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Abstract: In recent years, numerous scholars have investigated the relationship between symmetry
and generalized convexity. Due to this close relationship, generalized convexity and symmetry have
become new areas of study in the field of inequalities. With the help of fuzzy up and down relation,
the class of up and down A-convex fuzzy-number valued mappings is introduced in this study; and
weighted Hermite-Hadamard type fuzzy inclusions are demonstrated for these functions. The product
of two up and down A-convex fuzzy-number valued mappings also has Hermite-Hadamard type fuzzy
inclusions, which is another development. Additionally, by imposing some mild restrictions on up and
down A-convex (A-concave) fuzzy number valued mappings, we have introduced two new significant
classes of fuzzy number valued up and down A-convexity (A-concavity), referred to as lower up and
down A-convex (lower up and down A-concave) and upper up and down A-convex (A-concave) fuzzy
number valued mappings. Using these definitions, we have amassed many classical and novel
exceptional cases that implement the key findings. Our proven results expand and generalize several
previous findings in the literature body. Additionally, we offer appropriate examples to corroborate our
theoretical findings.
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1. Introduction

Numerous academics have been working to generalize and extend the classical convexity in
various ways recently, and they have found new integral inequalities for this convexity that has been
generalized and extended; for examples, see [1-6]. Invex functions, a helpful extension of convex
functions, were first presented by Hanson [7] in 1981. The class of invex functions is identical to the
class of functions whose stationary points are global minima, as demonstrated by Craven and
Glover [8]. Ben-Israel and Mond [9] established the idea of preinvex functions. Preinvex functions are
nonconvex functions, as is common knowledge. The study and applications of this newly defined
nonconvex function in optimization theory and related domains were the subject of several research
articles that were motivated by this idea, see [10—12].

Hermite-Hadamard (H-H) inequality, an extension of the traditional H-H inequality, was derived
by Noor [13] for the preinvex functions. The idea of classical convex functions on coordinates was
developed by Dragomir [14], who also illustrated H-H type inequalities for these functions.
Additionally, Latif and Dragomir [15] discovered several H-H type inequalities for functions whose
second-order partial derivatives in absolute value are preinvex on the coordinates and defined preinvex
functions on the coordinates. Using the symmetry of the positive function, Matoka [16] proposed the
class of (h1, h2)-preinvex functions on the coordinates and proved H-H and Fej'er type inequalities.
See [17-21] for further information on preinvex functions and associated inequalities.

Moore was the first person to think about interval analysis [22]. Moore [23] conducted research
on interval techniques for finding upper and lower limits on the precise values of integrals of interval-
valued mappings (i-v-ms) in 1979. He also explored the integration of interval-valued mappings. In
order to find effective solutions, Bhurjee and Panda [24] established a generic multi-objective
fractional programming problem whose parameters in the objective functions and constraints are
intervals. In order to develop KKT optimality requirements for LU-prinvex and invex optimization
problems with an interval-valued objective function, Zhang et al. [25] expanded the notions of invexity
and preinvexity to interval-valued mappings. For interval-valued mappings, Zhao et al. [26]
established the interval double integral and provided Chebyshev type inequalities. Areas of economics,
chemical engineering, beam physics, control circuitry design, global optimization, robotics, error
analysis, signal processing, and computer graphics are among the practical uses of interval analysis
(see [27-31]).

Remember that fuzzy interval-valued functions are fuzzy number valued mappings. On the other
hand, Nanda and Kar [32] were the first to introduce the idea of convex fuzzy number valued mappings.
In order to offer new versions of H-H and fractional type of inequalities, Khan et al. [33, 34] presented
h-convex fuzzy number valued mappings and (h1, h 2)-convex fuzzy number valued functions and got
some by utilizing fuzzy Riemann Liouville Fractional Integrals and fuzzy Riemannian integrals,
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respectively. Similarly, using fuzzy order relations and fuzzy Riemann Liouville Fractional Integrals,
Sana and Khan et al. [35] developed new iterations of fuzzy fractional H-H inequalities for
harmonically convex fuzzy number valued mappings. We direct the readers to [36—67] and the
references therein for further information on extended convex functions, fuzzy intervals, and fuzzy
integrals.

Zhao et al. [5, 26] and Zhang et al. [49] serve as major sources of inspiration for the work in this
study report. As an extension of classical convex functions, we introduce the concept of up and down
A-convex fuzzy-number valued mapping via up and down fuzzy relation and provide new H-H type
fuzzy inclusions for these functions. For the result of two up and down A-convex fuzzy-number valued
mappings, we additionally give H-H type fuzzy inclusions. Moreover, we use some appropriate cases
to highlight our findings. As a specific situation, the results for up and down A-convex fuzzy-number
valued mapping are included in the conclusions drawn in this study. Using fuzzy Riemann integrals,
we can look at H-H type inclusions for up and down A-convex fuzzy-number valued mapping that have
fuzzy number values.

The following is how this paper is organized: We provide a few important introductions in
Section 2. Moreover, Section 2 also provides the definition of up and down A-convex fuzzy-number
valued mapping and some related basic concepts. Section 3 provides an analysis of H-H type fuzzy
inclusions. In addition, we provide H-H type fuzzy inclusions for the product of two up and down A-
convex fuzzy-number valued mappings. Moreover, we have proved the weighted H-H type fuzzy
inclusions for up and down A-convex fuzzy-number valued mapping. In Section 3, certain unique
instances of these results are also examined. We examine the study's findings and potential directions
in Section 4.

2. Preliminaries

Let X; be the space of all closed and bounded intervals of R and w € X be defined by
w = [w, 0] ={x €R|lw, <x¥ <w'}, (w, w* €R). 1)

If w, = w", then w is said to be degenerate. In this article, all intervals will be non-degenerate
intervals. If w, = 0, then [w,, w*] is called a positive interval. The set of all positive intervals is
denoted by X" and defined as X' = {[w,, w*]: [w,, w*] € X; and w, = 0}.

Let ¢ € R and ¢ - w be defined by

[¢w,, cw*] if ¢ > 0,
¢ w=1{0} if¢=0, (2)
[¢w*, ¢w,] if ¢ <O.

Then the Minkowski difference x — w, addition w + x and w X x for w, x € X are defined by

[x, ] + [w,, 0] =[x, +w,, ¥ +w’] ©)
[x,,%*] X [w,, w*] = [min{x,w,, ¥ w,, x,w", ¥ w"}, max{z,w,, ¥ w,, x,W", ¥'W"}], (4)
[x,,%*] — [w,, 0*] = [z, — ", z* —w,], (5)

Remark 1. (i) For given [x,,x*], [w,, w*] € X, the relation " 2, " defined on X, by
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[w,, w*] 2; [x,,x"] if and only if, w, < x,, ¥* < w7, (6)

for all [x,,x*], [w,, w*] € X}, it is a partial interval inclusion relation. The relation [w,, w*] 2; [x,, x]
coincident to [w,, w*] 2 [x,,x*] on X,. It can be easily seen that “2,” looks like “up and down” on the
real line R, so we call " 2; " is “up and down” (or “UD” order, in short) [49].

(ii) For given [x,,x*], [w,, w*] € X}, we say that [x,,x"] <; [w,, w*] if and only if x, < w,,
¥ <w*orx, <w, ¥ <w’, itis an partial interval order relation. The relation [x,,x"] <; [w,, w*]
coincident to [x,,x*] < [w,, w*] on X,. It can be easily seen that " <, " looks like “left and right” on
the real line R, so we call " <; " is “left and right” (or “LR” order, in short) [48,49].

For [x,,%*], [w,, w*] € X,, the Hausdorff-Pompeiu distance between intervals [x,,x*] and
[w,, w*] is defined by

dy ([x., %], [w,, w]) = max{lz. — w.], |¥" — w*|}. )

It is familiar fact that (X}, dy) is a complete metric space [40,46,47].
Definition 1. [39,40] A fuzzy subset L of R is distinguished by a mapping ®: R = [0,1] called the
membership mapping of L. That is, a fuzzy subset L of R is a mapping ©: R = [0,1]. So for further
study we have choosed this notation. We appoint E to denote the set of all fuzzy subsets of R.
Definition 2. [39,40] Given © € E, the level sets or cut sets are given by [®]* = {x € R| ®(3) > 4}
forall < € [0,1] and by [®]° = {3 € R| ®(3) > 0}. These sets are known as 4-level sets or i-cut sets
of 1.
Definition 3. [41] Let ® € E. Then, © is known as fuzzy number or fuzzy number if following
properties are satisfied by m:
(1) @ should be normal if there exists ¥ € R and () = 1;
(2) @ should be upper semi continuous on R if for given # € R, there exist € > 0 there exist § > 0
such that ®(x) — ©(s) < € for all »#,5s € R with | — 5| < §;

(3) © should be fuzzy convex that is Ha((l —¢)n+ gs) > min(ﬁ)(z), tTa(s)), for all x,s € Rand ¢ €

[0, 1];

(4) ® should be compactly supported that is cl{¢ € R| ©(») > 0} is compact.
We appoint E to denote the set of all fuzzy numbers of R.

Proposition 1. [42] Let ©, ¥ € E.. Then relation " <g " given on E. by

® <y ¥ if and only if, [®]* <; [¥]*, for every 4 € [0,1], (8)

it is left and right order relation.
Proposition 2. [57] Let ©, ¥ € E.. Then relation " 2 " given on E, by

® 2 ¥ if and only if, [®]* 2, [%]*, for every 4 € [0, 1], (9)

it is up and down order relation on [E.
Remember the approaching notions, which are offered in literature. If ®,% € E. and 4 € R, then,
for every 4 € [0, 1], the arithmetic operations are defined by

[¢ © ®]* = ¢.[B®]" (10)

[® ® ¥ = [®]" + []°, (11)
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[® @ F]* = [®] x [F]". (12)
These operations follow directly from the Egs. (2)—(4), respectively.
Theorem 1. [40] The space E. dealing with a supremum metric i.e., for ©, ¥ € E.

doo(ﬁjr i) = sup dH([ﬁf)]/’;i [i]/L)J (13)

0=<i<1

is a complete metric space, where H denote the well-known Hausdorff metric on space of intervals.
2.1. Riemann integral operators for interval and fuzzy-number valued mappings

Now we define and discuss some properties fractional integral operators of interval and fuzzy-
number valued mappings.
Theorem 2. [40,41] If YV:[r,9] € R - X is an interval-valued mapping (i-v-m) satisfying that
Y (x) = [Y.(3%),Y*(3)], then Y is Aumann integrable (IA-integrable) over [t,9] if and only if, Y, ()
and Y (») both are integrable over [7, 9] such that

(A) [7 Y Goyd = [ [2Y.00dw, [° Y*(%)d}f]. (14)

Definition 4. [48] LetY:1 ¢ R - E is called fuzzy-number valued mapping. Then, for every 4 €
[0,1], as well as 4-levels define the family of i-v-ms Y;:1 € R — X satisfying that ¥;(») =
[Y,(3¢,1),Y*(3,1)] for every x € I. Here, for every 4 € [0, 1], the endpoint real-valued mappings
Y.(+,1),Y*(5,4): 1 > R are called lower and upper mappings of Y.
Definition 5. [48] Let Y:I € R — E. be a fuzzy-number valued mapping. Then ¥ () is said to be
continuous at »# € I, if for every 4 € [0, 1], ¥;(3) is continuous if and only if, both endpoint mappings
Y.(»,4) and Y (3, 4) are continuous at » € I.
Definition 6. [41] Let V:[1,9] € R - E. is fuzzy-number valued mapping. The fuzzy Aumann

integral ((FA)-integral) of ¥ over [r,9], denoted by (FA) ff Y (3)da, is defined level-wise by

((Fa) [P TGodn|” = 1a) [P V6o d = {7 ¥ Ge, ) Y, 4) € S}, (15)
where S(¥;) = {Y(.,4) - R:Y(.,4) is integrable and Y (3, 1) € Y;(3)}, for every 4 € [0,1]. ¥ is

(FA)-integrable over [z, 9] if (FA) [ ¥ (x)dx € Eq.

Theorem 3. [42] Let V:[r,9] € R = E. be a fuzzy-number valued mapping, as well as 4-levels,
define the family of i-v-ms ¥;: [t,9] € R — X satisfying that ¥; () = [V, (3, 1), Y* (%, 4)] for every
% € [1,9] and for every 4 € [0, 1]. Then Y is (FA)-integrable over [r,9] if and only if, ¥,(»,4) and
Y*(,4) both are integrable over [r,9]. Moreover, if ¥ is (FA)-integrable over [z, 9], then

[(FA) [P PG| = |7V Cotddn, [T 1 Go0)dn| = U14) [TV, Gy, (16)
for every 4 € [0, 1].
The family of all (FA) -integrable fuzzy-number valued mappings over [t,9] are denoted
by T‘/l([r,ﬁ],fi)-
Breckner discussed the coming emerging idea of interval-valued convexity in [43].
Ai-v-mY:1I = [1,9] —» X is called convex i-v-m if
Y(gx+ (1—¢6)s) 26Y () + (1 — )Y (s), (17)
forall »,y € [1,9],¢ € [0, 1], where X is the collection of all real valued intervals. If (17) is reversed,
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then Y is called concave.
Definition 7. [32] The fuzzy-number valued mapping Y: [t,9] — E. is called convex fuzzy-number
valued mapping on [7, 9] if

Y+ (1-9s)<pcOQYG) B A -¢)OT(s), )
for all »#,s € [1,9],¢ € [0, 1], where Y (3¢) =f O for all € [z,9]. If (18) is reversed then, ¥ is called
concave fuzzy-number valued mapping on [7,9]. Y is affine if and only if it is both convex and
concave fuzzy-number valued mapping.
Definition 8. [49] The fuzzy-number valued mapping ¥: [r,9] — E is called up and down convex
fuzzy-number valued mapping on [z, 9] if

Y+ (A=) 2% cOTG) B (L-¢) OT(s), )

for all »,s € [t,9],¢ € [0, 1], where Y (3¢) =F O for all % € [7,9]. If (19) is reversed then, Y is called
up and down concave fuzzy-number valued mapping on [t,9]. ¥ is up and down affine fuzzy-number
valued mapping if and only if it is both up and down convex and, up and down concave fuzzy-number
valued mapping.
Definition 9. [62] Let K be convex set and 1: [0, 1] € K - R™ such that A # 0. Then fuzzy-number
valued mapping ¥: K — E, is said to be up and down A-convex on K if

Y+ (1= 25 A) OYC) DAL —¢) OT(s), (20)
for all %,s € K, ¢ € [0, 1], where Y (3) > 0. The fuzzy-number valued mapping Y: K — E is said to
be up and down A-concave on K if inequality (20) is reversed. Moreover, ¥ is known as affine up and
down A-convex fuzzy-number valued mapping on K if

Y+ (1=¢s) =) OYG) ®AL—¢) OT(s), (21)
forall »#,5s € K,¢ € [0, 1], where Y (%) > 0.
Remark 2. The up and down A-convex fuzzy-number valued mappings have some very nice properties
similar to convex fuzzy-number valued mapping,
1) if Y is up and down A-convex fuzzy-number valued mapping, then a¥ is also up and down A-

convex for a > 0.

2) if ¥ and T both are up and down A-convex fuzzy-number valued mappings, then max(? (), T (%))

is also up and down A-convex fuzzy-number valued mapping.
Here, we will go through a few unique exceptional cases of up- and down-convex fuzzy-number
valued mappings:
(i) If A(¢) = ¢%, then up and down A-convex fuzzy-number valued mapping becomes up and down
s-convex fuzzy-number valued mapping, that is
Fen+(1=9s) 2¢OV B (1 -¢)°* OY(s),Vu,s€K,c€e[0,1].
(i)  IfA(g) = ¢, then up and down A-convex fuzzy-number valued mapping becomes up and down
convex fuzzy-number valued mapping, see [49], that is
Fen+(1=9s) 2, c OY0) D (1 —¢) OY(s),Vu,s€K,¢e0,1].
(iii))  If A(¢) = 1, then up and down A-convex fuzzy-number valued mapping becomes up and down
P-convex fuzzy-number valued mapping, that is
Y(cx+(1—¢)s) 2 Y(0) DY(5),V n,s € K,¢ €[0,1].
Note that, there are also new special cases (i) and (iii) as well.
Theorem 4. [62] Let K be convex set, non-negative real valued function A: [0, 1] € K = R such that
A # 0and let Y: K — E. be a fuzzy-number valued mapping, whose i-levels define the family of i-v-
ms ¥;: K € R - X;* c X are given by
Y60 = [Y.(3,4), Y (1, )], (22)
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for all % € K and for all 4 € [0,1]. Then Y is up and down A-convex on K, if and only if, for all 4 €
[0,1], Y.(3,4) is A-convex and Y"*(», 1) is A-concave.
Remark 3. If Y,(3,41) = Y*(3,4) with 4 = 1, then up and down A-convex fuzzy number valued
function reduces to the A-convex function.

IfY,(3,4) =Y*(,4) with 4« = 1 and A(¢) = ¢* with s € (0,1), then up and down A-convex
fuzzy number valued function reduces to the s-convex function.

If Y, (3,4) = Y*(%,4) with 4« = 1 and A(¢) = ¢ with s € (0,1), then up and down A-convex
fuzzy number valued function reduces to the convex function.

If Y,(»,1) = Y*(3,4) with 2 =1 and A(¢) = 1, then up and down A-convex fuzzy number
valued function reduces to the P-convex function.
Example 1. We consider A(¢) = ¢, for ¢ € [0,1] and the fuzzy-number valued mapping Y: [0, 1] —»
E. defined by

Z o € [0,2x?]

B 232
Y(}{)(O') = 4”227;‘7 = (2%2,4}{2].
0 otherwise

Then, for each 4 € [0,1], we have Y;(3) = [24x?, (4 — 24)x?]. Since end point functions
Y. (»,4), Y*(3,4) are A-convex and A-concave functions for each 4 € [0, 1], respectively. Hence ¥ (3)
is up and down A-convex fuzzy-number valued mapping.
Definition 10. [62] Let V: [t,9] - E. be a fuzzy-number valued mapping, whose i-levels define the
family of i-v-ms ¥;: [t,9] » X © X are given by

Y,00) = [L.066), Y (o D], (23)
for all % € [t,9] and for all 4 € [0,1]. Then, Y is lower up and down A-convex (A-concave) fuzzy-
number valued mapping on [z, 9], if and only if, for all 4 € [0, 1], ¥, (3¢, 4) is a A-convex (A-concave)
mapping and Y (3, 4) is a A-affine mapping.
Definition 11. [62] Let Y: [t,9] = E. be a fuzzy-number valued mapping, whose i-levels define the
family of i-v-ms ¥;: [t,9] » X © X are given by
Y00 = [V.06,0), 7 (5, 0)], (24)

forall 2 € [t,9] and for all < € [0, 1]. Then, Y is an upper up and down A-convex (A-concave) fuzzy-
number valued mapping on [z, 9], if and only if, for all < € [0, 1], ¥, (3, 4) is an A-affine mapping and
Y*(3,4) is a A-convex (A-concave) mapping.
Remark 4. If A(¢) = ¢, then both concepts “up and down A-convex fuzzy-number valued mapping”
and classical “convex fuzzy-number valued mapping, see [32]” behave alike when ¥ is lower up and
down convex fuzzy-number valued mapping.

Both concepts “convex interval-valued mapping, see [43]” and “left and right A-convex interval-
valued mapping, see [49]” are coincident when V" is lower up and down A-convex fuzzy-number
valued mapping with 7 = 1.

3. Main results
The fuzzy Hermite-Hadamard inequalities for up and down A-convex fuzzy-number valued
mappings are established in this section. Additionally, several instances are provided to support the

theory produced in this study's application.
Theorem 5. Let ¥: [1,9] - E¢ be an up and down A-convex fuzzy-number valued mapping with non-
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negative real valued function A: [0,1] - R* and 4 G) # 0, whose i-levels define the family of i-v-
ms Y;:[1,9] € R - X} are given by Y; () = [V,(%,4),Y*(%,4)] for all » € [t,9] and for all 4 €
[0,1]. If Y € FeA([r,91,4) then

()OYCw)ﬁaTOGMIYwM%n{Hﬂ@YWH®fl®Mc (25)
If Y is up and down A-concave fuzzy-number valued mapping, then (25) is reversed.
O T (52) <r 5= O (FA) [T TGodx <5 [F(1) @ T(9)] © f, () d. (26)

Proof. Let Y:[r,9] - E. be an up and down A-convex fuzzy-number valued mapping. Then, for
a,b € [t,9], we have

T(ga+ (1=¢)b) 25 2(s) O ¥ (a) B A1 —¢) O Y (b),

If¢ = %, then we have

= O T (52) 2¢ T(a) @ T (b).

/-\
N
\/

Leta=¢t+ (1 —¢)9 and b = (1 — ¢)T + ¢9. Then, above inequality we have
S OT(57) 2 T+ U =09) @T(( -9t +9),
Therefore, for every 4 € [0, 1], we have
1(1) (TW ) <Y.(st+ (1 —¢)9,4) +Y.((1— )T+ ¢9,4),
Aé) (Hﬁ ) >V (t+ (1 —¢)9,4)+ Y ((1—¢)t+¢9,4).
Then
@fol Y. (#"i) d¢ < fol Y.(¢t+ (1 —¢)9,4)dg + follf*((l — )T+ ¢9,4)dg,

@ Ly (B2, 4)dg = 7Y (st + (1 = )9, 0)dg + f, ¥*((1 = )t + 69, 4)ds.
2

It follows that
1 +9
A%)Y*(T i <—f Y.(x,4)dx,
1 « [T+
;1(%)Y(z _19‘rf Y* (3, 4)dx.
That is

ﬁ [ (B24), 7 (B2,4)] 2 = [ Vo iddie, [ ¥ e i)
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Thus,

T+
@O (5) 2 5= O PN [[TG0dx. 27)
In a similar way as above, we have

L O (FA) [ TG 2¢ [T(1) T ()] O [, A(5) ds. (28)
Combining (27) and (28), we have

1

mO7 (52) 2 5= O (FA) [T TGodx 25 [F(1) @ T()] © f, () ds.
Hence, the required result.
Note that, by using same steps, the formula (26) can be proved with the help of up and down A-
concave fuzzy-number valued mapping.
Remark 5. If A(¢) = ¢, then Theorem 5 reduces to the result for up and down s-convex fuzzy-number
valued mapping which is also new one:

25710 T(22) 25 5= O (FA) [ T (e)dn 25 — O [F(2) @ T(9))]. (29)
If A(¢) = ¢, then Theorem 5 reduces to the result for up and down convex fuzzy-number valued

mapping which is also new one:

7 (22) 26 25 O (FA) [} TGodx 2, 72272, (30)

If A(¢) = 1 then Theorem 5 reduces to the result for up and down P-convex fuzzy-number valued
mapping which is also new one:

2T (5) 2655 O A [ T6dn 23 T@) @ T (). (31)

IfY,(»,4) = Y*(x,4) with 4 = 1, then Theorem 5 reduces to the result for classical 1-convex
function, see [5]:

“1(%) v (52) 255 UA) ) YGodx 2 [Y (1) + Y(O)] f; A(5) de. (32)

2
IfY,(»,4) # Y*(x,1) with4 = 1 and A(¢) = ¢, then Theorem 5 reduces to the result for classical
convex function, see [5]:

(33)

Y(T+‘9):— (14) [ ¥ Ge)dn 2 KD,

IfY,(»,4) = Y*(x,4) with 4 = 1, then Theorem 5 reduces to the result for classical 1-convex

function, see [64]:

ﬁ v (22) <= [P YGodx < [Y(0) + Y] f; A) ds. (34)

2

If Y,(3,41) = Y*(»,4) with < =1 and A(¢) = ¢°, then Theorem 5 reduces to the result for
classical s-convex function, see [64]:
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271y (22) < = [P Y Godx < - [Y(1) + Y(9)]. (35)

IfY,(x,4) = Y*(x%,4) with4 = 1 and A(¢) = ¢, then Theorem 5 reduces to the result for classical
convex function:

+9 1 9 Y(©)+Y(9)

IfY,(3,4) = Y*(x,1) with4 = 1 and A(¢) = 1 then Theorem 5 reduces to the result for classical
P-convex function:

2y (#) < [PY(dx <Y (1) + Y (9). (37)

Example 2. We consider A(¢) = ¢, for ¢ € [0, 1], and the fuzzy-number valued mapping V: [t,9] =
[2,3] = E, defined by,

1
— 2 1
T2 pelz-u3
FGO@) =1 1
Y V<4 = > 1 .
220 9 e (3,2 +x7]
n2—1

0 otherwise
1 1
Then, for each 4 € [0,1], we have Y¥;(x) = [(1 —4) (2 - %2) + 34, (1 — 4) (2 + %2) + 34;].
1
Since left and right end point mappings ¥, (3,4) = (1 — 1) (2 — %5) +34,Y*(x,4) = (1 — 1) (2 +
1 ~
%5) + 34, are convex mappings for each 4 € [0, 1], then Y (5) is up and down convex fuzzy-number

valued mapping. We clearly see that Y € L([1, 9], E;). Now computing the following

" (55 9) = g5 LG D < 10 D) + X0, 01 [ 46D s

ul(;) L(224)=r () =0 -0 +34

5 Je G ddx = ) ((1 ~i)(2-x7) + 34@) dn = EHZOB) ¢

—4) + 34,
1 4—-~2—-+3
[la(r.i)+la(t9,¢)]f/1(c)dc=( 2= g+,
0
for all < € [0, 1]. That means
4‘2m(1—¢)+3¢sw(1—¢)+3¢s(“'"cﬂ(1—¢)+3¢.

Similarly, it can be easily show that
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okl (B2,4) 2 5= [P7 Cod)dn = [V (n,4) + Y (9,4)] [ A(6) ds.

for all < € [0, 1], such that

21(—) r (T;ﬁ /’;) =Y’ (;"L) 4+r (1-4)+ 34,

LY G yd = [ ((1 — ) (24+22) + 3¢> dre =B (14 134,

(5,4 + Y*(,91 f, 2(c) dg —M(l 1) + 34.
From which, we have
V0 1o as (6—4\/5:+6\/§) (1—4)+3i> @(1 — i) + 34,
that is
[4_Zl_( 0 +3i 4”_( 1—4) + 3]
[(6+4\/§-6\/§) (1 _ ) + 3 . (6_4\/5"'6\/5) (1 _ ’L) + 31]
5 [(4\/—\/_)(1 )(4+\/_+\/—)(1 /IZ)+3/L],
forall < € [0,1].
Hence,
S O (5) 26550 ) [ T00dx 2¢ [T @ T@)] © J; () ds,

Theorem 6. Let Y: [1,9] — E. be an up and down A-convex fuzzy-number valued mapping with non-
negative real valued function A: [0, 1] » R* and 4 G) # 0, whose 4-levels define the family of i-v-
ms Y;: [t,9] € R - X;* are given by Y;(3) = [V,(3,4),Y*(5,4)] for all » € [t,9] and for all 4 €
[0,1]. If ¥ € FA ([ 91,4y, then

;O T (22) 25 0,2 == O (FA) [ T(o)dx
4[1( ) 39)
> [F@ @ TM®] O [5+2()|f; ) ds,

o = [y(r)eay(a ?(Tw)] o f 200 de,

> et (=)

4[/1 [

and D1= [Dl*’ Dl*]a Dzz [DZ*' DZ*]

Proof. Take[ 219] we have
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2

Therefore, for every 4 € [0, 1], we have
oy (R A9 )y (e (- 9 d) +
ZoR z =g

T+

1 . (st+A-9=2  (1-g)r+eEl
e e

In consequence, we obtain
T+

,/i)<ﬁif2 Y. (3, 4)dx,

3t+9

+9

1 )Y* (31+19,/i)>%f2 Y*(x,4)dx.

That is

+9 +9

Al (580 (729 20 g [ vl [ 7 Gy

It follows that

In a similar way as above, we have
@ OF (22) 2 = O fire P () d

Combining (39) and (40), we have
#(21) o [ (3r+19) @ Y.(1'+319)]

By using Theorem 5 we have
(T+0)

4[1( ol 4[1( ol

Therefore, for every 1 € [0, 1], we have
2y T+9 i 1 Y, 1.31+ﬁ l T+3 4),
[ﬂ( ) (5) A1) G )
1 2Y* Eii,¢ _ 1 zy* 1.3T+ﬁ T+3ﬁ'¢ ,
a2(@)] ( 2 ) a2®)] (2 4 4 )

2 2

[9]
5]

1 37+9

or(;E"

4 2" 4

)
= 4[,1(11)]2[ () (3”19 t +’1(;) Y*(

S w2 g s

2[ (T,i)‘lz'lf*(ﬁ/b) Y (r+19 )] fol/l((;) dc,

AIMS Mathematics

%T O ff?(%)d%.

1 r+30)

S4[A(§)]2[ () ( /L))+’1(2 Y*(

|

Al

Al

- 1-0=2 - Caad -
L)QYCT+ e E M GRA R B I R d (R LR

)

K((l —g)r+c#,i>,

Y (gr+(1—g)ﬂ /L)+Y*<(1—§)T+g— /L)

(39)

(40)
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=0,

=047,

< [BE 2D 3 (3 (rr ) + 1.6, D)] fy A d
2B (@) + re0)| [ A6 ds,
=)+ @D [+ 2(3)] f, 2 ds,

=@+ @[5 +1(3)] [y A6 ds,

> [Y*(T,/L) -|2- Y*(9,4)

that is

2
4[1(2)]
240,25 [F(1) @ T®)] O [2+2(3)] 5 A¢6) s,
hence, the result follows.
Example 3. We consider A(¢) = ¢, for ¢ € [0,1], and the fuzzy-number valued mapping ¥V: [t,9] =

1 1
[2,3] - Ec defined by, ¥,(¢) = [(1 —4) (2 = #2) + 34,(1 — ) (2 + 2) + 34, as in Example 2,

then Y (») is A-convex fuzzy-number valued mapping and satisfying (25). We have Y, (3, 1) =

OT(22) 25,25 5= O (FA) [ T(odn

(1-4) (2 — %%) +34and Y*(»,4) = (1 —4) (2 + x%) + 34. We now compute the following:
1 T+9 ., 5 ., 4—+/10
—VY, =Y. (- =
afa ;)] ( /L) (2 /L)

v (22,4) = (54) = P (1 4) + 34,

CTRE z
z(lg (1G5 4) +2(5) v (5574)] = VI (1 —4) + 34,
= 4[/1(1%)]2 [/1 (%) Y (31:19 ,/i) +12 G) Y (r+4319 ,/i)] 7+\/_ (1—4) + 3.

oy = [Y*(T,/L)-;Y*(ﬁ,/b)_l_y. (1’+19 )]f A(¢) de _ (8-v2- \/’ V10) (1—14) + 34,

o = [Y*(T,¢);y*(19,¢) g (‘L’+19 )]f A(¢) de = (8+\/—+\/_+\/_) (1—4) +34,

. D) + .0, D1 [+ 2 (3)] 3 A dg = U222 ”(1 0 +34,

2

) + 7@, D1 [+ 2 (3)| [ 460) d = (‘”WT*” (1—4) +3i.
Then we obtain that

<51 _ ) +3i<

(Er42208) (1 — i) + 34

< (BV2V3I0) () _ 4y 4 34 < B2002EVS) 5
4 2
-0 130> T (g ) 430> VOB gy 43

> (8+\/§+;/§+\/ﬁ) a (1—¢)(442r\/§+\/§) 43

—4)+3i>

Hence, Theorem 6 is verified.
The novel fuzzy Hermite-Hadamard inequalities for the product of two up and down A-convex
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fuzzy-number valued mappings are found in the results.

Theorem 7. Let ¥, J : [t,9] = E. be two up and down A-convex fuzzy-number valued mappings with
non-negative real valued functions A;,4,:[0,1] » R* and A, G) A, G) # 0, whose i-levels define
the family of i-v-ms ¥}, J,;:[1,9] € R = X} are given by Y;(») = [V, (3,4),Y*(3,4)] and J,;(») =
[J.(¢,4), T (3,4)] for all € [t,9] and forall 4 € [0,1]. IfY,Jand Y Q J € FA([z,9,4)» then

=0 (FA) [T 700 ® Jo0)dx
2 M(1,9) O f 41(6) A2(6) de ® (5,9 O [ 24(6) (1 — ¢) dg,
where M(7,9) =Y(0) @ J) Y@ ®JW), N(1,9) =Y@®)®J®) & Y®) @ J(r), and
M, (7,9) = [M.((z,9),4), M*((z,9),4)] and N (z,9) = [M.((r,9),4), N*((z,9),4)].

(41)

Proof. LetY,J : [t,9] » E. be two up and down A, -convex and A,-convex fuzzy-number valued
mappings. Then, we have
.6+ (1 —¢)9,4) < 4 (©)Ya(r,4) + 1,(1 — OLY.(9, 1),
Y'(ct+ (1 —¢)9,4) = 4 ()Y*(1,4) + 1,(1 — ¢)Y* (¥, 1).
And
J.(6t+ (1 = ¢)9,4) < A,(6)J.(z,4) + 2,(1 — ©)J. (9, 1),
I+ (1 =¢)9,4) = 2,(0)J"(T,4) + 2,(1 — ¢)J* (I, 4).
From the definition of up and down A-convex fuzzy number valued mapping it follows that
Y (x)=>p0 and J(x)=0, so
Y.(st+ (1= ¢)9,4)J.(st + (1 = ¢)¥,4)
< ML ©Y.(r,4) + 4,(1 = O)Y.(9,4))(A2()J. (7, 4) + A2(1 — €)J. (I, 4))
=Y.(1,4)J.(7, 1[4 (6) 22(9)] + Y. (9,4)J. (9, 1) [A,(1 — ¢) 2,(1 — ¢)]
+Y.(7,4)J.(9,4) A1(¢) 22(1 — ¢) + Y. (I,4)J.(7,4) 41 (1 — ¢) A5(5),
Y (st + (1 =¢)9,4)J" (st + (1 — )9, 4)
= (LY (1,4) + 1, (1 = )V (I,4))(A2(5) I*(7,4) + 2,(1 — ¢) " (¥,4))
=Y"(7,4)J"(r,4)[A1(¢) 22()] + Y™ (9, 4) T (¥, 4)[A4, (1 — ¢) 2,(1 — ¢)]
+Y*(7,4)J*(©0,4) 21(¢) (1 — ¢) + Y (I,4)J"(z,4) 2, (1 — ¢) 1,(¢) .
Integrating both sides of above inequality over [0, 1] we get

[y Vst + (1= )9, ).(T + (1 = )9, 4) = = [ V. (x, ). (x, ©) dx
< (X.(2, )3.(1,4) + Y.(9,0)3.(3,1)) f, 11(5) A,(6) dg
+(V (5, DI, ) + Y.(0,0)3.(1,9) [ 24(6) A(1 — ¢) d,
(st + (1= 09,05t + (1 = 9,4) = o [V (x, )" (x, 4) dx
> (Y (1,03 (1, 4) + Y*(9,0)T"9,4)) f, 11(5) A2() dg

+(r* (0, )J*(9,4) + Y*(9,0)T" (1, 4) [ 24(6) 2,(1 — ¢) ds.
It follows that,
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L Y0306, ) dx < M((5,9),4) [ 24(9) A2(6) dg

+N((@ ), 4 fy 24(9) A2(1 = ¢ d,
L [T () dr = MO ((19),4) ) A2 (6) 22(6) d

+ 8 ((1,9),4) [ 22(6) 2,(1 — ¢) d,

that is
v 3. ddx, [ Y () (2, 4) da
2, [M, (2, 9),4), M ((,9),4)] [ 24(6) A,(6) dg
N (@, 9),4), N*((7,9),4)] f,; 21(6) 2(1 — 6) dis.
Thus,

= O (FA) [T T(x) ® J(x)dx

2 M(1,9) O [, 21(6) A2(6) ds ® N(7,9) O [, 21() A,(1 = ¢) d,
and the theorem has been established.

Example 4. We consider 1, (¢) = ¢,1,(¢) = ¢, for ¢ € [0, 1], and the fuzzy-number valued mappings
Y,J:[t,9] = [0, 2] = E. defined by,

(2 6 € [0,]
Y ()(0) =+ 2};—9 0 € (, 2¢]
\ 0 otherwise,
- 0 € [ 2]
2—x

j(}f)(O') =9 Z:Z::g 6 € (2,8—e”]

\ 0 otherwise.
Then, for each 4 € [0,1], we have Y;(») = [43x, (2 —4i)x]and J;(3¢) = [(1 —4)»x + 24, (1 —
1)(8 — e”) + 24]. Since end point functions Y, (s, 1) = 4, Y*(,4) = (2 —4)»x and J,(»,4) = (1 —
D+ 24, J*(,4) = (1 —4)(8 — %) + 24 A4, A,-convex functions for each 4 € [0,1]. Hence ¥, J
both are up and down A-convex fuzzy-number valued mappings. We now computing the following

= [PV (o0,4) X 3.t e = 3 [T (01— D)n? + 24i2x0)d = 242 +1)

= [P G0 0) X 7 ) =3 [7((1 = )2 — (8 — %) + 24(2 — )x)dx

~ (2-1) (1903 903 .
T (1250 250 /L)' u
M.((2,9),4) fy 24(6) 22(6) ds =

M ((x,9),4) fy 22(6) A2(5) dg = 2@2-0[(-0)(8-e?)+24]

3 )
-2
N 9,4) [ 1(6) (1 = ¢) dg = =
% . —1 —51
N ((@9),4) [y A4 (6) A(1 — ¢) dg = E2H=20,
for each 4 € [0, 1], that means
Ei(1+24), L2 (== - %Ag)] 2, 2[2i(2 +4), (2 - D[2(1 - )(B - e?) — i +7]].

Hence, Theorem 7 is demonstrated.

Theorem 8. Let ¥, J : [t,9] — E. be two up and down A, -convex and A,-convex fuzzy-number
valued mappings with non-negative real-valued functions A,,1,:[0,1] - R*, respectively and
AIMS Mathematics
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A ( ))lz ( ) # 0, respectively, whose 4i-levels define the family of i-v-ms ¥;, J;:[1,9] € R - X
are given, respectively, by Y;(») = [V, (3,1),Y*(3,4)] and J;(») = [J.(3¢,4),T* (3, 4)] for all »x €
[t,9] and forall< € [0,1]. Y ® J € :Fd‘l([-[g] 0, then

2,11()/1()6 Y(Hﬁ)@’ﬂ(w) —Fﬁ G(FA)I Y () @ JGo)dn

3 OME 9O fg 41(6) A2(1 = ) dg & W (z,9) O~f0 21() 22(9) ds,
where M(7,9) =Y (1) @ J@) B Y (W) & J(I), N(7,9) =Y (1)  JW) © Y (¥) ® J(7),
and M;(z,9) = [M.((z,9),4), M*((z,9),4)] and N, (7, 9) = [M.((z,9),4), N*((z,9),4)].
Proof. By hypothesis, for each 4 € [0, 1], we have
Y:k(ﬂz—z? ) x J. (‘L’+19 )
v (‘512-19 ) x J* (r+19 )

3/11(),12()[“?”(1_9)‘9 ,4) X I (6T + (1 = ©)9,4)
1
2

(42)

+Y.(ct+ (1 —¢)9,4) X J, ((1—§')T+§'19 /L)
)A ( )[ Y((1—§)T+gz9 /L)XJ*(§T+(1—§‘)19 1) l
22 | 41((1 = Q1+ ¢9,4) x J((1 = Q)7 + ¢9,4)|
)/12 (1) [ Y (et + (1= ¢)9,4) x J" (st + (1 = ¢)9,4)
2/ |+Y* (¢t + (1 — ¢)Y9,4) X J*((l —¢)T+¢U, fi)
N, ] Y (A=t +¢9,4) x I (¢t + (1 = ¢)9,4)
th (5) A2 (5) l+y*((1 —)T+¢9,4) X J((1—¢)r+ cﬁ,/i)l ’
1 1\ [ (gt + (1 = ¢)9,4) X J.(¢t + (1 — ¢)I,4)
_) A2 (E) I+Y*((1 —¢)T+ g19,/i) X (7*((1 —¢)T+ g19,/L)
[ (M@ Y.(r,4) + 2, (1 = 9) V.(9,4)) ]
1) [% (22(1 = ) J.(5,4) + 2A,(6) J.(9,4))
+(1(1 = 9 Y (1,4) + 4,(9) ¥.(9,4)) ‘
X (22(6) J.(1,4) + 2, (1 = ) J.(9,4))
- 2 <1) (l) [ Y'(t+ (1 —¢)9,4) X J(ct+ (1 —¢)I,4)
- 22/ |+ (A =9t +¢9,4) x I ((1 — 9T + ¢9,4)
M@ Y (@) + 41 =Y (®,4)
1)/1 ( ) (221 =) J*(T,4) + 2,() I* (9,4))
2) P2 | +(LA =Y (@) + L (Y (8,4) |
X (A,(6) J* (1, 4) + A,(1 — ¢) J*(9,4))

+/11(
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=1 () 1.(2) Y.t + (1= ¢)9,4) X J.(s7 + (1 = 6)9,4)

BERV +Y((1 =)t +¢9,4) X J.((1 — ¢)T + ¢9,4)
{21(9) 22(0) + 4, (1 — ©) 2, (1 — OIN.((7,9),4)

#2222 6 |4 2,6 231 — 90+ 2001 - 0 2O (G599,

7 ()/1 () Y*(gt+ (1 —¢)9,4) x J* (¢t + (1 — ¢)9,4)

- 2 +Y (1=t +¢9,4) x I ((1 = ¢)t + ¢9,4)
1() 22(9) + (1 = ¢) 2, (1 = NIV ((7,9), )

22, (%) 4,
" ( ) ( ) [+{A1(C) LA =¢)+ 41 —¢) A ()IM" ((T 9), /L)
Integrating over [0, 1], we have

+9 +9 V) . .
o ()% (571) <55 .00 X 3.Go i)
+ M.((1,9),4) f, A1(5) A,(1 — ¢) dg
+N((@, 9),4) f, A1(8) 22(6) d,
« [THI ., +9 LV . % .
m)’ ( )xJ ( ) ﬁ(R)fTY(K,/L)XJ(H,/L)d%
+M*((z,9),4) [ 24(6) 1,(1 — §) dg

+((1,9),4) fy 4(9) A2(6) dg,
that 1s

ST @ T @3 (%) 20 5 0 () [ 760 ® J6od
@ M(z,9) © fo 2:(¢) /12(1 — ) de ® N(1,9) O fo 2,0 2, (0) de,

hence, the required result.

Example 5. We consider 1, (¢) = ¢, 1,(¢) = ¢, for ¢ € [0, 1], and the fuzzy-number valued mappings
Y,J:[t,9] = [0,1] = E, as in Example 4. Then, for each 4 € [0, 1], we have Y;(3) = [4ix, (2 — 4)x]
and J;(3) = [(1 — ) + 24, (1 —4)(8 — e*) + 24] and, Y (3), J(3) are up and down A, -convex
and up and down A,-convex fuzzy-number valued mappings, respectively. We have Y, (3, 4) = 4,
Y*(,i) = 2—4)n and J,(x,41) =1 — D)+ 24i, J°0G,4) = (1 —4)(8—e*) +2i. We now
computing the following

m Y. (142-19 ) x J. (r+19’ ) _ 2/1',(1 +’i),

rmy (B2,4) x 37 (B2,4) = 2[16 — 204 + 642 + (2 — 34 +i?)e].

L [P0 4) X 3.6 i) = 2 [7 (1 — ) + 2d%0)de = 243 — ),

o Y00 X 37 Go e = [F (L= D2 = n(8 =~ e) + 24(2 — D) dox
~ GO (1033
2 250 250 /J°
M((1,9),4) f, () (1 — ) dg =%,

M*((z,9), ’L)f 2, (1 —¢)de =& ¢)[(1 @3(8 ?)s2q
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:2

' 4
W@ 0,2) [ 205 ds =,
0

2(2=4)(7 = 54)
3 )

1
(@ 8),4) [ 24(5) Aals) ds =
0
for each 4 € [0, 1], that means

2[i(1 + 4),[16 — 204 + 642 + (2 — 3i + i2e]] 2, [§¢(2 +4), 22 (== - %m)]

+2[24(1 + 24), (2 — DA — £)(8 — e?) — 8i + 14]],
hence, Theorem 8 is demonstrated.
The H-H Fejér inequalities for up and down A-convex fuzzy number valued mappings are now
presented. The second H-H Fejér inequality for up and down A-convex fuzzy number valued mapping
is firstly obtained.

Theorem 9. Let Y: [r,9] » E, be an up and down A-convex fuzzy number valued mapping with
A:[0,1] » R*, whose i-levels define the family of i-v-ms ¥;: [t,9] € R - X' are given by Y;(3) =

[Y.(3,4),Y*(3,4)] for all » € [r,9] and for all 1 €[0,1]. If Y € FR(r014) and B:[r,9] -

. . )
R, B(») = 0, symmetric with respect to %, then

= O (FA) [ V() © BGodx 25 [Y (1) @ Y()] O [, ¢B((1 — ¢)r + 69)d. 43)

Proof. Let Y be an up and down A-convex fuzzy number valued mapping. Then, for each 4 € [0, 1],
we have

Y.(ct+ (1 —-¢)9,4)B(ct + (1 —¢)I)
< (M) Ya(z,4) + A1 = ) Y.(9,4))B(st + (1 — ¢)9),

44
Y (¢t + (1 —¢)9,49)B(gt + (1 —¢)I) (44
> (zl(g) Y*(t,i) + A(1 —¢) Y*(ﬁ,i))%(gr + (1 —¢)9).
And
Y.((1 =)t +¢9,4)B((1 — )T+ ¢9)
< (21 = Q) Ya(r,4) + A Y. (9,4))B((1 — )7 + ¢9), (45)

Y*((1—¢)t+¢9,4)B((1 —¢)T +¢9)
> (A1 - Y (1,4) + () Y (¥,41)B((1 — o)t + ¢I).
After adding (44) and (45), and integrating over [0, 1], we get

1 1
J Y.(¢t+ (1 —¢)9,4)B(ct+ (1 —¢)I) dg + J Y.((1—¢)7+¢9,4)B((1 — )T + ¢9) dg
0 0

- fl [ Y. (7, D){A() B(st + (1 — )9) + A(1 — ¢) B((1 — ©)T + ¢9)} l
o [+, D){AL - B+ (1 -9 + () B((L - +¢9)}]

f Y*((l —¢)T+ gﬁ,i)‘B((l —¢)T+ g19) de¢ + f Y*(ct+ (1 —¢)9,1)B(ct+ (1 —¢)I) dg
0 0

- fl [ Y*(r, ){A() Bt + (1 — )9 + (1 — ) B((1 — )T + ¢9)} c
"o [HY @)A1 - )BT+ (1 -9 + ) B(A - +¢9)}]
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= 2V,(7,4) f; 2(6) B(st + (1 — 9)9) dg + 2Y.(8,4) [, A(s) B((1 — ¢) + ¢9) d,
= 2Y*(1,4) [, A(5) B(st + (1 — 9)9) dg + 2Y*(9,4) [, 2(6) B((1 — ¢)7 + ¢9) dg.
Since B is symmetric, then
[ Y(st + (1 = ©)9,0)B(st + (1 — ¢)9) dg
+ fol}’*((l — )T +¢9,4)B((1 —¢)T +¢9) dg
< 2[Y.(r,4) + Y.(9,9)] f, 2() B((1 — ¢)t + ¢9) dg,

1 (46)
Jo Y ((1—¢)t+¢9,4)B8((1— )T+ ¢9) dg
+ 0, ¥ (st + (1= )9, )BT + (1 — ©)9) dg
> 2[Y*(z,4) + Y*(9,9)] f, 2(5) B((1 — )t + ¢9) ds.
Since
fol Y.(6t+ (1 — ¢)9,4)B(st + (1 — ¢)9) dg
= fol Y.((1— o)t +¢9,4)B((1 — )T+ ¢9) dg
== [7Y.(0, )BCo)dn
o (47)

fol Y*((l -9+ gﬁ,/i,)%((l -9+ 09) dg
= [JY* (st + (1= )9, )B(sT + (1 — ¢)9) dg
=1 L2 (06, )Be)de.
Then from (47), (46) we have
L [PY.0o )BG0dx < [Y(1,4) + V.09, D] [ 2(6) B((L = §) + 69) di;,

= [P (e, B0 2 [V (1,4) + Y (9, f M) B((1 - )7 +¢9) d,
that is
[ 177G )BGodr, == 77" (0, )B ()]
2, [V.(1,4) + Y. (9,4), Y* (1,4) + V" (8, D] [ 4() B((1 — )7 + ¢9) ds,
hence
L O FA) [T O Bedx 25 [F(@) B T®)] © f 2(6) B((1 - )t + 69)ds.

Now, generalizing the first H-H Fejér inequalities for classical convex functions and we build the
first H-H Fejér inequality for up and down A-convex fuzzy number valued mapping.
Theorem 10. Let Y: [r,9] » E, be an up and down A-convex fuzzy number valued mapping with
A:[0,1] » R*, whose 4-levels define the family of i-v-ms ¥;: [1,9] € R — X" are given by Y;(x) =

[Y.(,4),Y*(3,4)] for all x € [7,9] and for all < €[0,1]. If ¥ € FR(9) and B:[7,9] -
R, B(») = 0, symmetric with respect to ?, and frﬁ B(x)d» > 0, then

7 (%19) = ff;(% O (FA) [T T () O Bdx. (48)

Proof. Since Y is an up and down A-convex, then for 4 € [0, 1], we have
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Y. (TJ;? ) <A (;) (Y*(qr +(1-¢)9,1) + Y*((l —¢)T+ gﬁ,i)),
Y* (Hﬁ ) > A (%) (Y*(CT +(1-¢)9,41)+ Y*((l —¢)T+ cﬁ,/i)).

Since B(sT + (1 — ¢)9) = B((1 — ¢)T + ¢9), then by multiplying (48) by B((1 — ¢)T + ¢3I)

(49)

and integrate it with respect to ¢ over [0, 1], we obtain
Y. (H19 )f 58((1 -9t + cﬁ)dc
<1(%) ( N Yt + (1= )0, )8(57 + (1= )9)dg )
+f Y.((1—¢)t+¢9,4)B((1—¢)T + ¢9)dg
Y* (H19 )fol B((1 - ¢)T +¢9)ds
1() ( IN 1Y*(CT + (1= )9, )B(st + (1 — ¢)9)ds ) |
+ fo Y*((1—¢)t+¢9,4)B((1 — )T + ¢9)dg

(50)

Since
S (et + (1= )9, )B(st + (1 — ©)9) dg
= fol Y*((l —o)T+ gﬁ,/L)SB((l —o)T+ gﬁ) dg
=L [7V.(0, )BGOdn
fol Y ((1—¢)7+¢9,4)B((1—¢)7 +¢9) dg
= [ (st + (1 = )9, )B(st + (1 — ¢)9) dg
== [77" (o, )Bo)dx.

(51)

Then from (51), (50) we have

r(22,4) < L() LY. 06, )BGO e,

2 17 B0
24(5 )
Y 1'+19’ AR Y+ d
(22,4) Tooa: LY G, B0,
from which, we have

™+9 « [T+O
v (22,4), v (22,4)] 2 WU V.06 )BCOdx, [T Y (0, )B0)dx]
that is
~ (T+0 ()
T(57) 2r gt © P [ TG0 © B
This completes the proof.
Remark 6. From Theorem 9 and 10, we clearly see that:
If B(») = 1, then we acquire the inequality (25).

Let4 =1 and A(¢) = ¢. Then from (43) and (48) we acquire the following inequality, see [1]:

+9 Y(‘L’)+Y(19)
V() 2 aigar U4 ) Y0OBeOdx 2 T2, (52)

If Y is lower up and down convex fuzzy-number valued mapping on [r,9] and A(¢) = ¢, then we
acquire the following coming inequality, see [33]:
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Y (= 9 - FmT
' (%ﬁ) =F I 23(1;:)01% O (FA) [ Y () © BOdx <p Toer®) )6291’(19). (53)

If Y is lower up and down convex fuzzy-number valued mapping on [t,9] with 4 = 1 and
A(¢) = ¢, then from (43) and (48) we acquire the following coming inequality, see [45]:

Y(#) <15 (IA)f Y()dn m. (54)

If Yis lower up and down convex fuzzy-number valued mapping on [7,9] with < = 1 and
A(¢) = ¢, then from (43) and (48) we acquire the f0110Wing coming inequality, see [45]:
+9 Y(1)+Y(9)
¥ (50) =1 e (U1 Y0080 <, L0

(55)

Let A(¢) = ¢, and Y, (3,4) = Y*(x,4) with < = 1. Then from (43) and (48), we obtain following
classical Fejér inequality.

+9 Y(‘L’)+Y(19)
- < -z 7
Y( > ) To00an f Y (3)B(x)dx R

(56)

Example 6. We consider A(¢) = ¢, for ¢ € [0, 1], and the fuzzy-number valued mapping Y: [0, 2] —
E. defined by,

1

(69—2+x2 13
o e[
5—2—}[2
Y(30)(0) =4 1 1.
200 0e 2+
2+Jﬁ—; 2
\ 0 otherwise

Then, for each 4 € [0, 1], we have Y;(x) = [(1 —1) (2 — }{%) + %/L, 1-4) (2 + x%) + %’L] )

Since end point mappings Y, (3, 1), Y (3, 1) are convex mappings for each 4 € [0, 1], then ¥ (3¢) is up
and down convex fuzzy-number valued mapping. If

[ Vx, o€]01],
B = {\/2 —x, o€ (1,2],

1
then B(2—x) =B(x) =0, for all »x€[0,2] . Since Y,(x,4i) = (1 —1) (2 —%5) +§fi and

Y (,4) = (1—-4) (2 + %%) + E/i. Now we compute the following:
[Y (¢, 4)]B()dx = —f [V, (3¢, 0) 1B (o) dae
=~ S [V.Ge, D1BCodx + [ V. (6, 1) B doe
L 171 G DIBGOdx = 2 [21Y° (1, D)IBGOdx
=~ [ X G DIBGdsx + 3 [ 1 (0, )BGe)dx,
=1 a0 (2-2) + 24| (VR)dn + 212 [ -9 (2 w2) + 24| (V2= )
i+5

=4 —[3r(i— 1) — 4(i — 4)],

=1fl[(1—¢'>(2+%%)+3¢](W)d%+1f2[<1—4:)(z+z%)+§¢] (VZ=n)dx
[11 —54i] + [ 3mi — 44+ 3w + 16].

191

(57)

And
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[V.(1,4) + Y. (0, D] [ ¢B((1 — )z + ¢0) dg

= [4(1 — i) —V2(1—4) + 3/i] [foég\/idq + f; ¢/2(1 — c)dg]
= §(4(1 —4) —V2(1 —4) + 34),
[Y*(1,4) + Y*(9,4)] fol ¢B((1—¢)t+¢9)dg

= [4(1 — ) +V2(1—4) + 3/&] [foéq\/Z—gdg + fg ¢/2(1 — g)dc]
= %(4(1 —4) +V2(1 = 4) + 34).
From (57) and (58), we have
[% —[3m(i — 1) — 4(i — )], = [11 - 54] +—_[~3mi — 4i + 37 + 16]]
>, [5 (41 —4) —V2(1 — 4,) +34),2(4(1 - 4,) +V2(1 = 4) + 34)| forall 4 € [0, 1].

Hence, Theorem 9 is verified.
For Theorem 10, we have

(58)

Y;(‘Hz-ﬁ ) Y.(1, /L)—ﬂ
r (T+19 ) =Y (1,4) = @ (59)

ff BO)dr = [ vndw + f12\/2 — udx = %,

—— [TV, )BO)dx = 2 [ -

13-4 Tl.’(fi,—l)]
17 Bodx ’

(60)
127" (e, )B (o) = —[ [11—5¢] +2[~3mi — 4 + 3m + 16]] .

f B(xn)dn
From (59) and (60), we have
[ﬂ 3(2—4)] 5, F [ﬂ+ ni-) 3

, [11 — 54] + = [-3mi — 44 + 3w + 16]”.
2 4 6 2

Hence, Theorem 10 has been verified.
4. Conclusions

In this work, the class of up and down A-convex fuzzy-number valued mappings is introduced s
an extension of classical convex functions and some new Hermite-Hadamard inequalities are
established by means of fuzzy order relation on fuzzy-number space. Useful examples that verify the
applicability of theory developed in this study are presented. We intend to use various types of up and
down convex fuzzy-number valued mappings to construct fuzzy inequalities for fuzzy-number valued
mappings. We hope that this concept will be helpful for other authors to pay their roles in different
fields of sciences. Future work will explore fuzzy fractional integrals to study H-H type and weighted
H-H type fuzzy inclusions for up and down convex fuzzy-number valued mappings.
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