The main aim of this study is to characterize affine weak $ k $-algebra $ H $ whose affine $ k $-variety $ S = M_{k}(H, k) $ admits a regular monoid structure. As preparation, we determine some results of weak Hopf algebras morphisms, and prove that the anti-function from the category $ \mathcal{C} $ of weak Hopf algebras whose weak antipodes are anti-algebra morphisms is adjoint. Then, we prove the main result of this study: the anti-equivalence between the category of affine algebraic $ k $-regular monoids and the category of finitely generated commutative reduced weak $ k $-Hopf algebras.
Citation: Haijun Cao, Fang Xiao. The category of affine algebraic regular monoids[J]. AIMS Mathematics, 2022, 7(2): 2666-2679. doi: 10.3934/math.2022150
The main aim of this study is to characterize affine weak $ k $-algebra $ H $ whose affine $ k $-variety $ S = M_{k}(H, k) $ admits a regular monoid structure. As preparation, we determine some results of weak Hopf algebras morphisms, and prove that the anti-function from the category $ \mathcal{C} $ of weak Hopf algebras whose weak antipodes are anti-algebra morphisms is adjoint. Then, we prove the main result of this study: the anti-equivalence between the category of affine algebraic $ k $-regular monoids and the category of finitely generated commutative reduced weak $ k $-Hopf algebras.
[1] | E. Abe, Hopf algebras, Cambridge University Press, 1980. |
[2] | A. Borel, Linear algebraic groups, Benjamin, N.Y, 1969. |
[3] | W. E. Clark, Affine semigroups over an arbitrary field, Proc. Glasgow Math. Assoc., 7 (1965), 80–92. doi: 10.1017/S2040618500035231. doi: 10.1017/S2040618500035231 |
[4] | P. Deligne, J. S. Milne, Tannakian categories, Lecture Notes in Mathematics, Berlin, Heidelberg: Springer, 900 (1982), 101–228. doi: 10.1007/978-3-540-38955-2_4. |
[5] | H. Hopf, Über die topologie der gruppen-mannigfaltigkeiten und ihrer verallgemeinerungen, Ann. Math., 42 (1941), 22–52. doi: 10.1007/978-3-662-25046-4_9. doi: 10.1007/978-3-662-25046-4_9 |
[6] | J. E. Humphreys, Linear algebraic groups, Springer-Verlag, 1975. |
[7] | G. Bohm, K. Szlachanyi, A coassociative C*-quantum group with nonintegral dimensions, Lett. Math. Phys., 38 (1996), 437–456. |
[8] | S. Mac Lane, Natural associativity and commutativity, Rice Univ. Studies, 49 (1963), 28–46. |
[9] | S. Mac Lane, Categories for the working mathematician, 2Eds., Berlin: Springer, 1998. |
[10] | F. Li, Weak Hopf algebras and some new solutions of quantum Yang-Baxter equation, J. Algebra, 208 (1998), 72–100. doi: 10.1006/jabr.1998.7491. doi: 10.1006/jabr.1998.7491 |
[11] | F. Li, Weaker structures of Hopf algebras and singular solutions of Yang-Baxter equation, Symposium Frontiers Phys. Millenniu, 2001,143–147. |
[12] | F. Nill, Axioms for weak bialgebras, 1998. Available from: https://arXiv.org/abs/math/9805104. |
[13] | K. Szlachanyi, Weak Hopf algebras, In: Operator algebras and quantum field theory, New York: International Press, 1996. |
[14] | R. J. Plemmon, R. Yoshida, Generating polynomials for finite semigroups, Math. Nachr., 47 (1970), 69–75. |
[15] | M. S. Putcha, Quadratic semigroups on affine spaces, Linear Algebra Appl., 26 (1979), 107–121. doi: 10.1016/0024-3795(79)90174-5. doi: 10.1016/0024-3795(79)90174-5 |
[16] | M. S. Putcha, On linear algebraic semigroups, Trans. Amer. Math. Soc., 259 (1980), 457–469. |
[17] | M. S. Putcha, A semigroup approach to linear algebraic groups, J. Algebra, 80 (1983), 164–185. doi: 10.1016/0021-8693(83)90026-1. doi: 10.1016/0021-8693(83)90026-1 |
[18] | B. S. Ren, Hopf algebra homomorphism and Hopf ideal, J. Guang Xi Teach. Coll. (Nat. Sci. Ed.), 19 (2002), 23–26. |
[19] | N. Saavedra, N. Rivano, Catégories tannakiennes, Berlin: Springer, 1972. |