Citation: Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung. Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions[J]. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
[1] | C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, Springer Science & Business Media, Inc., 2006. |
[2] | J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academics Press, New York, 1992. |
[3] | A. W. Roberts, D. E. Varberg, Convex functions, Academic Press, New York, 1973. |
[4] | B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 72-75. |
[5] | J. P. Vial, Strong convexity of sets and functions, Math. Econom., 9 (1982), 187-205. |
[6] | H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequ. Math., 48 (1994), 100-111. |
[7] | G. A. Anastassiou, Generalized fractional Hermite-Hadamard inequalities involving m-convexity and (s, m)-convexity, Ser. Math. Inform., 28 (2013), 107-126. |
[8] | T. Lara, N. Merentes, R. Quintero, et al. On strongly m-convex functions, Math. Aeterna, 5 (2015), 521-535. |
[9] | G. Farid, S. B. Akbar, S. U. Rehman, et al. Boundedness of fractional integral operators containing Mittag-Leffler functions via (s, m)-convexity, Aims Math., 5 (2020), 966-978. |
[10] | M. Bracamonte, J. Giménez, M. Vivas-Cortez, Hermite-Hadamard-Fejér type inequalities for strongly (s, m)-convex functions with modulus c, in second sense, Appl. Math. Inf. Sci., 10 (2016), 2045-2053. |
[11] | L. Chen, G. Farid, S. I. Butt, et al. Boundedness of fractional integral operators containing Mittag-Leffler functions, Turkish J. Ineq., 4 (2020), 14-24. |
[12] | Z. Chen, G. Farid, A. U. Rehman, et al. Estimations of fractional integral operators for convex functions and related results, Adv. Diff. Equ., 2020 (2020), 2020: 163. |
[13] | G. Farid, Some Riemann-Liouville fractional integral inequalities for convex functions, J. Anal., 27 (2019), 1095-1102. |
[14] | G. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris., 137 (1903), 554-558. |
[15] | H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011), Article ID 298628. |
[16] | M. Arshad, J. Choi, S. Mubeen, et al. A new extension of Mittag-Leffler function, Commun. Korean Math. Soc., 33 (2018), 549-560. |
[17] | G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253. |
[18] | T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3 (2012), 1-13. |
[19] | A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797-811. |
[20] | M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395. |
[21] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15. |
[22] | H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag- Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210. |
[23] | S. Ullah, G. Farid, K. A. Khan, et al. Generalized fractional inequalities for quasi-convex functions, Adv. Difference Equ., 2019 (2019), 2019: 15. |
[24] | G. Farid, K. A. Khan, N. Latif, et al. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2018 (2018), 243. |
[25] | G. Abbas, K. A. Khan, G. Farid, et al. Generalization of some fractional integral inequalities via generalized Mittag-Leffler function, J. Inequal. Appl., 2017 (2017), 121. |