Citation: Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity[J]. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
[1] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[2] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[3] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[4] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[7] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[8] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[9] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
[10] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
Convexity is very important in the field of mathematical analysis and optimization theory. It is a basic concept in mathematics which has been extended and generalized in different ways by using various techniques. For example one of the generalizations is exponentially (α,h−m)-convexity, that contains (α,h−m)-convexity, exponentially (h−m)-convexity, (h−m)-convexity, exponentially (α,m)-convexity, (α,m)-convexity and several related convexities.
Definition 1. [1] Let J⊆R be an interval containing (0,1) and let h:J→R be a non-negative function. Then a function η:I→R (where I⊆R is an interval) is said to be exponentially (α,h−m)-convex, if inequality (1.1) must holds for all α,m∈[0,1], a1,a2∈I, τ∈(0,1) and ς∈R:
η(τa1+m(1−τ)a2)≤h(τα)η(a1)eςa1+mh(1−τα)η(a2)eςa2. | (1.1) |
If we put α=1 in (1.1), then we get the following definition of exponentially (h−m)-convex functions:
Definition 2. Let J⊆R be an interval containing (0,1) and let h:J→R be a non-negative function. Then a function η:I→R (where I⊆R is an interval) is said to be exponentially (h−m)-convex, if inequality (1.2) must holds for all m∈[0,1], a1,a2∈I, τ∈(0,1) and ς∈R:
η(τa1+m(1−τ)a2)≤h(τ)η(a1)eςa1+mh(1−τ)η(a2)eςa2. | (1.2) |
If we put h(τ)=τ in (1.1), then we get the following definition of exponentially (α,m)-convex functions:
Definition 3. A function η:I→R (where I⊆R is an interval) is said to be exponentially (α,m)-convex, if inequality (1.3) must holds for all α,m∈[0,1], a1,a2∈I, τ∈(0,1) and ς∈R:
η(τa1+m(1−τ)a2)≤ταη(a1)eςa1+m(1−τα)η(a2)eςa2. | (1.3) |
Remark 1. 1. If we fix α=1 and h(τ)=τs in (1.1), we recover the definition of exponentially (s,m)-convexity defined by Qiang et al. in [2].
2. If we fix α=m=1 and h(τ)=τs in (1.1), we recover the definition of exponentially s-convexity defined by Mehreen et al. in [3].
3. If we fix α=m=1 and h(τ)=τ in (1.1), we recover the definition of exponentially convexity defined by Awan et al. in [4].
4. If we fix ς=0 in (1.1), we recover the definition of (α,h−m)-convexity defined by Farid et al. in [5].
5. If we fix ς=α=0 and α=1 in (1.1), we recover the definition of (h−m)-convexity defined by Özdemir et al. in [6].
6. If we fix ς=0 and h(τ)=τ in (1.1), we recover the definition of (α,m)-convexity defined by Mihesan in [7].
7. If we fix ς=0, α=1 and h(τ)=τs in (1.1), we recover the definition of (s,m)-convexity defined by Efthekhari in [8].
8. If we fix ς=0, α=m=1 and h(τ)=τs in (1.1), we recover the definition of s-convexity defined by Hudzik and Maligranda in [9].
9. If we fix ς=0, α=1 and h(τ)=τ in (1.1), we recover the definition of m-convexity defined by Toader in [10].
10. If we fix ς=0 and α=m=1in (1.1), we recover the definition of h-convexity defined by Varosanec in [11].
11. If we fix ς=0, α=m=1 and h(τ)=τ in (1.1), we recover the definition of convexity.
A convex function is elegantly interpreted in the coordinate plane by the well known Hermite-Hadamard inequality [12], stated as follows:
Theorem 1.1. Let η:[a1,a2]→R be a convex function such that a1<a2. Then following inequality holds:
η(a1+a22)≤1a2−a1∫a2a1η(τ)dτ≤η(a1)+η(a2)2. |
The Hermite-Hadamard inequality is generalized in various ways by using different fractional integral operators (see, for example [3,4,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]). In this paper we will further generalize this inequality by using a new generalized convexity and fractional integral operators containing an extended generalized Mittag-Leffler function. The results of this paper also generalize results of [17,18,19,20,22,24,25,29,30].
In [31], Andrić et al. defined the generalized fractional integral operators containing generalized Mittag-Leffler function as follows:
Definition 4. Let κ,θ,δ,l,ω,c∈C, ℜ(θ),ℜ(δ),ℜ(l)>0, ℜ(c)>ℜ(ω)>0 with p≥0, r>0 and 0<q≤r+ℜ(θ). Let η∈L1[a1,a2] and ψ∈[a1,a2]. Then the generalized fractional integral operators Υω,r,q,cθ,δ,l,κ,a1+η and Υω,r,q,cθ,δ,l,κ,a2−η are defined by:
(Υω,r,q,cθ,δ,l,κ,a1+η)(ψ;p)=∫ψa1(ψ−τ)δ−1Eω,r,q,cθ,δ,l(κ(ψ−τ)θ;p)η(τ)dτ, | (1.4) |
(Υω,r,q,cθ,δ,l,κ,a2−η)(ψ;p)=∫a2ψ(τ−ψ)δ−1Eω,r,q,cθ,δ,l(κ(τ−ψ)θ;p)η(τ)dτ, | (1.5) |
where Eω,r,q,cθ,δ,l(τ;p) is the generalized Mittag-Leffler function defined as follows:
Eω,r,q,cθ,δ,l(τ;p)=∞∑n=0βp(ς+nq,c−ς)β(ς,c−ς)(c)nqΓ(θn+δ)τn(l)nr. |
In [32], Farid defined the following unified integral operators:
Definition 5. Let η,μ:[a1,a2]→R, (with 0<a1<a2) be two functions such that η is positive and integrable on [a1,a2] and μ is differentiable and strictly increasing on [a1,a2]. Also, let γψ be an increasing function on [a1,∞) and κ,δ,l,ω,c∈C, ℜ(δ),ℜ(l)>0, ℜ(c)>ℜ(ω)>0 with p≥0, θ,r>0 and 0<q≤r+θ. Then for ψ∈[a1,a2] the integral operators μΥγ,ω,r,q,cθ,δ,l,a1+η and μΥγ,ω,r,q,cθ,δ,l,a2−η are defined by:
(μΥγ,ω,r,q,cθ,δ,l,a1+η)(ψ;p)=∫ψa1γ(μ(ψ)−μ(τ))μ(ψ)−μ(τ)Eω,r,q,cθ,δ,l(κ(μ(ψ)−μ(τ))θ;p)η(τ)d(μ(τ)), | (1.6) |
(μΥγ,ω,r,q,cθ,δ,l,a2−η)(ψ;p)=∫a2ψγ(μ(τ)−μ(ψ))μ(τ)−μ(ψ)Eω,r,q,cθ,δ,l(κ(μ(τ)−μ(ψ))θ;p)η(τ)d(μ(τ)). | (1.7) |
If we put γ(ψ)=ψδ in (1.6) and (1.7), then we get the following generalized fractional integral operators containing Mittag-Leffler function:
Definition 6. Let η,μ:[a1,a2]→R, (with 0<a1<a2) be two functions such that η is positive and integrable on [a1,a2] and μ is differentiable and strictly increasing on [a1,a2]. Also, let κ,δ,l,ω,c∈C, ℜ(δ),ℜ(l)>0, ℜ(c)>ℜ(ω)>0 with p≥0, θ,r>0 and 0<q≤r+θ. Then for ψ∈[a1,a2] the integral operators μΥω,r,q,cθ,δ,l,κ,a1+η and μΥω,r,q,cθ,δ,l,κ,a2−η are defined by:
(μΥω,r,q,cθ,δ,l,κ,a1+η)(ψ;p)=∫ψa1(μ(ψ)−μ(τ))δ−1Eω,r,q,cθ,δ,l(κ(μ(ψ)−μ(τ))θ;p)η(τ)d(μ(τ)), | (1.8) |
(μΥω,r,q,cθ,δ,l,κ,a2−η)(ψ;p)=∫a2ψ(μ(τ)−μ(ψ))δ−1Eω,r,q,cθ,δ,l(κ(μ(τ)−μ(ψ))θ;p)η(τ)d(μ(τ)). | (1.9) |
Remark 2. Operators (1.8) and (1.9) are the generalizations of the following fractional integral operators:
1. Choosing μ(ψ)=ψ, we recover the fractional integral operators defined in (1.4) and (1.5).
2. Choosing μ(ψ)=ψ and p=0, we recover the fractional integral operators defined by Salim-Faraj in [33].
3. Choosing μ(ψ)=ψ and l=r=1, we recover the fractional integral operators defined by Rahman et al. in [34].
4. Choosing μ(ψ)=ψ, p=0 and l=r=1, we recover the fractional integral operators defined by Srivastava-Tomovski in [35].
5. Choosing μ(ψ)=ψ, p=0 and l=r=q=1, we recover the fractional integral operators defined by Prabhakar in [36].
6. Choosing μ(ψ)=ψ and κ=p=0, we recover the Riemann-Liouville fractional integral operators.
In [26], Mehmood et al. given the following formulas which we will use frequently:
(μΥω,r,q,cθ,δ,l,κ,a1+1)(ψ;p)=(μ(ψ)−μ(a1))δEω,r,q,cθ,δ+1,l(κ(μ(ψ)−μ(a1))θ;p):=μχδκ,a1+(ψ;p), | (1.10) |
(μΥω,r,q,cθ,δ,l,κ,a2−1)(ψ;p)=(μ(a2)−μ(ψ))δEω,r,q,cθ,δ+1,l(κ(μ(a2)−μ(ψ))θ;p):=μχδκ,a2−(ψ;p). | (1.11) |
The aim of this paper is to establish the generalized Hermite-Hadamard inequalities for exponentially (α,h−m)-convex functions, exponentially (h−m)-convex functions and exponentially (α,m)-convex functions. These inequalities are produced by using the generalized fractional integral operators (1.8) and (1.9) containing Mittag-Leffler function via a monotone increasing function. These inequalities lead to produce the Hermite-Hadamard inequalities for various kinds of convexities (see Remark 1) and well-known fractional integral operators (see Remark 2).
In the upcoming section we prove the Hermite-Hadamard inequalities for generalized fractional integral operators (1.8) and (1.9) via exponentially (α,h−m)-convex functions. Further we present them for generalized fractional integral operators (1.8) and (1.9) via exponentially (h−m)-convex functions. Also we give these inequalities for exponentially (α,m)-convex functions.
First we give the following Hermite-Hadamard inequality for exponentially (α,h−m)-convex functions via further generalized fractional integral operators.
Theorem 2.1. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (α,h−m)-convex function. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ,a1+(μ−1(mμ(a2));p)≤h(12α)(μΥω,r,q,cθ,δ,l,ˉκ,a1+η∘μ)(μ−1(mμ(a2));p)+mδ+1h(2α−12α)(μΥω,r,q,cθ,δ,l,ˉκmθ,a2−η∘μ)(μ−1(μ(a1)m);p)≤(mμ(a2)−μ(a1))δ[(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τα)dτ+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(1−τα)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.1) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
Proof. From exponentially (α,h−m)-convexity of η, we have
η(μ(a1)+mμ(a2)2)≤h(12α)η(τμ(a1)+m(1−τ)μ(a2))eς(τμ(a1)+m(1−τ)μ(a2))+mh(2α−12α)η((1−τ)μ(a1)m+τμ(a2))eς((1−τ)μ(a1)m+τμ(a2)). | (2.2) |
Multiplying (2.2) by τδ−1Eω,r,q,cθ,δ,l(κτθ;p) and integrating over [0,1], we have
η(μ(a1)+mμ(a2)2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)dτ≤h(12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τμ(a1)+m(1−τ)μ(a2))eς(τμ(a1)+m(1−τ)μ(a2))dτ+mh(2α−12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η((1−τ)μ(a1)m+τμ(a2))eς((1−τ)μ(a1)m+τμ(a2))dτ. | (2.3) |
Putting μ(ψ)=τμ(a1)+m(1−τ)μ(a2) and μ(ϕ)=(1−τ)μ(a1)m+τμ(a2) in (2.3), then by using (1.8), (1.9) and (1.10), the first inequality of (2.1) can be achieved.
Again from exponentially (α,h−m)-convexity of η, we have the following inequalities:
η(τμ(a1)+m(1−τ)μ(a2))≤h(τα)η(μ(a1))eςμ(a1)+mh(1−τα)η(μ(a2))eςμ(a2), | (2.4) |
η((1−τ)μ(a1)m+τμ(a2))≤mh(1−τα)η(μ(a1)m2)eςμ(a1)m2+h(τα)η(μ(a2))eςμ(a2). | (2.5) |
Multiplying (2.4) by h(12α) and (2.5) by mh(2α−12α), then adding resulting inequalities, we have
h(12α)η(τμ(a1)+m(1−τ)μ(a2))+mh(2α−12α)η((1−τ)μ(a1)m+τμ(a2))≤(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))h(τα)+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)h(1−τα). | (2.6) |
Now multiplying (2.6) by τδ−1Eω,r,q,cθ,δ,l(κτθ;p) and integrating over [0,1], we have
h(12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τμ(a1)+m(1−τ)μ(a2))dτ+mh(2α−12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η((1−τ)μ(a1)m+τμ(a2))dτ≤(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τα)dτ+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(1−τα)dτ. | (2.7) |
Putting μ(ψ)=τμ(a1)+m(1−τ)μ(a2) and μ(ϕ)=(1−τ)μ(a1)m+τμ(a2) in (2.7), then by using (1.8) and (1.9), the second inequality of (2.1) can be achieved.
If we choose α=1 in (2.1), then we get following Hermite-Hadamard inequality for exponentially (h−m)-convex functions.
Corollary 2.2. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (h−m)-convex functions. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ,a1+(μ−1(mμ(a2));p)≤h(12)[(μΥω,r,q,cθ,δ,l,ˉκ,a1+η∘μ)(μ−1(mμ(a2));p)+mδ+1(μΥω,r,q,cθ,δ,l,ˉκmθ,a2−η∘μ)(μ−1(μ(a1)m);p)]≤(mμ(a2)−μ(a1))δh(12)[(η(μ(a1))eςμ(a1)+mη(μ(a2))eςμ(a2))∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τ)dτ+m(η(μ(a2))eςμ(a2)+mη(μ(a1)m2)eςμ(a1)m2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(1−τ)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.8) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
If we choose h(τ)=τ in (2.1), then we get following Hermite-Hadamard inequality for exponentially (α,m)-convex functions.
Corollary 2.3. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2, be a positive, integrable and exponentially (α,m)-convex function. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ,a1+(μ−1(mμ(a2));p)≤12α[(μΥω,r,q,cθ,δ,l,ˉκ,a1+η∘μ)(μ−1(mμ(a2));p)+mδ+1(2α−1)(μΥω,r,q,cθ,δ,l,ˉκmθ,a2−η∘μ)(μ−1(μ(a1)m);p)]≤(mμ(a2)−μ(a1))δ2α[(η(μ(a1))eςμ(a1)+m(2α−1)η(μ(a2))eςμ(a2))×∫10τδ+α−1Eω,r,q,cθ,δ,l(κτθ;p)dτ+m(η(μ(a2))eςμ(a2)+m(2α−1)η(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1(1−τα)Eω,r,q,cθ,δ,l(κτθ;p)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.9) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
Remark 3. 1. If we choose ς=p=0, α=m=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [17,Theorem 2.1].
2. If we choose ς=p=0, α=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [18,Theorem 3].
3. If we choose ς=0, α=1 and μ(ψ)=ψ in (2.1), we recover the result in [24,Theorem 2.1].
4. If we choose ς=0, α=m=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [25,Theorem 2.1].
5. If we choose ς=0, α=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [25,Theorem 3.1].
6. If we choose ς=p=κ=0, α=m=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [29,Theorem 2].
In the following we give another version of the Hermite-Hadamard inequality for exponentially (α,h−m)-convex functions via further generalized fractional integral operators.
Theorem 2.4. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (α,h−m)-convex functions. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+(μ−1(mμ(a2));p)≤h(12α)(μΥω,r,q,cθ,δ,l,ˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+η∘μ)(μ−1(mμ(a2));p)+mδ+1h(2α−12α)(μΥω,r,q,cθ,δ,l,ˉκ(2m)θ,(μ−1(μ(a1)+mμ(a2)2m))−η∘μ)(μ−1(μ(a1)m);p)≤(mμ(a2)−μ(a1))δ2δ[(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τα2α)dτ+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h((2−τ)α2α)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.10) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
Proof. From exponentially (α,h−m)-convexity of η, we have
η(μ(a1)+mμ(a2)2)≤h(12α)η(τ2μ(a1)+m(2−τ)2μ(a2))eς(τ2μ(a1)+m(2−τ)2μ(a2))+mh(2α−12α)η((2−τ)2μ(a1)m+τ2μ(a2))eς((2−τ)2μ(a1)m+τ2μ(a2)). | (2.11) |
Multiplying (2.11) by τδ−1Eω,r,q,cθ,δ,l(κτθ;p) and integrating over [0,1], we have
η(μ(a1)+mμ(a2)2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)dτ≤h(12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τ2μ(a1)+m(2−τ)2μ(a2))eς(τ2μ(a1)+m(2−τ)2μ(a2))dτ+mh(2α−12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η((2−τ)2μ(a1)m+τ2μ(a2))eς((2−τ)2μ(a1)m+τ2μ(a2))dτ. | (2.12) |
Putting μ(ψ)=τ2μ(a1)+m(2−τ)2μ(a2) and μ(ϕ)=(2−τ)2μ(a1)m+τ2μ(a2) in (2.12), then by using (1.8), (1.9) and (1.10), the first inequality of (2.9) can be achieved.
Again from exponentially (α,h−m)-convexity of η, we have the following inequalities:
η(τ2μ(a1)+m(2−τ)2μ(a2))≤h(τα2α)η(μ(a1))eςμ(a1)+mh((2−τ)α2α)η(μ(a2))eςμ(a2), | (2.13) |
η((2−τ)2μ(a1)m+τ2μ(a2))≤mh((2−τ)α2α)η(μ(a1)m2)eςμ(a1)m2+h(τα2α)η(μ(a2))eςμ(a2). | (2.14) |
Multiplying (2.13) by h(12α) and (2.14) by mh(2α−12α), then adding resulting inequalities, we have
h(12α)η(τ2μ(a1)+m(2−τ)2μ(a2))+mh(2α−12α)η((2−τ)2μ(a1)m+τ2μ(a2))≤(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))h(τα2α)+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)h((2−τ)α2α). | (2.15) |
Now multiplying (2.15) by τδ−1Eω,r,q,cθ,δ,l(κτθ;p) and integrating over [0,1], we have
h(12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τ2μ(a1)+m(2−τ)2μ(a2))dτ+mh(2α−12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τ2μ(a2)+(2−τ)2μ(a1)m)dτ≤(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τ2)dτ+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(2−τ2)dτ. | (2.16) |
Putting μ(ψ)=τ2μ(a1)+m(2−τ)2μ(a2) and μ(ϕ)=τ2μ(a2)+(2−τ)2μ(a1)m in (2.16), then by using (1.8) and (1.9), the second inequality of (2.10) can be achieved.
If we choose α=1 in (2.9), then we get following Hermite-Hadamard inequality for exponentially (h−m)-convex functions.
Corollary 2.5. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (h−m)-convex functions. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+(μ−1(mμ(a2));p)≤h(12)[(μΥω,r,q,cθ,δ,l,ˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+η∘μ)(μ−1(mμ(a2));p)+mδ+1(μΥω,r,q,cθ,δ,l,ˉκ(2m)θ,(μ−1(μ(a1)+mμ(a2)2m))−η∘μ)(μ−1(μ(a1)m);p)]≤(mμ(a2)−μ(a1))δ2δh(12)[(η(μ(a1))eςμ(a1)+mη(μ(a2))eςμ(a2))×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τ2)dτ+m(η(μ(a2))eςμ(a2)+mη(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(2−τ2)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.17) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
If we choose h(τ)=τ in 2.9, then we get following Hermite-Hadamard inequality for exponentially (α,m)-convex functions.
Corollary 2.6. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (α,m)-convex functions. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+(μ−1(mμ(a2));p)≤12α[(μΥω,r,q,cθ,δ,l,ˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+η∘μ)(μ−1(mμ(a2));p)+mδ+1(2α−1)(μΥω,r,q,cθ,δ,l,ˉκ(2m)θ,(μ−1(μ(a1)+mμ(a2)2m))−η∘μ)(μ−1(μ(a1)m);p)]≤(mμ(a2)−μ(a1))δ2δ+α[(η(μ(a1))eςμ(a1)+m(2α−1)η(μ(a2))eςμ(a2))×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)(τ2)αdτ+m(η(μ(a2))eςμ(a2)+m(2α−1)η(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)((2−τ)α2α)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.18) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
Remark 4. 1. If we choose ς=p=0, α=1 and μ(ψ)=ψ in (2.9), we recover the result in [19,Theorem 3.10].
2. f we choose ς=p=κ=0, α=1 and μ(ψ)=ψ in (2.9), we recover the result in [20,Theorem 2.1].
3. If we choose ς=0, α=1 and μ(ψ)=ψ in (2.9), we recover the result in [22,Theorem 2.11].
4. f we choose ς=p=κ=0, α=m=1 and μ(ψ)=ψ in (2.9), we recover the result in [30,Theorem 4].
In this article, we have proposed the generalized fractional Hermite-Hadamard inequalities for a generalized convexity. The results are applicable for fractional integral operators containing Mittag-Leffler functions in their kernels. Also they hold for exponentially (α,h−m)-convex functions, exponentially (h−m)-convex functions and exponentially (α,m)-convex functions which are further linked with several known classes of convex functions. The readers can deduce a plenty of fractional integral inequalities of their choice of fractional integral operators from Remark 2 and convex function of any kind from Remark 1.
The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).
The authors do not have any competing interest
[1] | X. Yang, G. Farid, K. Mahreen, et al. On an integral and consequent fractional integral operators via generalized convexity, AIMS Math., to appear. |
[2] | X. Qiang, G. Farid, J. Pečarić, et al. Generalized fractional integral inequalities for exponentially (s, m)-convex functions, J. Inequal. Appl., 2020 (2020), 70. |
[3] | N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. |
[4] |
M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215
![]() |
[5] | G. Farid, A. U. Rehman, Q. U. Ain, k-fractional integral inequalities of Hadamard type for (h−m)- convex functions, Comput. Methods Differ. Equ., 8 (2020), 119-140. |
[6] | M. E. Özdemir, A. O. Akdemri, E. Set, On (h − m)-convexity and Hadamard-type inequalities, Transylv. J. Math. Mech., 8 (2016), 51-58. |
[7] | V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex, Cluj-Napoca, Romania, 1993. |
[8] | N. Efthekhari, Some remarks on (s, m)-convexity in the second sense, J. Math. Ineq., 8 (2014), 489-495. |
[9] |
H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequ. Math. 48 (1994), 100-111. doi: 10.1007/BF01837981
![]() |
[10] | G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim. Cluj-Naploca (Romania), (1984), 329-338. |
[11] |
S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086
![]() |
[12] | J. Hadamard, E′tude sur les pude sur les proprie′teś des fonctions entiŕes et en particulier deúne fonction consideré per riemann, J. Math. Pures Appl., (1893), 171-216. |
[13] |
G. Abbas, G. Farid, Hadamard and Fejér-Hadamard type inequalities for harmonically convex functions via generalized fractional integrals, J. Anal., 25 (2017), 107-119. doi: 10.1007/s41478-017-0032-y
![]() |
[14] | F. Chen, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chin. J. Math., 2014 (2014), 1-7. |
[15] |
H. Chen, U. N. Katugampola, Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291. doi: 10.1016/j.jmaa.2016.09.018
![]() |
[16] | S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babes-Bolyai Math., 60 (2015), 527-534. |
[17] | G. Farid, Hadamard and Fejér-Hadamard inequalities for generalized fractional integral involving special functions, Konuralp J. Math., 4 (2016), 108-113. |
[18] | G. Farid, A Treatment of the Hadamard inequality due to m-convexity via generalized fractional integral, J. Fract. Calc. Appl., 9 (2018), 8-14. |
[19] |
G. Farid, G. Abbas, Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function, Studia Univ. Babes-Bolyai, Math., 63 (2018), 23-35. doi: 10.24193/subbmath.2018.1.02
![]() |
[20] |
G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for m-convex functions via Riemann-Liouville fractional integrals, Studia Univ. Babes-Bolyai, Math., 62 (2017), 141-150. doi: 10.24193/subbmath.2017.2.01
![]() |
[21] | G. Farid, A. U. Rehman, S. Mehmood, Hadamard and Fejér-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function, J. Math. Comput. Sci., 8 (2018), 630-643. |
[22] | G. Farid, K. A. Khan, N. Latif, et al. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2018 (2018), 243. |
[23] | İ. İşcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. Univ. Babeş-Bolyai Math., 60 (2015), 355-366. |
[24] | S. M. Kang, G. Farid, W. Nazeer, et al. (h − m)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 255. |
[25] | S. M. Kang, G. Farid, W. Nazeer, et al. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequal. Appl., 2018 (2018), 119. |
[26] |
S. Mehmood, G. Farid, K. A. Khan, et al. New Hadamard and Fejér-Hadamard fractional inequalities for exponentially m-convex function, Eng. Appl. Sci. Lett., 3 (2020), 45-55. doi: 10.30538/psrp-easl2020.0034
![]() |
[27] | S. Mehmood, G. Farid, K. A. Khan, et al. New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (h − m)-convex function, Eng. Appl. Sci. Lett., 3 (2020), 9-18. |
[28] | S. Mehmood, G. Farid, Fractional Hadamard and Fejér-Hadamard inequalities for exponentially m-convex function, Stud. Univ. Babeş-Bolyai Math., to appear. |
[29] |
M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, J. Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
![]() |
[30] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049-1059. |
[31] |
M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395. doi: 10.1515/fca-2018-0072
![]() |
[32] |
G. Farid, A unified integral operator and further its consequences, Open J. Math. Anal., 4 (2020), 1-7. doi: 10.30538/psrp-oma2020.0047
![]() |
[33] | T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3 (2012), 1-13. |
[34] |
G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253. doi: 10.22436/jnsa.010.08.19
![]() |
[35] | H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 211 (2009), 198-210. |
[36] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15. |
1. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
2. | Zareen A. Khan, Saima Rashid, Rehana Ashraf, Dumitru Baleanu, Yu-Ming Chu, Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property, 2020, 2020, 1687-1847, 10.1186/s13662-020-03121-x | |
3. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
4. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
5. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
6. | Artion Kashuri, Sajid Iqbal, Saad Ihsan Butt, Jamshed Nasir, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Basil K. Papadopoulos, Trapezium-Type Inequalities for k -Fractional Integral via New Exponential-Type Convexity and Their Applications, 2020, 2020, 2314-4785, 1, 10.1155/2020/8672710 | |
7. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
8. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
9. | Kottakkaran Sooppy Nisar, Gauhar Rahman, Dumitru Baleanu, Muhammad Samraiz, Sajid Iqbal, On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function, 2020, 2020, 1687-1847, 10.1186/s13662-020-03075-0 | |
10. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
11. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
12. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
13. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
14. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
15. | Ohud Almutairi, Adem Kiliçman, Generalized Fejér–Hermite–Hadamard type via generalized (h−m)-convexity on fractal sets and applications, 2021, 147, 09600779, 110938, 10.1016/j.chaos.2021.110938 | |
16. | Slavko Simić, Bandar Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, 2021, 2021, 1029-242X, 10.1186/s13660-021-02605-y | |
17. | Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir, Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications, 2021, 6, 2473-6988, 13272, 10.3934/math.2021768 | |
18. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, On generalizations of some integral inequalities for preinvex functions via (p,q)-calculus, 2022, 2022, 1029-242X, 10.1186/s13660-022-02896-9 | |
19. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
20. | Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined (α,h−m)-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0 | |
21. | Kamsing Nonlaopon, Ghulam Farid, Ammara Nosheen, Muhammad Yussouf, Ebenezer Bonyah, Mawardi Bahri, New Generalized Riemann–Liouville Fractional Integral Versions of Hadamard and Fejér–Hadamard Inequalities, 2022, 2022, 2314-4785, 1, 10.1155/2022/8173785 | |
22. | Attazar Bakht, Matloob Anwar, Hermite-Hadamard and Ostrowski type inequalities via α-exponential type convex functions with applications, 2024, 9, 2473-6988, 9519, 10.3934/math.2024465 | |
23. | Çetin Yildiz, Juan E. Nápoles Valdés, Luminiţa-Ioana Cotîrlă, A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder–İşcan Inequality, 2023, 12, 2075-1680, 931, 10.3390/axioms12100931 |