Citation: Shu-Xin Miao, Jing Zhang. On Uzawa-SSI method for non-Hermitian saddle point problems[J]. AIMS Mathematics, 2020, 5(6): 7301-7315. doi: 10.3934/math.2020467
[1] | K. J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford, 1958. |
[2] | Z. J. Bai, Z. Z. Bai, On nonsingularity of block two-by-two matrices, Linear Algebra Appl., 439 (2013), 2388-2404. doi: 10.1016/j.laa.2013.06.004 |
[3] | Z. Z. Bai, G. H. Golub, L. Z. Lu, et al. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), 844-863. doi: 10.1137/S1064827503428114 |
[4] | Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603-626. doi: 10.1137/S0895479801395458 |
[5] | Z. Z. Bai, B. N. Parlett, Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1-38. doi: 10.1007/s00211-005-0643-0 |
[6] | Z. Z. Bai, Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 28 (2008), 2900-2932. |
[7] | A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994. |
[8] | M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta. Numer., 14 (2005), 1-137. doi: 10.1017/S0962492904000212 |
[9] | D. Bertaccini, G. H. Golub, S. S. Capizzano, et al. Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation, Numer. Math., 99 (2005), 441-484. doi: 10.1007/s00211-004-0574-1 |
[10] | Y. Cao, S. C. Yi, A class of Uzawa-PSS iteration methods for nonsingular and singular non-Hermitian saddle point problems, Appl. Math. Comput., 275 (2016), 41-49. |
[11] | Y. Cao, J. L. Dong, Y. M. Wang, A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady navier-stokes equation, J. Comput. Appl. Math., 273 (2015), 41-60. doi: 10.1016/j.cam.2014.06.001 |
[12] | H. C. Elman, A. Ramage, D. J. Silvester, IFISS: A matlab toolbox for modeling incompressible flow, ACM Trans. Math. Softw., 33 (2007), Article 14. |
[13] | Z. G. Huang, L. G. Wang, Z. Xu, et al. The generalized Uzawa-SHSS method for non-Hermitian saddle-point problems, Comput. Appl. Math., 37 (2018), 1213-1231. doi: 10.1007/s40314-016-0390-0 |
[14] | M. Q. Jiang, Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), 973-982. doi: 10.1016/j.cam.2009.05.012 |
[15] | Z. Li, M. C. Lai, X. Peng, et al. A least squares augmented immersed interface method for solving Navier-Stokes and Darcy coupling equations, Computers Fluids., 167 (2018), 384-399. doi: 10.1016/j.compfluid.2018.03.032 |
[16] | S. X. Miao, A new Uzawa-type method for saddle point problems, Appl. Math. Comput., 300 (2017), 95-102. |
[17] | C. X. Li, S. L. Wu, A single-step HSS method for non-Hermitian positive definite linear systems, Appl. Math. Lett., 44 (2015), 26-29. doi: 10.1016/j.aml.2014.12.013 |
[18] | Z. Z. Liang, G. F. Zhang, PU-STS method for non-Hermitian saddle-point problems, Appl. Math. Lett., 46 (2015), 1-6. doi: 10.1016/j.aml.2015.01.015 |
[19] | X. Wang, X. Y. Xiao, Q. Q. Zheng, A single-step iteration method for non-Hermitian positive definite linear systems, J. Comput. Appl. Math., 346 (2019), 471-482. doi: 10.1016/j.cam.2018.07.021 |
[20] | X. Wu, B. P. B. Silva, J. Y. Yuan, Conjugate gradient method for rank deficient saddle point problems, Numer. Algor., 35 (2004), 139-154. doi: 10.1023/B:NUMA.0000021758.65113.f5 |
[21] | A. L. Yang, Y. J. Wu, The Uzawa-HSS method for saddle-point problems, Appl. Math. Lett., 38 (2014), 38-42. doi: 10.1016/j.aml.2014.06.018 |
[22] | A. L. Yang, X. Li, Y. J. Wu, On semi-convergence of the Uzawa-HSS method for singular saddle-point problems, Appl. Math. Comput., 252 (2015), 88-98. |
[23] | J. Y. Yuan, Numerical methods for generalized least squares problem, J. Comput. Appl. Math., 66 (1996), 571-584. doi: 10.1016/0377-0427(95)00167-0 |
[24] | J. H. Yun, Variants of the Uzawa method for saddle point problem, Comput. Math. Appl., 65 (2013), 1037-1046. doi: 10.1016/j.camwa.2013.01.037 |
[25] | J. H. Yun, Acceleration of one-parameter relaxation methods for singular saddle point problems, J. Korean. Math. Soc., 53 (2016), 691-707. doi: 10.4134/JKMS.j150230 |
[26] | J. J. Zhang, J. J. Shang, A class of Uzawa-SOR methods for saddle point problems, Appl. Math. Comput., 216 (2010), 2163-2168. |
[27] | B. Zheng, Z. Z. Bai, X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 431 (2009), 808-817. doi: 10.1016/j.laa.2009.03.033 |