A. Hussain, et al., An in-depth empirical investigation of state-of-the-art scheduling approaches for cloud computing, IEEE Access, 8 (2020), 128282–128294. https://doi.org/10.1109/ACCESS.2020.3007201 doi: 10.1109/ACCESS.2020.3007201
    [67] N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, A. Bamhdi, Deep Neuro-Fuzzy System application trends, challenges, and future perspectives: A systematic survey, Artif. Intell. Rev., 2022 (2022), 1–49. https://doi.org/10.1007/s10462-022-10188-3 doi: 10.1007/s10462-022-10188-3
  • This article has been cited by:

    1. Muhammad Bilal Khan, Aleksandr Rakhmangulov, Najla Aloraini, Muhammad Aslam Noor, Mohamed S. Soliman, Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities, 2023, 11, 2227-7390, 656, 10.3390/math11030656
    2. Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Tareq Saeed, Mohamed S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, 2023, 169, 09600779, 113274, 10.1016/j.chaos.2023.113274
    3. Muhammad Bilal Khan, Adriana Cătaş, Najla Aloraini, Mohamed S. Soliman, Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings, 2023, 7, 2504-3110, 223, 10.3390/fractalfract7030223
    4. Muhammad Bilal Khan, Hakeem A. Othman, Aleksandr Rakhmangulov, Mohamed S. Soliman, Alia M. Alzubaidi, Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation, 2023, 11, 2227-7390, 1356, 10.3390/math11061356
    5. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Saeid Jafari, Abdulwadoud A. Maash, Mohamed S. Soliman, Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation, 2023, 15, 2073-8994, 862, 10.3390/sym15040862
    6. Muhammad Bilal Khan, Aziz Ur Rahman, Abdulwadoud A. Maash, Savin Treanțǎ, Mohamed S. Soliman, Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation, 2023, 12, 2075-1680, 365, 10.3390/axioms12040365
    7. Nasser Aedh Alreshidi, Muhammad Bilal Khan, Daniel Breaz, Luminita-Ioana Cotirla, New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities, 2023, 15, 2073-8994, 2123, 10.3390/sym15122123
    8. Muhammad Bilal Khan, Ali Althobaiti, Cheng-Chi Lee, Mohamed S. Soliman, Chun-Ta Li, Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities, 2023, 11, 2227-7390, 2851, 10.3390/math11132851
    9. Hafida Atti, Bouchra Ben Amma, Said Melliani, Lalla Saadia Chadli, Intuitionistic fuzzy matrix equations, 2025, 43, 0037-8712, 10.5269/bspm.67745
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1721) PDF downloads(84) Cited by(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog