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we gain for a sample quantile an equivalent expression of its variance and for two different sample
quantiles the asymptotic correlation coefficient. As the population of interest can have no expectation,
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1. Introduction

Let a random sample X1, ..., Xn be drawn from a population X according to a distribution F(x, θ)
where θ is unknown. If a statistic θ̂n is unbiased for θ and there are known positive constants bn’s such
that the normalized random sequence {(̂θn − θ)/bn, n ≥ 1} converges in both the first and the second
moment to a known distribution of a random variable (RV), say ξ, with a known variance σ2, then the
effectiveness of the unbiased estimator θ̂n can be assessed by the variance b2

nσ
2, the less the variance,

the more effective the estimator. However, the Cramér-Rao inequality indicates that to estimate the
unknown parameter θ of the distribution F(x, θ), the unbiased estimator usually has a variance not less
than 1/(nI(θ)) where I(θ) denotes the Fisher information. That indicates that an unbiased estimator
with a variance reaching the lower bound 1/(nI(θ)) is sure of minimum variance.

Under a large sample size, the maximum likelihood estimate (m.l.e) method usually (but not always)
yields a theoretically desirable estimator, say θ̂n, in a sense that θ̂n has an asymptotic normal distribution
N(θ, 1/(nI(θ))) with a variance reaching the lower bound of the well-known Cramér-Rao inequality
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(see [1] as a reference).
For estimating a parameter of the distribution of a population that has no expectation, the classical

moment estimate method is futile. Moreover, the classical method of m.l.e usually becomes invalid
too in the sense that it doesn’t have a closed solution. Under such a situation, especially in the case
of estimating some parameters such as the location of a population, it is worth trying to investigate an
unbiased estimator established by a linear function of some sample quantiles. That will be preferable
if the efficiency is close to that of the theoretical m.l.e. To approximate the efficiency of the estimator,
we need the following conclusions.

Theorem 1.1. For a population X distributed according to a continuous pdf f (x), let p and r be two
numbers satisfying 0 < p ≤ r < 1 and xp and xr be respectively the p-quantile and r-quantile of X
satisfying f (xp) f (xr) > 0. Let (X1, ..., Xn) be a random sample derived from X. If there are constants
ω > 0 and ν ∈ (−∞,∞) such that the cdf F(x) of ωX + ν has an inverse function Q(u) which possesses
a continuous third-order derivative function Q′′′(u) in the interval (0, 1) satisfying

|Q′′′(u)| ≤ Ku−A(1 − u)−A (1.1)

for some given constants K > 0, A ≥ 0 and all u ∈ (0, 1), then:

(1) we have, as n→ ∞,

E

 f (xp)(Xi:n − xp)√
p(1 − p)/n

2

∼ E
(

f (xr)(X j:n − xr)
√

r(1 − r)/n

)2

→ 1

provided i/n = p + o(n−1/2) and j/n = r + o(n−1/2) as n→ +∞;

(2) the correlation coefficient corr(Xi:n, X j:n) between Xi:n and X j:n satisfies

lim
n→∞

corr(Xi:n, X j:n) =

√
p(1 − r)
r(1 − p)

(1.2)

provided i/n = p + o(1) and j/n = r + o(1) as n→ ∞.

Under the conditions in Theorem 1.1 but without assumption (1.1), it is mentioned (without formal
proof) in [2] that the same conclusions hold according to some equations given. We have found a gap
there, that is, [2] uses a partial sum of a Taylor expansion of a function to approximate the function
itself without rigorous proof. Here we have to apply the assumption (1.1) to fill that gap.

In exploring the measurement of dependence or independence between two order statistics (OSs),
many research works based on the Copula function method are instructive. On that subject, Barakat
led the research. For references, we can consult Barakat’s [3–5] and Hürlimann’s [6] as well.

Item (2) in Theorem 1.1 can be regarded as a corresponding exploration of the relation between two
general OSs, where we measure the asymptotic dependence or independence by providing the limiting
correlation coefficient for them. That has two main advantages. First, this preferred measurement has
its advantage in that the respective normalization of both OSs has no effect. Second, as was discovered
by Bahadur (see [7]) or as summarized by DasGupta in [8], the asymptotic joint distributions of some
sample quantiles have a multivariate normal distribution while, for two RVs according to a bivariate
normal distribution, being independent is equivalent to being uncorrelated.
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Under the conditions of Theorem 1.1, we see that the OSs Xi:n and X j:n are asymptotically dependent,
which supports Barakat’s corresponding conclusion in article [3]. Moreover, Theorem 1.1 also supports
the exclamation in [9] stating that the dependence between Xi:n and X j:n decreases as i and j draw apart.

To our studies, conditions in Theorem 1.1 are met for almost all continuous populations including
the situation discussed in [10] from which we see that the correlation coefficient between a sample
maximum and a sample minimum has a limiting value 0 as the sample size n tends to infinity. Here
Theorem 1.1 deals with correlation coefficients for common OSs relevant to some general sample
quantiles.

Now we use symbol dze for the integer part of a positive number z and mn,p for the p-quantile of the
random sample (X1, · · · , Xn). Namely mn,p = (Xpn:n + Xpn+1:n)/2 if pn is an integer and mn,p = Xdpn+1e:n

otherwise.

Remark 1.1. Assume the condition (1.1) of Theorem 1.1, then:

(1) Corresponding to the central limit theorem for sample quantiles, the following second moment
convergence conclusion holds as n→ ∞,

E

 f (xp)(mn,p − xp)√
p(1 − p)/n

2

→ 1;

(2) The asymptotic correlation coefficient corr(mn,p,mn,r) for mn,p and mn,r satisfies

lim
n→∞

corr(mn,p,mn,r) =

√
p(1 − r)
r(1 − p)

.

Remark 1.2. For a given sample (X1, ..., Xn), it is obvious that the correlation coefficient for two
different sample quantiles is relevant to the distribution of the population X from which the sample is
drawn. Here Theorem 1.1 indicates that, as the sample size n tends to infinity, the mentioned correlation
coefficient is eventually free from the distribution of X.

Corollary 1.1. Under the condition (1.1) of Theorem 1.1, if we use the sample quantile mn,p as
an estimator for the corresponding population quantile xp, then we have the following variance
equivalence

Var(mn,p) ∼
p(1 − p)
n( f (xp))2 .

Moreover, if we further assume that F(xr) = r and F′(xr) = f (xr) > 0 where 0 < p ≤ r < 1, then the
covariance between mn,p and mn,r is

cov(mn,p,mn,r) = corr(mn,p,mn,r)
√

Var(mn,p) · Var(mn,r) ∼
p(1 − r)

n f (xp) f (xr)
. (1.3)

Generally, for real numbers u1, u2, ..., uk and p1, p2, ..., pk satisfying 0 < p1 < ... < pk < 1 and
f (xp1) f (xp2)... f (xpk) > 0, the following analogous expression holds

Var

 k∑
i=1

uimn,pi

 ∼ k∑
i=1

u2
i pi(1 − pi)
n( f (xpi))2 +

∑
1≤i< j≤k

2uiu j pi(1 − p j)
n f (xpi) f (xp j)

. (1.4)
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For a positive integer r, we mean that a random sequence {ξn, n ≥ 1} converges in an r-th order of
moment if the number sequence {Eξr

n, n ≥ 1} converges. In reference [11], Wang et al. investigated
moment convergence conclusions for some OSs connected to a general continuous population. It is
found that not only the sequence of sample quantiles but also the corresponding standardized sequence
converges in some positive order of moments even when the population of interest has no expectation.
Here Theorem 1.1 is a subsequent exploration.

2. Preparation for the main proof

Lemma 2.1. (see [2]). Let Y be a population uniformly distributed over the interval [0, 1]; Let Yi:n be
the corresponding i-th OS of a random sample (Y1, · · · ,Yn) from Y. For nonnegative integers u, v, i
and j satisfying 1 ≤ i < j ≤ n,

E(Yu
i:nYv

j:n) =
n!

(i − 1)!
(u + i − 1)!
(u + j − 1)!

(v + u + j − 1)!
(v + u + n)!

.

Remark 2.1. Setting u, v, i and j to be some specified nonnegative integers, we can gain

EYu
i:n =

n!
(i − 1)!

(u + i − 1)!
(u + n)!

(2.1)

and

cov(Yi:n,Y j:n) =
( j + 1)i

(2 + n)(1 + n)
−

i j
(n + 1)2 =

i(n − j + 1)
(n + 2)(n + 1)2 . (2.2)

Lemma 2.2. Now we denote µk:n = EYk:n = k/(n + 1). Under the conditions of Lemma 2.1 and by Eq
(2.1), we can conclude that for integer k satisfying k/n→ ρ ∈ (0, 1), as n→ ∞,

E(Yk:n − µk:n)2 ∼
ρ(1 − ρ)

n
; E(Yk:n − µk:n)4 ∼

3ρ2(1 − ρ)2

n2 (2.3)

and

E(Yk:n − µk:n)6 ∼
15ρ3(1 − ρ)3

n3 . (2.4)

3. Main proof

3.1. The proof of Theorem 1.1

Proof. Denoting Y = F(X) and Yi = F(Xi), we see that Lemmas 2.1 and 2.2 are applicable.
According to the Taylor expansion formula,

Q(t) = Q(t0) + Q′(t0)(t − t0) +
1
2!

Q′′(t0)(t − t0)2 +
1
3!

Q′′′(∆)(t − t0)3

where ∆ ∈ [min(t, t0),max(t, t0)], there exists some RVs τi:n satisfying

τi:n ∈ [min(µi:n,Yi:n),max(µi:n,Yi:n)]
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such that

Xi:n = Q(Yi:n) = Q (µi:n) + Q′(µi:n)(Yi:n − µi:n) +
Q′′(µi:n)(Yi:n − µi:n)2

2
+

Q′′′(τi:n)(Yi:n − µi:n)3

6
= : Q (µi:n) + part1 + part2 + part3. (3.1)

By the equivalent expressions in Lemma (2.2), we have

E(part2
1) = (Q′(µi:n))2E(Yi:n − µi:n)2 ∼ (Q′(p))2 p(1 − p)

n
= O(n−1) (3.2)

and

E(part2
2) =

1
4

(Q′′(µi:n))2E(Yi:n − µi:n)4 ∼ (Q′′(p))2 3p2(1 − p)2

4n2 = O(n−2). (3.3)

Moreover, by the assumption |Q′′′(u)| ≤ Ku−A(1 − u)−A, no matter if 0 < Yi:n ≤ τi:n ≤ µi:n ≤ 1
or 0 < µi:n ≤ τi:n ≤ Yi:n ≤ 1, we have

|Q′′′(τi:n)| ≤ K
[
Yi:n

−A(1 − µi:n)−A · µi:n
−A(1 − Yi:n)−A

]
.

Noting that the pdf of Yi:n is n!/((i − 1)!(n − i)!)xi−1(1 − x)n−iI[0,1](x), we see that

E[Q′′′(τi:n)4] ≤ K4(1 − µi:n)−4Aµi:n
−4A · E

[
Yi:n

−4A(1 − Yi:n)−4A
]
.

=
K4(1 − µi:n)−4Aµi:n

−4An!
(i − 1)!(n − i)!

∫ 1

0
xi−4A−1(1 − x)n−i−4Adx

=
K4(1 − µi:n)−4Aµi:n

−4An!
(i − 1)!(n − i)!

B(i − 4A, n − i − 4A + 1)

=
K4(1 − µi:n)−4Aµi:n

−4An!
(i − 1)!(n − i)!

Γ(i − 4A) · Γ(n − i − 4A + 1)
Γ(n − 8A + 1)

. (3.4)

Now let M be the nonnegative integer satisfying u = M − 4A ∈ [0, 1). By the formula (see [12])
Γ(n + α) ∼ nα(n − 1)! where α > 0, we have for i/n→ p ∈ (0, 1) as n→ ∞,

E[Q′′′(τi:n)4] ≤
K4(1 − µi:n)−4Aµi:n

−4An!
(i − 1)!(n − i)!

Γ(i − M + u) · Γ(n + 1 − i − M + u)
Γ(n + 1 − 2M + 2u)

∼
K4(1 − µi:n)−4Aµi:n

−4An!
(i − 1)!(n − i)!

(i − M)u(i − M − 1)!(n + 1 − i − M)u(n − i − M)!
(n + 1 − 2M)2u(n − 2M)!

∼
K4(1 − p)−4A p−4An!

(i − 1)!(n − i)!
(i − M − 1)! · (n − i − M)!

(n − 2M)!
(i − M)u(n + 1 − i − M)u

(n + 1 − 2M)2u

∼
K4(1 − p)−4A p−4An!

(i − 1)!(n − i)!
(i − M − 1)! · (n − i − M)!

(n − 2M)!
pu(1 − p)u

∼
K4(1 − p)u−4A pu−4An!

(i − 1)!(n − i)!
(i − M − 1)! · (n − i − M)!

(n − 2M)!
. (3.5)

Furthermore, we can utilize the Stirling formula m! ∼ (m/e)m
√

2πm to obtain

K4(1 − p)u−4A pu−4An!
(i − 1)!(n − i)!

(i − M − 1)! · (n − i − M)!
(n − 2M)!
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= K4(1 − p)u−4A pu−4A n(n − 1)...(n − (2M − 1))
(i − 1)...(i − M)(n − i)...(n − i − (M − 1))

(3.6)

∼ K4(1 − p)u−4A pu−4A n2M

iM(n − i)M (3.7)

→ K4(1 − p)u−4A pu−4A(p(1 − p))−M = K4(1 − p)−8A p−8A. (3.8)

According to (3.5) and (3.8) and by using Liapunov’s inequality in the form E(ξ2) ≤ [E(ξ4)]1/2, we
see that there exists a positive constant R > 0 such that the inequality

E[Q′′′(τi:n)4] ≤ R (3.9)

holds uniformly with respect to n ≥ 1. By the Cauchy-Schwarz inequality [E(ξη)]2 ≤ Eξ2 · Eη2 and
Lemma 2.2 as well as the fact |Yi:n − µi:n| ≤ 1, we see that

E(part2
3) =

1
36

E
{
[Q′′′(τi:n)]2(Yi:n − µi:n)6

}
≤

1
36

E
{
[Q′′′(τi:n)]2|Yi:n − µi:n|

3
}

≤
1

36

√
E[Q′′′(τi:n)]4E(Yi:n − µi:n)6 = O(n−3/2). (3.10)

Similarly

|E(part3)| =
1
6
|EQ′′′(τi:n)(Yi:n − µi:n)3| ≤

1
6

√
E[Q′′′(τi:n)]2 · E(Yi:n − µi:n)6 (3.11)

≤
1
6

√
√

R · E(Yi:n − µi:n)6 = O(n−3/2). (3.12)

Combining the conclusions (3.1) and (3.11), we get

EXi:n = EQ(Yi:n) = Q(µi:n) +
Q′′(µi:n)

2
Var(Yi:n) + o(n−1). (3.13)

Similarly to (3.1), there exists some RV α j:n ∈ [min(µ j:n,Y j:n),max(µ j:n,Y j:n)] such that

X j:n = Q(Y j:n) = Q
(
µ j:n

)
+ Q′(µ j:n)(Y j:n − µ j:n) +

Q′′(µ j:n)(Y j:n − µ j:n)2

2
+

Q′′′(α j:n)(Y j:n − µ j:n)3

6
= : Q

(
µ j:n

)
+ PART1 + PART2 + PART3. (3.14)

Replacing i with j in (3.2), (3.3), (3.11) and (3.13) yields

E(PART 2
1 ) ∼ (Q′(p))2 r(1 − r)

n
= O(n−1), (3.15)

E(PART 2
2 ) ∼ (Q′′(p))2 3r2(1 − r)2

4n2 = O(n−2), (3.16)

E(PART3) = O(n−3/2), E(PART 2
3 ) = O(n−3/2) (3.17)

and

EX j:n = EQ(Y j:n) = Q
(
µ j:n

)
+

Q′′
(
µ j:n

)
2

Var(Y j:n) + o(n−1). (3.18)
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Moreover, we see that

|cov (part3, PART3) | ≤
√

E(part2
3) ·

√
E(PART 2

3 ) = O(n−3/2),

hence

cov(part3, PART3) = o(n−1). (3.19)

That results in the following conclusion according to Eqs (3.1) and (3.14):

cov(Xi:n, X j:n) =
∑

1≤s≤3;1≤t≤3

cov(parts, PARTt)

=
∑

2≤t≤3

cov(part1, PARTt) +
∑

1≤t≤3

cov(part2, PARTt)

+
∑

1≤t≤2

cov(part3, PARTt) + cov(part1, PART1) + o(n−1). (3.20)

Now noting the equations numbered (3.2), (3.3), (3.11) and those from (3.15) to (3.17), we derive∣∣∣∣∣∣∣ ∑2≤t≤3

cov(part1, PARTt) +
∑

1≤t≤3

cov(part2, PARTt) +
∑

1≤t≤2

cov(part3, PARTt)

∣∣∣∣∣∣∣
≤

∑
2≤t≤3

√
E(part2

1) · E(PART 2
t ) +

∑
1≤t≤3

√
E(part2

2) · E(PART 2
t )

+
∑

1≤t≤2

√
E(part2

3) · E(PART 2
t ) = o(n−1), (3.21)

from which we conclude that∑
2≤t≤3

cov(part1, PARTt) +
∑

1≤t≤3

cov(part2, PARTt) +
∑

1≤t≤2

cov(part3, PARTt) = o(n−1).

Substituting the corresponding part in (3.20) by the just obtained above result, we have

cov(Xi:n, X j:n) = cov(part1, PART1) + o(n−1) = Q′(µi:n)Q′(µ j:n)
i(n − j + 1)

(n + 2)(n + 1)2 + o(n−1). (3.22)

Referring to the procedure in obtaining conclusion (3.22), we can also reach the following conclusions

Var(Xi:n) = Var(part1) + o(n−1) = [Q
′

(µi:n)]2 i(n + 1 − i)
(n + 2)(n + 1)2 + o(n−1) (3.23)

and

Var(X j:n) = Var(PART1) + o(n−1) = [Q′(µ j:n)]2 j(n − j + 1)
(n + 2)(n + 1)2 + o(n−1). (3.24)

(1) Now we notice that as n→ ∞,

Q(µi:n) = Q
( i
n + 1

)
= Q(p) + Q

′

(p)
( i
n + 1

− p
)

+ o
(
(

i
n + 1

− p)
)
,
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therefore according to Eq (3.13), we have

lim
n→∞

 f (xp)(EXi:n − xp)√
p(1 − p)/n

2

= lim
n→∞

 f (xp)[Q(µi:n) +
Q′′(µi:n)

2 Var(Yi:n) + o(n−1) − xp]√
p(1 − p)/n

2

= lim
n→∞

 f (xp)[ Q′′(µi:n)
2 Var(Yi:n) + o(n−1) + Q(µi:n) − Q(p)]√

p(1 − p)/n

2

= lim
n→∞

 f (xp)[ Q′′(µi:n)
2 Var(Yi:n) + o(n−1) + Q

′

(p)( i
n+1 − p) + o(( i

n+1 − p))]√
p(1 − p)/n

2

= 0

provided i/n = p + o(n−1/2) which is equivalent to i/(n + 1) = p + o(n−1/2). Consequently we see that

lim
n→∞

E

 f (xp)(Xi:n − xp)√
p(1 − p)/n

2

= lim
n→∞

E

 f (xp)[(Xi:n − EXi:n) + (EXi:n − xp)]√
p(1 − p)/n

2

= lim
n→∞

E
 f (xp)(Xi:n − EXi:n)√

p(1 − p)/n

2

+

 f (xp)(EXi:n − xp)√
p(1 − p)/n

2
= lim

n→∞
E

 f (xp)(Xi:n − EXi:n)√
p(1 − p)/n

2

= lim
n→∞

( f (xp))2 · Var(Xi:n)
p(1 − p)/n

= lim
n→∞

( f (xp))2
[Q

′

(µi:n)]2 i(n+1−i)
(n+2)(n+1)2 + o(n−1)

p(1 − p)/n
= 1

according to Eq (3.23). Here the reason for the last equation is that the continuous function Q′(u) is
positive according to the deduction Q′(u) = 1/F′(x) = 1/ f (x) > 0 at x = xp.
(2) Combining the three conclusions (3.22)–(3.24), we get the asymptotic correlation coefficient
corr(Xi:n, X j:n) by the following procedures:

corr(Xi:n, X j:n) =
cov(Xi:n, X j:n)

√
Var(Xi:n)

√
Var(X j:n)

=
Q′(µi:n)Q′(µ j:n) i(n− j+1)

(n+2)(n+1)2 + o(n−1)√[
Q′(µi:n)

]2 i(n−i+1)
(n+2)(n+1)2 + o(n−1)

√
[Q′(µ j:n)]2 j(n− j+1)

(n+2)(n+1)2 + o(n−1)

=
Q′(µi:n)Q′(µ j:n) i(n− j+1)

(n+2)(n+1)2 + o(n−1)∣∣∣Q′(µi:n)Q′(µ j:n)
∣∣∣ √ i(n−i+1)

(n+2)(n+1)2 + o(n−1)
√

j(n− j+1)
(n+2)(n+1)2 + o(n−1)

n→∞
→

Q′(p)Q′(r)p(1 − r)

|Q′(p)Q′(r)|
√

p(1 − p)
√

r(1 − r)
=

√
p(1 − r)
r(1 − p)

(3.25)

provided i/n = p + o(1) and j/n = r + o(1). �

4. Examples

To continue our discussions, we give the following two propositions beforehand:
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Proposition 1. If the inverse function Q(u) of a cdf F(x) has a third-order derivative Q′′′(u), then

Q′′′(u) =
− f ′′(x) f (x) + 3( f ′(x))2

( f (x))5 , (4.1)

where x = Q(u) and f (x) = F′(x).

Proposition 2. For a function − ln(uA(1 − u)A) (where A ≥ 0 is a constant) and any specified constant
ε > 0, there exists a corresponding number C(ε) > 0 such that the inequality − ln(uA(1 − u)A) ≤
C(ε)(u(1 − u))−ε holds for all u ∈ (0, 1).

4.1. One example of Theorem 1.1

Although almost all commonly applied continuous types of populations satisfy the conditions in
Theorem 1.1, due to length concerns in this section, we will present only one example of Theorem 1.1.
Example. For a population X with a gamma distribution (including special cases such as the
Exponential as well as the Chi-square distributions), the pdf is

βα

Γ(α)
xα−1e−βxI[0,∞)(x), α > 0, β > 0.

Corresponding to the case ω = β > 0 and ν = 0, we now assume x = Q(u) to be the inverse function of
the cdf u = F(x) of βX, the pdf of which can be worked out as

f (x) =
1

Γ(α)
xα−1e−xI[0,∞)(x).

On that occasion, we can easily see that for x > 0,

f ′(x) =
α − 1 − x

x
f (x) and f ′′(x) =

1 − α + (1 − α + x)2

x2 f (x). (4.2)

Noting that it is easy to verify that Theorem 1.1 is applicable in the case α = 1, we now assume that
α ∈ (0, 1) ∪ (1,+∞).

As a condition like (1.1) is equivalent to verifying the existence of a positive number q such that

lim
u→0+

uqQ′′′(u) = lim
u→1−

(1 − u)qQ′′′(u) = 0

and by Proposition 1, it is sufficient to verifying the conditions

lim
x→0

(F(x))q f ′′(x) f (x)/ f 5(x) = lim
x→0

(F(x))q( f ′(x))2/ f 5(x) = 0 (4.3)

and

lim
x→∞

(1 − F(x))q f ′′(x) f (x)/ f 5(x) = lim
x→∞

(1 − F(x))q( f ′(x))2/ f 5(x) = 0. (4.4)

Now we use the notation g(x) � h(x) to mean that there are positive constants a < b such that
a|g(x)| ≤ h(x) ≤ b|g(x)| as x→ 0+ or x→ ∞, according to context. Then
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• Case 1. x → 0+. We only need consider x confined in a sufficiently small interval (0, δ].
Obviously F(x) � xα, f (x) � xα−1, f ′(x) � xα−2 and f ′′(x) � xα−3. It follows that conditions
(4.3) are satisfied if a positive constant q satisfies q > 3 − 1/α.
• Case 2. x → ∞. On that occasion, we see according to (4.2) that the following relations hold

simultaneously for a positive number q > 3:

(1 − F(x))q f ′′(x) f (x)/ f 5(x) ∼ (1 − F(x))q/ f 3(x) ∼ (1 − F(x))q−3 → 0

and
(1 − F(x))q( f ′(x))2/ f 5(x) ∼ (1 − F(x))q/ f 3(x) ∼ (1 − F(x))q−3 → 0.

Consequently we see the realization of (4.4).

As above analyzed, gamma distributions satisfy condition (1.1).

4.2. One application example

The Cauchy distribution has a wide range of applications in physics, economics as well as in the
medical domain. We may perceive its important application in physics by a simple model depicted as
what follows: in a coordinate plane, if we place at a point (θ1, θ2) (where θ2 > 0) a radioactive material
emitting a particle at a random angle U uniformly distributed over an interval [0, 2π], then we can show
that the particle will reach the abscissa axis at a point X distributed according to a pdf

f (x, θ1, θ2) =
θ2

π[θ2
2 + (x − θ1)2]

,−∞ < x < +∞ (4.5)

which is the pdf of a Cauchy distribution. The relevant kinds of literature are huge. For general
introduction we recommend [13] whereas, for some elegant studies on a similar topic to this article,
we consult references [14] and [15].

There also is a considerable literature on L-estimation, including determining optimal weights.
Some of this is in the robustness literature. See [2] and [16] for more references.

On estimating the location θ1 in (4.5), Sen verified in [17] that the so-called mid-range (mn,0.56 +

mn,0.44)/2 is more effective than the sample median mn,0.5. By rejecting a fixed number of the largest and
the smallest OSs to avoid a large mean squared error of the parameter estimator, Pekasiewicz utilized
in [18] a method named the truncated quantile least squares method to estimate the location parameter
θ1. Recently, Krykun [19] investigated estimating both θ1 and θ2, by resorting to an arctangent
regression function and rejecting some fraction of the largest and the smallest OSs. Some ideal
simulated results are obtained in [19]. Comparatively, what we present in the following exploration is
a third way using optimal linear combinations of some sample quantiles.

To estimate θ1 in (4.5), we will, without loss of generality, set θ2 = 1.
Let (X1, ..., Xn) be a random sample from a population X according to the pdf

f (x, θ) =
1

π((x − θ)2 + 1)
(4.6)

with an unknown θ. As finding the uniformly minimum variance unbiased estimator (UMVUE) for θ
is hopeless, we now think of the estimator

Rn(p) :=
mn,p + mn,1−p

2
(4.7)
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which is named as sample quasi-midrange (see [20]). It is trivial to see that Rn(r) is unbiased in
estimating θ. According to Theorem 1.1, we see that

Var(Rn(p)) =
Var(mn,p) + Var(mn,1−p) + 2corr(mn,p,mn,1−p)

√
Var(mn,p) · Var(mn,1−p)

4

=
1

2(1 − p)
Var(mn,p) ∼

1
2(1 − p)

p(1 − p)
n( f (xp))2 =

p
2n( f (xp))2

=
pπ2(1 + x2

p)2

2n
=

pπ2
(
1 +

cos2(πp)
sin2(πp)

)2

2n
=

pπ2

2n · sin4(πp)
. (4.8)

As we can easily see that the equivalence for the variance of the sample median

Var(mn,0.5) ∼
π2

4n
≈

2.467401016
n

,

the result of (4.8) seems to indicate that the unbiased estimator Rn(r) will be more effective than the
sample median mn,0.5 if we can diminish the value r/sin4(πr). As the minimum value of r/sin4(πr)
exists but can not be obtained as an explicit expression, here we make an approximation of the
minimum value of r/sin4(πr) as 0.4724417292 when r = 0.4435. By the equivalence (1.3) in
Corollary 1.1, the estimator Rn(0.4435) is preferable for θ because the equivalent corresponding
variance

Var
(mn,0.4435 + mn,1−0.4435

2

)
∼

0.4435π2

2n · sin4(0.4435π)
=

2.332
n

is a bit smaller than that of the sample median. That is exactly the conclusion drawn in [17]. Moreover,
for 0 < p < r ≤ 0.5 and t ∈ (−∞,+∞), we see that the estimator tRn(p) + (1 − t)Rn(r) is also unbiased
for θ and

Var(tRn(p) + (1 − t)Rn(r)) = t2Var(Rn(p)) + (1 − t)2Var(Rn(r)) + 2t(1 − t)cov(Rn(p),Rn(r))

∼
t2 pπ2

2n · sin4(πp)
+

(1 − t)2rπ2

2n · sin4(πr)
+

t(1 − t)
2

cov(mn,p + mn,1−p,mn,r + mn,1−r);

According to equivalence (1.4) and by noting that f (xp) = f (x1−p) and f (xr) = f (x1−r), we obtain

cov(mn,p + mn,1−p,mn,r + mn,1−r) ∼
2pπ2

nsin2(πp)sin2(πr)
(4.9)

and thus for large n,

Var(tRn(p) + (1 − t)Rn(r)) ∼
t2 pπ2

2n · sin4(πp)
+

(1 − t)2rπ2

2n · sin4(πr)
+

t(1 − t)pπ2

nsin2(πp)sin2(πr)

=
π2

2n

(
t2 p

sin4(πp)
+

(1 − t)2r
sin4(πr)

+
2t(1 − t)p

sin2(πp)sin2(πr)

)
.

Generally, for two sequences of real numbers t1, ..., tm and p1, ..., pm respectively satisfying tm = 1 −∑m−1
i=1 ti and 0 ≤ p1 < p2 < ... < pm ≤ 0.5, the linear combination

∑m
i=1 tiRn(pi) is an unbiased estimator

for θ and the corresponding asymptotic variance is

Var

 m∑
i=1

tiRn(pi)

 =

m∑
i=1

Var(tiRn(pi)) + 2
∑

1≤i< j≤m

tit jcov(Rn(pi),Rn(p j))
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∼
π2

2n

 m∑
i=1

t2
i pi

sin4(πpi)
+

∑
1≤i< j≤m

2tit j pi

sin2(πpi)sin2(πp j)

 . (4.10)

For the unknown θ in the pdf of (4.6), to find an unbiased estimator of the form θ̂m,n =
∑m

i=1 tiRn(pi)
with minimum variance, what is left is just a matter of some calculations of finding the ti’s and pi’s
such that the expression (4.10) attains its minimum value. For instance, by putting m = 5 in (4.10) and
by some numerical calculations, we obtain such an estimator defined by

E5,n = − 0.0192Rn(0.0632) − 0.0747Rn(0.1347) + 0.2953Rn(0.3577)
+ 0.3799Rn(0.4199) + 0.4187Rn(0.4739).

With the aid of Matlab software, the asymptotic variance can be shown to be Var(E5,n) ∼ 2.0314/n.
The estimator θ̂5,n is unbiased and is better than the estimator Rn(0.4435), which was named the
optimum mid-range estimator and was admitted in [17] as a superior estimator to the sample median
in estimating θ. As p1 = 0.4435 can be determined numerically for the case m = 1, among unbiased
estimators Rn(p) in (4.7), Rn(0.4435) is the most efficient one such that (4.10) has a minimum variance
when m = 1 is specified.

The Fisher information I(θ) = 1/2 for the Cauchy pdf (4.6), so we see that even if the UMVUE,
say θ̂∗n for θ exists, the theoretical variance Var(̂θ∗n) can not be smaller than 2

n according to the well-
known Cramér-Rao inequality.

Noting that the quotient 2
2.0314 ≈ 0.9845 is close to 1, we see that the quick unbiased estimator E5,n

is close to the theoretical ideal unbiased estimator.
To compare the effectiveness of estimating θ1 by the three mentioned estimators, namely, the median

mn,0.5, the quasi-midrange Rn(0.4435) in (4.7) and the just discussed estimator E5,n, by the aid of Matlab
software, we simulate 30 times a random sample of size n = 200 drawn from a specified Cauchy
distribution f (x, θ1, θ2) = θ2

π[θ2
2+(x−θ1)2] with respective true values θ1 = 0.75 and θ2 = 2. According to

the simulated results, Figure 1 shows the effectiveness of the three estimators in estimating θ1. The
averaged squared errors for the three estimators are respectively, 0.0030, 0.0025 and 0.0019.
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Figure 1. Comparing estimators mn,0.5, E5,n and Rn(0.4435)(n = 200) in estimating θ1 = 0.75.
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As is indicated by the simulated results, among the three estimators mn,0.5, E5,n and Rn(0.4435), the
estimator E5,n is the most effective under the assumption of a large sample size.
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