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1. Introduction

Let a random sample Xi, ..., X;, be drawn from a population X according to a distribution F(x, 6)
where 6 is unknown. If a statistic 5,1 is unbiased for 6 and there are known positive constants b,’s such
that the normalized random sequence {(5,, —6)/b,,n > 1} converges in both the first and the second
moment to a known distribution of a random variable (RV), say &, with a known variance o, then the
effectiveness of the unbiased estimator’G\n can be assessed by the variance b,210'2, the less the variance,
the more effective the estimator. However, the Cramér-Rao inequality indicates that to estimate the
unknown parameter 6 of the distribution F'(x, 8), the unbiased estimator usually has a variance not less
than 1/(nl(0)) where 1(6) denotes the Fisher information. That indicates that an unbiased estimator
with a variance reaching the lower bound 1/(n/(6)) is sure of minimum variance.

Under a large sample size, the maximum likelihood estimate (m.l.e) method usually (but not always)
yields a theoretically desirable estimator, say 6,, in a sense that 6, has an asymptotic normal distribution
N(6,1/(nl(0))) with a variance reaching the lower bound of the well-known Cramér-Rao inequality
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(see [1] as a reference).

For estimating a parameter of the distribution of a population that has no expectation, the classical
moment estimate method is futile. Moreover, the classical method of m.l.e usually becomes invalid
too in the sense that it doesn’t have a closed solution. Under such a situation, especially in the case
of estimating some parameters such as the location of a population, it is worth trying to investigate an
unbiased estimator established by a linear function of some sample quantiles. That will be preferable
if the efficiency is close to that of the theoretical m.l.e. To approximate the efficiency of the estimator,
we need the following conclusions.

Theorem 1.1. For a population X distributed according to a continuous pdf f(x), let p and r be two
numbers satisfying 0 < p < r < 1 and x, and x, be respectively the p-quantile and r-quantile of X
satisfying f(x,)f(x.) > 0. Let (X, ..., X,) be a random sample derived from X. If there are constants
w > 0 and v € (—o0, 00) such that the cdf F(x) of wX + v has an inverse function Q(u) which possesses
a continuous third-order derivative function Q"' (u) in the interval (0, 1) satisfying

10" (w) < Ku™(1 —u)™ (1.1)

for some given constants K > 0, A > 0 and all u € (0, 1), then:

(1) we have, as n — oo,

2
E (f(xp)(Xi:n - xp)] ~E (f(xr)(Xj:n - xr) )2 1
vp(l=p)/n Vr(1 =r)/n
provided i/n = p+ o "?) and j/n =r+o(n~'"?) as n — +oo;
(2) the correlation coefficient corr(X;.,, X .,) between X;., and X ;., satisfies

1-
lim corr(Xi.,, Xj.,) = p((l r;
n—oo r(l-p

(1.2)

providedi/n = p +o(1)and j/n =r+ o(1) asn — oo.

Under the conditions in Theorem 1.1 but without assumption (1.1), it is mentioned (without formal
proof) in [2] that the same conclusions hold according to some equations given. We have found a gap
there, that is, [2] uses a partial sum of a Taylor expansion of a function to approximate the function
itself without rigorous proof. Here we have to apply the assumption (1.1) to fill that gap.

In exploring the measurement of dependence or independence between two order statistics (OSs),
many research works based on the Copula function method are instructive. On that subject, Barakat
led the research. For references, we can consult Barakat’s [3—5] and Hiirlimann’s [6] as well.

Item (2) in Theorem 1.1 can be regarded as a corresponding exploration of the relation between two
general OSs, where we measure the asymptotic dependence or independence by providing the limiting
correlation coeflicient for them. That has two main advantages. First, this preferred measurement has
its advantage in that the respective normalization of both OSs has no effect. Second, as was discovered
by Bahadur (see [7]) or as summarized by DasGupta in [8], the asymptotic joint distributions of some
sample quantiles have a multivariate normal distribution while, for two RVs according to a bivariate
normal distribution, being independent is equivalent to being uncorrelated.
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Under the conditions of Theorem 1.1, we see that the OSs X;., and X ., are asymptotically dependent,
which supports Barakat’s corresponding conclusion in article [3]. Moreover, Theorem 1.1 also supports
the exclamation in [9] stating that the dependence between X;., and X, decreases as i and j draw apart.

To our studies, conditions in Theorem 1.1 are met for almost all continuous populations including
the situation discussed in [10] from which we see that the correlation coefficient between a sample
maximum and a sample minimum has a limiting value O as the sample size n tends to infinity. Here
Theorem 1.1 deals with correlation coefficients for common OSs relevant to some general sample
quantiles.

Now we use symbol [z] for the integer part of a positive number z and m,, , for the p-quantile of the
random sample (Xi,--- ,X,). Namely m, , = (X,n. + Xppe1:0)/2 if pnis an integer and m,, , = Xjpps17:
otherwise.

Remark 1.1. Assume the condition (1.1) of Theorem 1.1, then:

(1) Corresponding to the central limit theorem for sample quantiles, the following second moment
convergence conclusion holds as n — oo,

E (f(xp)(mn,p - xp)]2 N 1;
vr(l = p)/n

(2) The asymptotic correlation coefficient corr(my,,, m,,) for m, , and m, , satisfies

f 1 -
lim corr(m,, p, my,) = %
n—o0 r(l—p

Remark 1.2. For a given sample (X, ...,X,), it is obvious that the correlation coefficient for two
different sample quantiles is relevant to the distribution of the population X from which the sample is
drawn. Here Theorem 1.1 indicates that, as the sample size n tends to infinity, the mentioned correlation
coefficient is eventually free from the distribution of X.

Corollary 1.1. Under the condition (1.1) of Theorem 1.1, if we use the sample quantile m,, as
an estimator for the corresponding population quantile x,, then we have the following variance
equivalence

p(1-p)

n(f(x,))*

Moreover, if we further assume that F(x,) = r and F'(x,) = f(x,) > 0 where O < p < r < 1, then the
covariance between m,, , and m,, , is

Var(m,,,) ~

p(1=r)

cov(my, p, my,,) = corr(imy, ,, ny, ;) \/Var(mn’p) -Var(my,,) ~ ————. (1.3)

nf(x,)f(x)

Generally, for real numbers uy,u,, ...,u, and py, pa, ..., px satisfying 0 < p; < ... < px < 1 and
FCp)f(xp,)...f(xp,) > 0, the following analogous expression holds

k k
U; p,(l 2uiuipi(l = p;)
Var [Z u,-mn,p,-] 2R n(f(xp,))2 * D o) (14

i=1 i=1 1<i<j<k

AIMS Mathematics Volume 8, Issue 3, 6763-6776.



6766

For a positive integer r, we mean that a random sequence {£,,n > 1} converges in an r-th order of
moment if the number sequence {E&),n > 1} converges. In reference [11], Wang et al. investigated
moment convergence conclusions for some OSs connected to a general continuous population. It is
found that not only the sequence of sample quantiles but also the corresponding standardized sequence
converges in some positive order of moments even when the population of interest has no expectation.
Here Theorem 1.1 is a subsequent exploration.

2. Preparation for the main proof
Lemma 2.1. (see [2]). Let Y be a population uniformly distributed over the interval [0, 1]; Let Y;., be

the corresponding i-th OS of a random sample (Yy,--- ,Y,) from Y. For nonnegative integers u, v, i
and j satisfying 1 <i < j<n,

EQY'Y" )= n! w+i-D!'v+u+j-1)!
T G (u+ j- D! v+ u+n)!

Remark 2.1. Setting u, v, i and j to be some specified nonnegative integers, we can gain

W oonl w+i-1!
G- (u+n)!

2.1)

and
(j+ )i B ij  in-j+1)
Q+n)(1+n) mW+12 m+2)n+1)7?

COV(Yi:n’ Yj:n) = (22)

Lemma 2.2. Now we denote ., = EY}., = k/(n + 1). Under the conditions of Lemma 2.1 and by Eq
(2.1), we can conclude that for integer k satisfying k/n — p € (0,1), as n — oo,

3p°(1 - p)?
n2

p(l=p).

E(Yk:n _,uk:n)2 ~ T» E(Yk:n _l-lk:n)4 ~ (23)

and

150°(1 - p)’

E(Yk:n - ,uk:n)6 ~ n3

(2.4)

3. Main proof

3.1. The proof of Theorem 1.1

Proof. Denoting Y = F(X) and Y; = F(X;), we see that Lemmas 2.1 and 2.2 are applicable.
According to the Taylor expansion formula,

1 1
01 = Qto) + Q1)1 = to) + 570" (0)(t = 10)” + 370" (M)t = 10)’
where A € [min(z, ty), max(z, ty)], there exists some RVs 7;,, satisfying
Tin € [min(ﬂi:na Yi:n)’ max(ﬂi:m Yi:n)]
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such that

" in Yi:n_ i:n2 g in Yi:n_ i:n3
Xin = 00 = Qti) + Q') Vi — i) + LN T M) BT )(6 Hin)

= : Q(Wyp) + party + part, + parts. 3.1
By the equivalent expressions in Lemma (2.2), we have

1 -
E(part}) = (Q' (i) E(Yin = ptin)” ~ (Q,(p))zp(Tp) =0(n™) (3.2)

and
3p*(1 - p)?
4n?

Moreover, by the assumption |Q”'(u)| < Ku™(1 —u)™, no matter if 0 < Y;,, < 7ip < fiy < 1
or 0 < iy <713y <Yy < 1, we have

Q" (i)l < K| Yin (0 = i)™ - i (1 = Yi) ™|

Noting that the pdf of Y, is n!/((i — 1)!(n — ))x"'(1 — x)"'I;0.11(x), we see that

1
E(part;) = Z(Q”(,ui:n))zE(Y in = i)t ~ (Q"(p))? =0(n™). (3.3)

ELQ" @)l < K1 = i) Mt ™ - E [ Vi ™40 = Vi)™
K4 1= in —4A i‘n_4A ' 1 ) )
( Mi: ) HMi: n f xt—4A—l(1 _ x)n—l—4Adx
0

G- Dl(n—10)!

K4(1 - i:n)_4A i:n_4An! . .
(i_“l)'(nfi)‘ Bli—4A.n—i—4A+1)

K*(1 = 1) 10\ T — 4A) - T(n — i — 4A + 1) a4
(- Dl(n—10)! T(n—8A+1) ’

Now let M be the nonnegative integer satisfying u = M —4A € [0,1). By the formula (see [12])
I'(n + @) ~ n*(n—1)! where @ > 0, we have fori/n — p € (0,1) asn — oo,

KA = i) i ™0\ TG =M +u) - Tn+ 1 —i— M+ u)

E[Q" ()] <

(i—D'(n—i) Tn+ 1 —2M + 2u)
K*(1 = i) i) (= MY (=M = D\n+1—i— M) (n—i—M)!
- (i— D'(n—i)! (n+ 1 —2M)2(n — 2M)!
K1 = p)y ™ p ¥l (i =M =1 (n—i— M) (- My'(n+1—i-M)"
T T = Dim—-i)! (n—2M)! (n+1—2M)™
K¥(1 = py™pnl(i-M-1D!-(n—i—- M) , .
T T = Dln—D)! (n— 2M)! pd=p)
K41 = py=Ape=Apyt (i = M = 1)! - (n — i — M)! G55)
(- D'(n—1) (n—2M)! '

Furthermore, we can utilize the Stirling formula m! ~ (m/e)™ V2nm to obtain

K41 = py=*Ap=Ant i— M = 1)! - (n — i — M)
(i— DI —i)! (n — 2M)!
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o - nn—1)..n — (2M — 1))
=Kd=p G=Doli—Mn—i)n—i—(M—-1) (3.6)
~ KH(] — p)i—4A a4 n 37

1-p~p = (3.7)
— K1 = p)™p~(p( - p)™ = K*(1 - p)*p~*A. (3.8)

According to (3.5) and (3.8) and by using Liapunov’s inequality in the form E(£%) < [E(£Y)]'/?, we
see that there exists a positive constant R > 0 such that the inequality

E[Q/H(Ti:n)4] <R (39)

holds uniformly with respect to n > 1. By the Cauchy-Schwarz inequality [E(£n))* < E£? - En? and
Lemma 2.2 as well as the fact |Y;.,, — w;.n| < 1, we see that

1
E(part%) = {[Q’”(Tzn)] ( ,uln)ﬁ} < %E {[Q”,( ll’l)] |Yl n ,ui:n|3}
< o \/E[Q"'(r,-:m‘*E(Y,-;n — i) = 002, (3.10)
Similarly
1 1
|E(Pa”f3)| = 6|EQ”l(Ti:n)(Yi:n - ,ui:n)3| < 6 \/E[Q/”(Ti:n)]z . E(Yln - ,ui:n)6 (31 1)
< LJVR EWin - i)t = 07 (3.12)
6
Combining the conclusions (3.1) and (3.11), we get
EXen = EOWYi0) = Qi) + L2 Var(r,y) + o), (3.13)

Similarly to (3.1), there exists some RV «;., € [min(u.,, Y;.,), max(ij.,, Y j.,)] such that

Q,/(/Jj:n)(Yj:n - ,uj:n)2 i Qm(a'j:n)(Yj:n - /«‘j:n)3

Xin = QW) = Q) + QW) Yion = ) +

2 6

= : Q(ujn) + PART| + PART, + PART;. (3.14)

Replacing i with j in (3.2), (3.3), (3.11) and (3.13) yields
E(PART?) ~ (Q'(p))’ =n_ om™), (3.15)

2 N2
E(PART;) ~ (Q"(p ))M o), (3.16)
E(PART;) = O(n™'?), E(PART%):O(n‘m) (3.17)
and
Q” (,uj:n) -1

EXjy = EQ(V) = O (jn) + ———Var(Y,) + o(n™). (3.18)
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Moreover, we see that

lcov (parts, PART5) | < \/E(partg) : \/E(PART32) = 0>,
hence
cov(parts, PART3) = o(n™"). (3.19)
That results in the following conclusion according to Eqgs (3.1) and (3.14):

COV(Xi:na Xj:n) = Z cov(parts, PART,)

1<s<3;1<1<3

Z cov(part,, PART,) + Z cov(part,, PART)

2<t<3 1<t<3
+ Z cov(parts, PART,) + cov(part,, PART/) + o(n™). (3.20)
1<1<2

Now noting the equations numbered (3.2), (3.3), (3.11) and those from (3.15) to (3.17), we derive

Z cov(part,, PART,) + Z cov(part,, PART,) + Z cov(part;, PART))

2<t<3 1<t<3 1<t2

< 3 JE(parf))- EPARTY) + Y \[E(part?) - E(PART?)
2<1<3 1<t<3

+ > \JE(part?) - E(PART?) = o(n™, (3.21)
1<t<2

from which we conclude that

Z cov(part,, PART,) + Z cov(party, PART,) + Z cov(parts, PART,) = o(n™).

2<t<3 1<t<3 112
Substituting the corresponding part in (3.20) by the just obtained above result, we have
in—j+1)

m + O(I’l_l). (322)

coV(Xin, Xjn) = cov(part;, PART)) + o(n”™") = Q' (1ti:) Q' (i)

Referring to the procedure in obtaining conclusion (3.22), we can also reach the following conclusions

, ] 1—1
Var(X,y) = Var(party) + o(n™") = [Q (ulm)F% +o(n™) (3.23)
and
Var(X;.,) = Var(PART) + o™ = [Q'(uj;,,)]2 fn=j+D +o(n™h). (3.24)

(n+2)(n+1)>°

(1) Now we notice that as n — oo,

Qi) = 0(—=) = 0 + C ) = p) + o= - p)).

n+1 n+1 n+1
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therefore according to Eq (3.13), we have

- [ FOOEXin — x,)
el 4/p(l = p)/n

)2 ) [f(x,»[Q(uiw%wam)mm-l)—x},})z
= 11mm

Vp(l =p)/n

_ (ﬂx,,)[%wr(m o) + Q) — Q)]

vVp(l =p)/n )

=0

- (ﬂxp)[Q Y Var(Yy,) + o(n™") + Q' (p)(E —

)+ o((= — p))] ]2
Vp(l =p)/n

provided i/n = p + o(n~'/?) which is equivalent to i/(n + 1) = p + o(n~'/?). Consequently we see that

lim E

Xp)

n—oo

[f(xp)(Xi:n -
vr(l - p)/n

:

e [f(xpn(Xi:n — X)) + (EXiy — x))] )2
e vp(l —p)/n
. [f(x,,)(xi;n - Ex,-;,»]2 . (f(xprxi:n - x,,)) ]
e vp(l —p)/n vp(l —p)/n
- E[f(xpxx,-m - EXI_,»] _ i ) Var(Xe)
n—co Jp(1 = p)/n noeo p(l—p)/n
- O i) VP oiite + o™
,}ggo(f(xp)) (1= p)/n =

according to Eq (3.23). Here the reason for the last equation is that the continuous function Q’(u) is
positive according to the deduction Q'(u) = 1/F'(x) = 1/f(x) > 0 at x = x,,.
(2) Combining the three conclusions (3.22)—(3.24), we get the asymptotic correlation coefficient

corr(X;.,,

COI”I"(XI':,,, Xj:n)

provided i/n = p + o(1) and j/n = r + o(1).

4. Examples

n—oo

X.») by the following procedures:

COV( ins ':n)
\/Vdr(Xi:n) \/Var(Xj:n)
Q' (in)Q () gt + 0(n™)
IO i) P D o(071) (1O () P + ()
Q' (in)Q () gyt + o(n™)
|0 @) 0 )| [ + 00 ([ 2L+ o)
Q' (P)Q'(Np(l 1) _ /p(l -7 (3.25)
Q' (P () p(A = p)NrT=r) N =p)
O

To continue our discussions, we give the following two propositions beforehand:

AIMS Mathematics
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Proposition 1. If the inverse function Q(u) of a cdf F(x) has a third-order derivative Q" (1), then

—f"(0)f(x) + 3(f' ()
(f(0)

Q" (u) = (4.1)

where x = Q(u) and f(x) = F'(x).

Proposition 2. For a function — In(u*(1 — u)*) (where A > 0 is a constant) and any specified constant
g > 0, there exists a corresponding number C(€) > 0 such that the inequality —In(u*(1 — u)*) <
C(e)(u(l —u))~¢ holds for all u € (0, 1).

4.1. One example of Theorem 1.1

Although almost all commonly applied continuous types of populations satisfy the conditions in
Theorem 1.1, due to length concerns in this section, we will present only one example of Theorem 1.1.
Example. For a population X with a gamma distribution (including special cases such as the
Exponential as well as the Chi-square distributions), the pdf is

BCX

@Xa_le_ﬁxl[o’oo)(X), a > O,ﬁ > 0.

Corresponding to the case w = 8 > 0 and v = 0, we now assume x = Q(u) to be the inverse function of
the cdf u = F(x) of SX, the pdf of which can be worked out as

1
S = mx"_le_xl[o,oo)(x).

On that occasion, we can easily see that for x > 0,

a— —a+(1-a+x)?

1- 1
F@="""2f@) and f(x) = = £). 4.2)

X

Noting that it is easy to verify that Theorem 1.1 is applicable in the case @ = 1, we now assume that
a € (0,1)uU (1, +o0).
As a condition like (1.1) is equivalent to verifying the existence of a positive number ¢ such that

li%l ulQ"(u) = lil’{l (1-w)Q"(u)=0
u—0+ u—1-

and by Proposition 1, it is sufficient to verifying the conditions

}Ci_r}é(F COLf" () f(x)]f(x) = }Eg(F I (X)) f(x) =0 (4.3)
and
)}i_{lgo (1= FQ)Lf" () f(x)/ f(x) = )}I_{EIO (1 = FQ))I(f'(0))*/ f(x) = 0. 4.4)

Now we use the notation g(x) =< h(x) to mean that there are positive constants a < b such that
alg(x)| < h(x) < b|g(x)| as x — 0+ or x — oo, according to context. Then

AIMS Mathematics Volume 8, Issue 3, 6763-6776.
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e Case 1. x — 0+. We only need consider x confined in a sufficiently small interval (0, d].
Obviously F(x) =< x?%, f(x) =< x*7!, f/(x) < x*2 and f”(x) =< x*3. It follows that conditions
(4.3) are satisfied if a positive constant g satisfies ¢ > 3 — 1/a.

e Case 2. x — oo. On that occasion, we see according to (4.2) that the following relations hold
simultaneously for a positive number g > 3:

(1= FQ) " ()f 0/ (x) ~ (1= F@)?/ fx) ~ (1 = F@))™ - 0
and
(1= F)I(F )/ £2(x) ~ (1 = F(x)/£3(x) ~ (1 = F(x))" > 0.

Consequently we see the realization of (4.4).

As above analyzed, gamma distributions satisfy condition (1.1).

4.2. One application example

The Cauchy distribution has a wide range of applications in physics, economics as well as in the
medical domain. We may perceive its important application in physics by a simple model depicted as
what follows: in a coordinate plane, if we place at a point (6;, 6,) (where 6, > 0) a radioactive material
emitting a particle at a random angle U uniformly distributed over an interval [0, 27r], then we can show
that the particle will reach the abscissa axis at a point X distributed according to a pdf

60,
,01,6,) = ,—00 < x <+ 4.5
f(x,61,6,) A+ (=0, 00 < X < +00 (4.5)

which is the pdf of a Cauchy distribution. The relevant kinds of literature are huge. For general
introduction we recommend [13] whereas, for some elegant studies on a similar topic to this article,
we consult references [14] and [15].

There also is a considerable literature on L-estimation, including determining optimal weights.
Some of this is in the robustness literature. See [2] and [16] for more references.

On estimating the location 6; in (4.5), Sen verified in [17] that the so-called mid-range (1,056 +
M, 0.44)/2 1s more effective than the sample median m,, 5. By rejecting a fixed number of the largest and
the smallest OSs to avoid a large mean squared error of the parameter estimator, Pekasiewicz utilized
in [18] a method named the truncated quantile least squares method to estimate the location parameter
0;. Recently, Krykun [19] investigated estimating both #; and 6,, by resorting to an arctangent
regression function and rejecting some fraction of the largest and the smallest OSs. Some ideal
simulated results are obtained in [19]. Comparatively, what we present in the following exploration is
a third way using optimal linear combinations of some sample quantiles.

To estimate 6, in (4.5), we will, without loss of generality, set 6, = 1.

Let (X, ..., X,,) be a random sample from a population X according to the pdf

1
a((x—0)2+1)

with an unknown 6. As finding the uniformly minimum variance unbiased estimator (UMVUE) for 6
is hopeless, we now think of the estimator

f(x,0) = (4.6)

my + Mpy1-p

Rn(p) = 2

4.7)

AIMS Mathematics Volume 8, Issue 3, 6763-6776.
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which is named as sample quasi-midrange (see [20]). It is trivial to see that R,(r) is unbiased in
estimating 6. According to Theorem 1.1, we see that

Var(m,,) + Var(m,,_p,) + 2corr(m, ,, m, 1-,) \/Var(mn,p) - Var(my,-p)

Var(R,(p)) = 1
— Var(m ) ~ 1 p(l B P) — P
2(1 - p) P21 = pyn(f(x,)? 2n(f(x,))?
~ (1 + xf,)Z ) pn? (1 + %)2 B pr? is
- 2n B 2n  2n - sin*(np)’ (4.8)

As we can easily see that the equivalence for the variance of the sample median

7 2.467401016
Var(m,gs) ~ mE T,

the result of (4.8) seems to indicate that the unbiased estimator R,(r) will be more effective than the
sample median m, s if we can diminish the value r/sin*(nr). As the minimum value of r/sin*(xr)
exists but can not be obtained as an explicit expression, here we make an approximation of the
minimum value of r/sin*(nr) as 0.4724417292 when r = 0.4435. By the equivalence (1.3) in
Corollary 1.1, the estimator R,(0.4435) is preferable for 6 because the equivalent corresponding
variance

Var (mn,0_4435 + mn,1_0.4435) N 0.44357? _ 2.332
2 2n - sin*(0.44357) n
is a bit smaller than that of the sample median. That is exactly the conclusion drawn in [17]. Moreover,
forO < p <r<0.5andt € (—o0, +00), we see that the estimator 7R,(p) + (1 — £)R,(r) is also unbiased
for 6 and

Var(iR,(p) + (1 — DR,(r)) = £Var(R,(p)) + (1 — 1)’ Var(R,(r)) + 2t(1 — t)cov(R,(p), Ry(r))
B pr? (1-=0%®>  t(1-1)
2n - sin*(xrp)  2n - sin*(wr) 2

Cov(mn,p + mn,l—p’ mn,r + mn,]—r);

According to equivalence (1.4) and by noting that f(x,) = f(x;—,) and f(x,) = f(x;-,), we obtain

2pn?
np T My 1—ps My + My 1) ~ X N 49
COVOMp + a1y My + 1) nsin*(np)sin®(nr) (4.9)
and thus for large n,
2 pn? (1 —0)?rn? t(1 —t)pn?®

Var(tR,(p) + (1 = OR,(r)) - ~ 2n - sin*(rp)  2n - sin*(nr)  nsin?(zwp)sin®(nr)

n_2( £p (1-10°r 2t(1 = f)p )
2n \sin*(xp)  sin*(nr)  sin®(xp)sin®(nr) ]’

Generally, for two sequences of real numbers ¢4, ...,t,, and p, ..., p,, respectively satisfying ¢,, = 1 —
;’:11 tiand 0 < py < pp < ... < pp, £ 0.5, the linear combination )", #;R,(p;) is an unbiased estimator

for 6 and the corresponding asymptotic variance is

Var[z riRn(pi)) = D VarGR(p)+2 ). titicov(Ry(p), Ra(p))
i=1 i=1

1<i<j<m
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< gp 21pi
- N ) 4.10
o Z sin*(np;) Z sin*(np;)sin*(wp;) ( )

1<i<j<m

For the unknown 6 in the pdf of (4.6), to find an unbiased estimator of the form gm,n = Y tR(p))
with minimum variance, what is left is just a matter of some calculations of finding the #;’s and p;’s
such that the expression (4.10) attains its minimum value. For instance, by putting m = 5 in (4.10) and
by some numerical calculations, we obtain such an estimator defined by

Es, =—-0.0192R,(0.0632) — 0.0747R,,(0.1347) + 0.2953R,,(0.3577)
+ 0.3799R,,(0.4199) + 0.4187R,,(0.4739).

With the aid of Matlab software, the asymptotic variance can be shown to be Var(Es,) ~ 2.0314/n.
The estimator 55,;1 is unbiased and is better than the estimator R,(0.4435), which was named the
optimum mid-range estimator and was admitted in [17] as a superior estimator to the sample median
in estimating 6. As p; = 0.4435 can be determined numerically for the case m = 1, among unbiased
estimators R,(p) in (4.7), R,(0.4435) is the most efficient one such that (4.10) has a minimum variance
when m = 1 is specified.

The Fisher information 1(6) = 1/2 for the Cauchy pdf (4.6), so we see that even if the UMVUE,
say 9* for 0 exists, the theoretical variance Var(@*) can not be smaller than 2 = according to the well-
known Cramér-Rao 1nequa11ty

Noting that the quotient 552 031 7 ~ 0.9845 is close to 1, we see that the quick unbiased estimator Es,
is close to the theoretical ideal unbiased estimator.

To compare the effectiveness of estimating 6, by the three mentioned estimators, namely, the median
My .5, the quasi-midrange R,(0.4435) in (4.7) and the just discussed estimator Es ,, by the aid of Matlab
software, we simulate 30 times a random sample of size n = 200 drawn from a specified Cauchy
distribution f(x, 6;,6,) = m with respective true values #; = 0.75 and 6, = 2. According to
the simulated results, Figure 1 shows the effectiveness of the three estimators in estimating ;. The
averaged squared errors for the three estimators are respectively, 0.0030, 0.0025 and 0.0019.

- = 91=0.75
0.95f i
E5,n
0.9f Rn(0'4435) B
0.85F

0.8F Rg
0.75f
0.7}

0.651

true value and simulated estimate values

1
0 5 10 15 20 25 30
simulation orders

Figure 1. Comparing estimators m,, s, Es , and R,,(0.4435)(n = 200) in estimating 8; = 0.75.
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As is indicated by the simulated results, among the three estimators m,, s, Es , and R,(0.4435), the

estimator Es, is the most effective under the assumption of a large sample size.
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