Citation: Saima Rashid, Rehana Ashraf, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu. New weighted generalizations for differentiable exponentially convex mapping with application[J]. AIMS Mathematics, 2020, 5(4): 3525-3546. doi: 10.3934/math.2020229
[1] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Boston: Academic Press, 1992. |
[2] | C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications, New York: Springer, 2006. |
[3] | T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2 |
[4] | M. K. Wang, Z. Y. He, Y. M. Chu, Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w |
[5] | S. Saima, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171 |
[6] | X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6 |
[7] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[8] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. doi: 10.1155/2020/3075390 |
[9] | M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4 |
[10] | S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4 |
[11] | M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019). |
[12] | M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4 |
[13] | M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8 |
[14] | S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11. doi: 10.1155/2019/9487823 |
[15] | S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4 |
[16] | S. H. Wu, Y. M. Chu, Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4 |
[17] | M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39 (2019), 1440-1450. doi: 10.1007/s10473-019-0520-z |
[18] | M. Adil Khan, S. H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4 |
[19] | Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Space., 2019 (2019), 1-9. |
[20] | Y. Khurshid, M. Adil Khan, Y. M. Chu, et al. Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1-10. |
[21] | Z. H. Yang, W. M. Qian, Y. M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185-1199. |
[22] | T. H. Zhao, M. K. Wang, W. Zhang, et al. Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6 |
[23] | T. R. Huang, S. Y. Tan, X. Y. Ma, et al. Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 1-11. doi: 10.1186/s13660-017-1594-6 |
[24] | Y. Q. Song, M. Adil Khan, S. Zaheer Ullah, et al. Integral inequalities involving strongly convex functions, J. Funct. Space., 2018 (2018), 1-9. |
[25] | M. Adil Khan, Y. M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Space., 2018 (2018), 1-9. |
[26] | M. Adil Khan, Y. M. Chu, T. U. Khan, et al. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121 |
[27] | Z. H. Yang, W. Zhang, Y. M. Chu, Sharp Gautschi inequality for parameter 0 < p < 1 with applications, Math. Inequal. Appl., 20 (2017), 1107-1120. |
[28] | Y. M. Chu, W. F. Xia, X. H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 105 (2012), 412-421. doi: 10.1016/j.jmva.2011.08.004 |
[29] | Y. M. Chu, G. D. Wang, X. H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Mathematische Nachrichten, 284 (2011), 653-663. doi: 10.1002/mana.200810197 |
[30] | M. K. Wang, Y. M. Chu, S. L. Qiu, et al. Convexity of the complete elliptic integrals of the first kind with respect to Hölder means, J. Math. Anal. Appl., 388 (2012), 1141-1146. doi: 10.1016/j.jmaa.2011.10.063 |
[31] | J. L. W. V. Jensen, Om konvexe funktioner og uligheder mellem Middelvaerdier, Nyt tidsskrift for matematik, 16 (1905), 49-69. |
[32] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1988. |
[33] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0 |
[34] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. doi: 10.7153/jmi-2020-14-01 |
[35] | M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0 |
[36] | W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334 |
[37] | S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066 |
[38] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. doi: 10.1155/2020/9845407 |
[39] | S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0 |
[40] | M. K. Wang, Y. M. Chu, W. Zhang, Precise estimates for the solution of Ramanujan's generalized modular equation, Ramanujan J., 49 (2019), 653-668. doi: 10.1007/s11139-018-0130-8 |
[41] | M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
[42] | S. L. Qiu, X. Y. Ma, Y. M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306-1337. doi: 10.1016/j.jmaa.2019.02.018 |
[43] | Z. H. Yang, Y. M. Chu, W. Zhang, High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput., 348 (2019), 552-564. |
[44] | M. Adil Khan, Y. Khurshid, T. S. Du, et al. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals, J. Funct. Space., 2018 (2018), 1-12. |
[45] | M. Adil Khan, A. Iqbal, M. Suleman, et al. Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6 |
[46] | T. R. Huang, B. W. Han, X. Y. Ma, et al. Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl., 2018 (2018), 1-9. doi: 10.1186/s13660-017-1594-6 |
[47] | M. K. Wang, Y. M. Li, Y. M. Chu, Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., 46 (2018), 189-200. doi: 10.1007/s11139-017-9888-3 |
[48] | M. Adil Khan, S. Begum, Y. Khurshid, et al. Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 1-14. doi: 10.1186/s13660-017-1594-6 |
[49] | Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On approximating the error function, Math. Inequal. Appl., 21 (2018), 469-479. |
[50] | Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714-1726. doi: 10.1016/j.jmaa.2018.03.005 |
[51] | Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On rational bounds for the gamma function, J. Inequal. Appl., 2017 (2017), 1-17. doi: 10.1186/s13660-016-1272-0 |
[52] | Z. H. Yang, W. M. Qian, Y. M. Chu, et al. Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl., 2017 (2017), 1-13. doi: 10.1186/s13660-016-1272-0 |
[53] | Y. M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0 |
[54] | M. K. Wang, Y. M. Chu, Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37 (2017), 607-622. doi: 10.1016/S0252-9602(17)30026-7 |
[55] | M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky MT. J. Math., 46 (2016), 679-691. doi: 10.1216/RMJ-2016-46-2-679 |
[56] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[57] | G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality involving the complete elliptic integrals, Rocky MT. J. Math., 44 (2014), 1661-1667. doi: 10.1216/RMJ-2014-44-5-1661 |
[58] | Y. M. Chu, Y. F. Qiu, M. K. Wang, Hölder mean inequalities for the complete elliptic integrals, Integr. Transf. Spec. F., 23 (2012), 521-527. doi: 10.1080/10652469.2011.609482 |
[59] | Y. M. Chu, M. K. Wang, S. L. Qiu, et al. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 63 (2012), 1177-1184. doi: 10.1016/j.camwa.2011.12.038 |
[60] | M. K. Wang, S. L. Qiu, Y. M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229. doi: 10.1016/j.jmaa.2011.06.039 |
[61] | M. A. Noor, Hermite-Hadamard integral inequalities for log-φ-convex functions, Nonl. Anal. Forum, 13 (2008), 119-124. |
[62] | S. Rashid, F. Safdar, A. O. Akdemir, et al. Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 1-17. doi: 10.1186/s13660-019-1955-4 |
[63] | S. Pal, Exponentially concave functions and high dimensional stochastic portfolio theory, Stoch. Proc. Appl., 129 (2019), 3116-3128. doi: 10.1016/j.spa.2018.09.004 |
[64] | S. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1-66. doi: 10.1007/BF02592679 |
[65] | T. Antczar, (p, r)-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379. doi: 10.1006/jmaa.2001.7574 |
[66] | S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babeş-Bolyai Math., 60 (2015), 527-534. |
[67] | S. Rashid, M. A. Noor, K. I. Noor, Some generalize Reimann-Liouville fractional estimates involving functions having exponentially convexity property, Punjab Univ. J. Math., 51 (2019), 1-15. |
[68] | M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentiaaly convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215 |
[69] | D. M. Nie, S. Rashid, A. O. Akdemir, et al. On some weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Mathematics, 7 (2019), 1-12. |
[70] | U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137-146. |
[71] | C. E. M. Pearce, J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51-55. doi: 10.1016/S0893-9659(99)00164-0 |
[72] | D. Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted midpoint formula and higher moments of random variables, Appl. Math. Comput., 232 (2014), 68-75. |
[73] | W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2 |
[74] | W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4 |
[75] | X. H. He, W. M. Qian, H. Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2 |
[76] | J. L. Wang, W. M. Qian, Z. Y. He, et al. On approximating the Toader mean by other bivariate means, J. Funct. Space., 2019 (2019), 1-7. |
[77] | H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6 |
[78] | W. M. Qian, X. H. Zhang, Y. M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal., 11 (2017), 121-127. doi: 10.7153/jmi-11-11 |
[79] | Y. M. Chu, M. K. Wang, S. L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Math. Sci., 122 (2012), 41-51. doi: 10.1007/s12044-012-0062-y |
[80] | M. K. Wang, Y. M. Chu, S. L. Qiu, et al. Bounds for the perimeter of an ellipse, J. Approx. Theory, 164 (2012), 928-937. doi: 10.1016/j.jat.2012.03.011 |
[81] | G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14 (2011), 833-837. |
[82] | Y. M. Chu, B. Y. Long, Sharp inequalities between means, Math. Inequal. Appl., 14 (2011), 647-655. |
[83] | M. K. Wang, Y. M. Chu, Y. F. Qiu, et al. An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24 (2011), 887-890. doi: 10.1016/j.aml.2010.12.044 |
[84] | W. M. Qian, Y. M. Chu, Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl., 2017 (2017), 1-10. doi: 10.1186/s13660-016-1272-0 |
[85] | T. H. Zhao, B. C. Zhou, M. K. Wang, et al. On approximating the quasi-arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4 |
[86] | B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020). doi: 10.1007/s13398-019-00734-0 |
[87] | W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4 |
[88] | W. M. Qian, H. Z. Xu, Y. M. Chu, Improvements of bounds for the Sándor-Yang means, J. Inequal. Appl., 2019 (2019), 1-8. doi: 10.1186/s13660-019-1955-4 |
[89] | M. K. Wang, S. L. Qiu, Y. M. Chu, Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion function, Math. Inequal. Appl., 21 (2018), 629-648. |
[90] | Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729-735. |
[91] | Y. M. Chu, M. K. Wang, Y. P. Jiang, et al. Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., 395 (2012), 637-642. doi: 10.1016/j.jmaa.2012.05.083 |
[92] | Y. M. Chu, M. K. Wang, Optimal Lehmer mean bounds for the Toader mean, Results Math., 61 (2012), 223-229. doi: 10.1007/s00025-010-0090-9 |
[93] | Y. M. Chu, M. K. Wang, Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Anal., 2012 (2012), 1-11. |
[94] | M. K. Wang, Z. K. Wang, Y. M. Chu, An optimal double inequality between geometric and identric means, Appl. Math. Lett., 25 (2012), 471-475. doi: 10.1016/j.aml.2011.09.038 |
[95] | Y. F. Qiu, M. K. Wang, Y. M. Chu, et al. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., 5 (2011), 301-306. doi: 10.7153/jmi-05-27 |
[96] | Y. Zhang, D. Y. Chen, A Diophantine equation with the harmonic mean, Period. Math. Hung., 80 (2020), 138-144. doi: 10.1007/s10998-019-00302-4 |