Citation: Pshtiwan Othman Mohammed, Miguel Vivas-Cortez, Thabet Abdeljawad, Yenny Rangel-Oliveros. Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications[J]. AIMS Mathematics, 2020, 5(6): 7316-7331. doi: 10.3934/math.2020468
[1] | E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102 (1999), 439-450. |
[2] | G. Cristescu, L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, 2002. |
[3] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308. |
[4] | M. Vivas-Cortez, T. Abdeljawad, P. O. Mohammed, et al. Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 1936461 (2020), 15 pages. |
[5] | D. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annal. Univ. Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87. |
[6] | O. Mangasarian, Pseudo-Convex functions, SIAM. J. Control, 3 (1965), 281-290. |
[7] | P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math., 22 (2019), 539-549. |
[8] | B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 72-75. |
[9] | D. Hyers, S. Ulam, Approximately convex functions, Proc. Amer. Math. Soc., 3 (1952), 821-828. |
[10] | P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258-262. |
[11] | F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of Hermite- Hadamard type for (α, m)-convex functions, J. Inequal. Appl., 2019 (2019), 135. |
[12] | M. Bracamonte, J. Giménez, M. Vivas, Hermite-Hadamard-Féjer Type inequalities for strongly (s, m)-convex functions with modulus C, in the second sense, Appl. Math. Inf. Sci., 10 (2016), 2045-2053. |
[13] | J. Viloria, M. Cortez, Hermite-Hadamard type inequalities for harmonically convex functions on n-coordinates, Appl. Math. Inf. Sci., 6 (2018), 1-6. |
[14] | M. Vivas, J. Hernández, N. Merentes, New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets, Rev. Colombiana Mat., 50 (2016), 145-164. |
[15] | M. Vivas, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci., 4 (2016), 1055-1064. |
[16] | J. Pecaric, F. Proschan, Y. Tong, Convex functions partial orderings and statistical applications, Academic Press, Boston, 1992. |
[17] | J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure Appl., 58 (1893), 171-215. |
[18] | D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic, Dordrecht, 1992. |
[19] | S. D. Borysenko, G. Iovane, About some new integral inequalities of Wendorff type for discontinuous functions, Nonlinear Anal., 66 (2007), 2190-2203. |
[20] | P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 148. |
[21] | M. Z. Sarikaya, C. C. Bilisik, P. O. Mohammed, Some generalizations of Opial type inequalities, Appl. Math. Inf. Sci., 14 (2020), 809-816. |
[22] | S. D. Borysenko, M. Ciarletta, G. Iovane, Integro-sum inequalities and motion stability of systems with impulse perturbations, Nonlinear Anal., 62 (2005), 417-428. |
[23] | P. O. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function, Symmetry, 12 (2020), 1503. |
[24] | T. Y. Zhang, A. P. Ji, F. Qi, On integral inequalities of Hermite-Hadamard type for s-geometrically convex functions, Abst. Appl. Anal., 2012 (2012), 560586. |
[25] | T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Matematiche, 68 (2013), 229-239. |
[26] | D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (α, m)-convex functions, Fract. Differ. Calc., 4 (2014), 31-43. |
[27] | S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs; Victoria University: Footscray, Australia, 2000. |
[28] | P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359. |
[29] | D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 2020, doi: 10.1016/j.aej.2020.03.039. |
[30] | J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806. |
[31] | P. O. Mohammed, T. Abdeljawad, S. Zeng, et al. Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. |
[32] | P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69. |
[33] | P. O. Mohammed, I. Brevik, A New version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610, doi: 10.3390/sym12040610. |
[34] | D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, et al. Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 374. |
[35] | T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 4352357. |
[36] | P. O. Mohammed, F. K. Hamasalh, New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions, Symmetry, 2019 (11), 263. |
[37] | P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. |
[38] | P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020 (2020), 363. |
[39] | P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., (2019), 1-11. doi: 10.1002/mma.5784. |
[40] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. |
[41] | A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., (2020), 1-18, Available from: https://doi.org/10.1002/mma.6188. |
[42] | M. Alomari, M. Darus, S. Dragomir, Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA, 12 (2010), 353-359. |