This paper is an attempt to construct a special kind of Hopf pairing $ \langle-, -\rangle:H^\bullet\otimes H\rightarrow {𝕜} $. Specifically, $ H^\bullet $ and $ H $ should be both affine, noetherian and of the same GK-dimension. In addition, some properties of them would be dual to each other. We test the ideas in two steps for all the affine prime regular Hopf algebras $ H $ of GK-dimension one: 1) We compute the finite duals $ H^\circ $ of them, which are given by generators and relations; 2) the Hopf pairings desired are determined by choosing certain Hopf subalgebras $ H^\bullet $ of $ H^\circ $, where $ \langle-, -\rangle $ becomes the evaluation.
Citation: Kangqiao Li, Gongxiang Liu. Finite duals of affine prime regular Hopf algebras of GK-dimension one[J]. AIMS Mathematics, 2023, 8(3): 6829-6879. doi: 10.3934/math.2023347
This paper is an attempt to construct a special kind of Hopf pairing $ \langle-, -\rangle:H^\bullet\otimes H\rightarrow {𝕜} $. Specifically, $ H^\bullet $ and $ H $ should be both affine, noetherian and of the same GK-dimension. In addition, some properties of them would be dual to each other. We test the ideas in two steps for all the affine prime regular Hopf algebras $ H $ of GK-dimension one: 1) We compute the finite duals $ H^\circ $ of them, which are given by generators and relations; 2) the Hopf pairings desired are determined by choosing certain Hopf subalgebras $ H^\bullet $ of $ H^\circ $, where $ \langle-, -\rangle $ becomes the evaluation.
[1] | N. Andruskiewitsch, J. Cuadra, P. Etingof, On two finiteness conditions for Hopf algebras with nonzero integral, Ann. Sc. Norm. Super. Pisa Cl. Sci., XIV (2015), 401–440. https://doi.org/10.2422/2036-2145.201206_011 doi: 10.2422/2036-2145.201206_011 |
[2] | G. M. Bergman, The diamond lemma for ring theory, Adv. Math., 29 (1978), 178–218. https://doi.org/10.1016/0001-8708(78)90010-5 doi: 10.1016/0001-8708(78)90010-5 |
[3] | K. A. Brown, M. Couto, Affine commutative-by-finite Hopf algebras, J. Algebra, 573 (2021), 56–94. https://doi.org/10.1016/j.jalgebra.2020.12.039 doi: 10.1016/j.jalgebra.2020.12.039 |
[4] | K. A. Brown, M. Couto, A. Jahn, The finite dual of commutative-by-finite Hopf algebras, 2021. https://doi.org/10.48550/arXiv.2105.13874 |
[5] | K. A. Brown, J. J. Zhang, Prime regular Hopf algebras of GK-dimension one, Proc. Lond. Math. Soc., 101 (2010), 260–302. https://doi.org/10.1112/plms/pdp060 doi: 10.1112/plms/pdp060 |
[6] | K. A. Brown, J. J. Zhang, Survey on Hopf algebras of GK-dimension 1 and 2, Am. Math. Soc., 771 (2020), 1–19. |
[7] | W. Chin, I. M. Musson, Hopf algebra duality, injective modules and quantum groups, Commun. Algebra, 22 (1994), 4661–4692. https://doi.org/10.1080/00927879408825095 doi: 10.1080/00927879408825095 |
[8] | M. A. M. L. do Couto, Commutative-by-finite Hopf algebras and their finite dual, PhD thesis, University of Glasgow, 2019. |
[9] | F. Ge, G. Liu, A combinatorial identity and the finite dual of infinite dihedral group algebra, Mathematika, 67 (2021), 498–513. https://doi.org/10.1112/mtk.12083 doi: 10.1112/mtk.12083 |
[10] | K. R. Goodearl, J. J. Zhang, Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two, J. Algebra, 324 (2010), 3131–3168. https://doi.org/10.1016/j.jalgebra.2009.11.001 doi: 10.1016/j.jalgebra.2009.11.001 |
[11] | R. G. Heyneman, M. E. Sweedler, Affine Hopf algebras. I, J. Algebra, 13 (1969), 192–241. https://doi.org/10.1016/0021-8693(69)90071-4 |
[12] | A. Jahn, The finite dual of crossed products, PhD thesis, University of Glasgow, 2015. |
[13] | C. Kassel, Quantum groups, Springer-Verlag, 1995. https://doi.org/10.1007/978-1-4612-0783-2 |
[14] | R. G. Larson, D. E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra, 117 (1988), 267–289. https://doi.org/10.1016/0021-8693(88)90107-x doi: 10.1016/0021-8693(88)90107-x |
[15] | J. H. van Lint, R. M. Wilson, A course in combinatorics, 2 Eds., Cambridge University Press, 2001. https://doi.org/10.1017/cbo9780511987045 |
[16] | G. Liu, On Noetherian affine prime regular Hopf algebras of Gelfand-Kirillov dimension 1, Proc. Amer. Math. Soc., 137 (2009), 777–785. https://doi.org/10.1090/s0002-9939-08-09034-5 doi: 10.1090/s0002-9939-08-09034-5 |
[17] | G. Liu, A classification result on prime Hopf algebras of GK-dimension one, J. Algebra, 547 (2020), 579–667. https://doi.org/10.1016/j.jalgebra.2019.12.003 doi: 10.1016/j.jalgebra.2019.12.003 |
[18] | D. M. Lu, Q. S. Wu, J. J. Zhang, Homological integral of Hopf algebras, Trans. Amer. Math. Soc., 359 (2007), 4945–4975. https://doi.org/10.1090/s0002-9947-07-04159-1 doi: 10.1090/s0002-9947-07-04159-1 |
[19] | S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Internat. J. Mod. Phys. A, 5 (1990), 1–91. https://doi.org/10.1142/s0217751x90000027 doi: 10.1142/s0217751x90000027 |
[20] | J. W. Milnor, J. C. Moore, On the structure of Hopf algebras, Ann. Math., 81 (1965), 211–264. https://doi.org/10.2307/1970615 doi: 10.2307/1970615 |
[21] | S. Montgomery, Hopf algebras and their actions on rings, Vol. 82, American Mathematical Society, 1993. https://doi.org/10.1090/cbms/082 |
[22] | S. Montgomery, Indecomposable coalgebras, simple comodules, and pointed Hopf algebras, Proc. Amer. Math. Soc., 123 (1995), 2343–2351. https://doi.org/10.1090/s0002-9939-1995-1257119-3 |
[23] | D. E. Radford, Finite-dimensional simple-pointed Hopf algebras, J. Algebra, 211 (1999), 686–710. https://doi.org/10.1006/jabr.1998.7613 doi: 10.1006/jabr.1998.7613 |
[24] | D. E. Radford, Hopf algebras, Series on Knots and Everything, Vol. 49, World Scientific Publishing Co. Pte. Ltd., 2012. https://doi.org/10.1142/8055 |
[25] | J. J. Rotman, An introduction to homological algebra, 2 Eds., Universitext, Springer, 2009. https://doi.org/10.1007/b98977 |
[26] | M. E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, Benjamin, New York, 1969. |
[27] | M. Takeuchi, Hopf algebra techniques applied to the quantum group $U_{q}(sl(2))$, Amer. Math. Soc., 134 (1992). |
[28] | M. Takeuchi, Some topics on $GL_q(n)$, J. Algebra, 147 (1992), 379–410. https://doi.org/10.1016/0021-8693(92)90212-5 doi: 10.1016/0021-8693(92)90212-5 |
[29] | D. G. Wang, J. J. Zhang, G. B. Zhuang, Hopf algebras of GK-dimension two with vanishing Ext-group, J. Algebra, 388 (2013), 219–247. https://doi.org/10.1016/j.jalgebra.2013.03.032 doi: 10.1016/j.jalgebra.2013.03.032 |
[30] | D. G. Wang, J. J. Zhang, G. B. Zhuang, Connected Hopf algebras of Gelfand-Kirillov dimension four, Trans. Amer. Math. Soc., 367 (2015), 5597–5632. https://doi.org/10.1090/s0002-9947-2015-06219-9 doi: 10.1090/s0002-9947-2015-06219-9 |
[31] | J. Wu, Note on the coradical filtration of $D(m, d, \xi)$, Commun. Algebra, 44 (2016), 4844–4850. https://doi.org/10.1080/00927872.2015.1113295 doi: 10.1080/00927872.2015.1113295 |
[32] | J. Wu, G. Liu, N. Ding, Classification of affine prime regular Hopf algebras of GK-dimension one, Adv. Math., 296 (2016), 1–54. https://doi.org/10.1016/j.aim.2016.03.037 doi: 10.1016/j.aim.2016.03.037 |
[33] | G. B. Zhuang, Properties of pointed and connected Hopf algebras of finite Gelfand-Kirillov dimension, J. Lond. Math. Soc., 87 (2013), 877–898. https://doi.org/10.1112/jlms/jds079 doi: 10.1112/jlms/jds079 |