By the relationship between a continuous population $ X $ and the uniform distribution $ U[0, 1] $, we gain for a sample quantile an equivalent expression of its variance and for two different sample quantiles the asymptotic correlation coefficient. As the population of interest can have no expectation, the obtained conclusions are applicable to the location estimating problem of a Cauchy distribution. On that occasion, we finally obtained a quick and effective estimator established by a linear function of some sample quantiles. For similar problems, the presented approach is worthy of reference.
Citation: Jinliang Wang, Fang Wang, Songbo Hu. On asymptotic correlation coefficient for some order statistics[J]. AIMS Mathematics, 2023, 8(3): 6763-6776. doi: 10.3934/math.2023344
By the relationship between a continuous population $ X $ and the uniform distribution $ U[0, 1] $, we gain for a sample quantile an equivalent expression of its variance and for two different sample quantiles the asymptotic correlation coefficient. As the population of interest can have no expectation, the obtained conclusions are applicable to the location estimating problem of a Cauchy distribution. On that occasion, we finally obtained a quick and effective estimator established by a linear function of some sample quantiles. For similar problems, the presented approach is worthy of reference.
[1] | J. Shao, Mathematical statistics, New York: Springer, 2010. |
[2] | H. David, H. Nagaraja, Order statistics, New Jersey: Wiley, 2003. http://dx.doi.org/10.1002/0471722162 |
[3] | H. Barakat, Comments on the rate of convergence to asymptotic independence between order statistics, Stat. Probabil. Lett., 76 (2006), 35–38. http://dx.doi.org/10.1016/j.spl.2005.07.009 doi: 10.1016/j.spl.2005.07.009 |
[4] | H. Barakat, Measuring the asymptotic dependence between generalized order statistics, J. Stat. Theory Appl., 6 (2007), 106–117. |
[5] | H. Barakat, A nonparametric general criterion of asymptotic dependence between order statistics, Commun. Stat.-Theor. M., 38 (2009), 1960–1968. http://dx.doi.org/10.1080/03610920802689385 doi: 10.1080/03610920802689385 |
[6] | W. Hürlimann, On the rate of convergence to asymptotic independence between order statistics, Stat. Probabil. Lett., 66 (2004), 355–362. http://dx.doi.org/10.1016/j.spl.2003.10.020 doi: 10.1016/j.spl.2003.10.020 |
[7] | R. Bahadur, A note on quantiles in large samples, Ann. Math. Statist., 37 (1966), 577–580. http://dx.doi.org/10.1214/aoms/1177699450 doi: 10.1214/aoms/1177699450 |
[8] | A. Dasgupta, Asymptotic theory of statistics and probability, New York: Springer, 2008. http://dx.doi.org/10.1007/978-0-387-75971-5 |
[9] | J. Averousa, C. Genest, S. Kochar, On the dependence structure of order statistics, J. Multivariate Anal., 94 (2005), 159–171. http://dx.doi.org/10.1016/j.jmva.2004.03.004 doi: 10.1016/j.jmva.2004.03.004 |
[10] | J. Wang, C. Deng, J. Li, M. Zhou, On variances and covariances of a kind of extreme order statistics, Commun. Stat.-Theor. M., 45 (2016), 3274–3282. http://dx.doi.org/10.1080/03610926.2014.901373 doi: 10.1080/03610926.2014.901373 |
[11] | J. Wang, C. Deng, J. Li, On moment convergence for some order statistics, AIMS Mathematics, 7 (2022), 17061–17079. http://dx.doi.org/10.3934/math.2022938 doi: 10.3934/math.2022938 |
[12] | V. Zorich, Mathematical analysis II, Berlin: Springer, 2016. http://dx.doi.org/10.1007/978-3-662-48993-2 |
[13] | S. Kotz, N. Balakrishnan, N. Johnson, Continuous multivariate distributions: models and applications, New York: John Wiley & Sons, 2000. http://dx.doi.org/10.1002/0471722065 |
[14] | Z. Chen, A simple method for estimating parameters of the location-scale distribution family, J. Stat. Comput. Sim., 81 (2011), 49–58. http://dx.doi.org/10.1080/00949650903177497 doi: 10.1080/00949650903177497 |
[15] | O. Kravchuk, P. Pollett, Hodges-Lehmann scale estimator for Cauchy distribution, Commun. Stat.-Theor. M., 41 (2012), 3621–3632, http://dx.doi.org/10.1080/03610926.2011.563016 doi: 10.1080/03610926.2011.563016 |
[16] | B. Arnold, N. Balakrishnan, H. Nagaraja, A first course in order statistics, New York: SIAM, 1992. http://dx.doi.org/10.1137/1.9780898719062 |
[17] | P. Sen, On some properties of the asymptotic variance of the sample quantiles and mid-ranges, J. R. Stat. Soc. B, 23 (1961), 453–459. http://dx.doi.org/10.1111/j.2517-6161.1961.tb00428.x doi: 10.1111/j.2517-6161.1961.tb00428.x |
[18] | D. Pekasiewicz, Application of quantile methods to estimation of Cauchy distribution parameters, Statistics in Transition, 15 (2014), 133–144. |
[19] | I. Krykun, The arctangent regression and the estimation of parameters of the Cauchy distribution, J Math. Sci., 249 (2020), 739–753. http://dx.doi.org/10.1007/s10958-020-04970-3 doi: 10.1007/s10958-020-04970-3 |
[20] | K. Raghunandanan, R. Srinivasan, Simplified estimation of parameters in a logistic distribution.Biometrika, 57 (1970), 677–679. http://dx.doi.org/10.1093/biomet/57.3.677 doi: 10.1093/biomet/57.3.677 |