Research article

On the Tame automorphisms of differential polynomial algebras

  • Received: 25 February 2020 Accepted: 07 April 2020 Published: 10 April 2020
  • MSC : 08B25, 12H05, 16W20

  • Let $R\{x, y\}$ be the differential polynomial algebra in two differential indeterminates $x, y$ over a differential domain $R$ with a derivation operator $\delta$. In this paper, we study on automorphisms of the differential polynomial algebra $R\{x, y\}$ with one derivation operator. Using a method in group theory, we prove that the Tame subgroup of automorphism of $R\{x, y\}$ is the amalgamated free product of the Triangular and the Affine subgroups over their intersection.

    Citation: Zehra Velioǧlu, Mukaddes Balçik. On the Tame automorphisms of differential polynomial algebras[J]. AIMS Mathematics, 2020, 5(4): 3547-3555. doi: 10.3934/math.2020230

    Related Papers:

  • Let $R\{x, y\}$ be the differential polynomial algebra in two differential indeterminates $x, y$ over a differential domain $R$ with a derivation operator $\delta$. In this paper, we study on automorphisms of the differential polynomial algebra $R\{x, y\}$ with one derivation operator. Using a method in group theory, we prove that the Tame subgroup of automorphism of $R\{x, y\}$ is the amalgamated free product of the Triangular and the Affine subgroups over their intersection.


    加载中


    [1] M. Aschenbrenner, L. Van Den Dries, J. Van Der Hoeven, Asymptotic Differential Algebra and Model Theory of Transseries, Princeton University Press, 2017.
    [2] A. G. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2. I & II, T. Am. Math. Soc., 160 (1971), 393-401; 171 (1972), 309-315.
    [3] P. M. Cohn, Subalgebras of free associative algebras, P. Lond. Math. Soc., 56 (1964), 618-632. doi: 10.1112/plms/s3-14.4.618
    [4] B. A. Duisengaliyeva, A. S. Naurazbekova, U. U. Umirbaev, Tame and wild automorphisms of differential polynomial algebras of rank 2, Fund. Appl. Math., 22 (2019), 101-114.
    [5] G. Gallo, B. Mishra, F. Ollivier, Some constructions in rings of differential polynomials, In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, Berlin, 1991, 171-182.
    [6] H. W. E. Jung, Uber ganze birationale Transformationen der Ebene, J. Reine Angew. Math., 184 (1942), 161-174.
    [7] I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris, 1957.
    [8] E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.
    [9] W. van der Kulk, On polynomial rings in two variables, Nieuw Archief voor Wiskunde, 3 (1953), 33-41.
    [10] L. Makar-Limanov, The automorphisms of the free algebra with two generators, Funct. Anal. Appl., 4 (1970), 262-263. doi: 10.1007/BF01075252
    [11] M. Nagata, On the Automorphism Group of k[x,y], Kinokuniya, Tokio, 1972.
    [12] J. F. Ritt, Differential Algebra, American Mathematical Society, New York, 1950.
    [13] I. P. Shestakov, U. U. Umirbaev, Tame and wild automorphisms of rings of polynomials in three variables, J. Am. Math. Soc., 17 (2004), 197-227. doi: 10.1090/S0894-0347-03-00440-5
    [14] W. Sit, The Ritt-Kolchin Theory for Differential Polynomials, World Scientific, Singapore, 2001.
    [15] U. U. Umirbaev, The Anick automorphism of free associative algebras, J. Reine Angew. Math., 605 (2007), 165-178.
    [16] A. Van den Essen, Polynomial Automorphisms: and the Jacobian Conjecture, Birkhauser, 2012.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3120) PDF downloads(296) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog