Research article

On Uzawa-SSI method for non-Hermitian saddle point problems

  • Received: 12 August 2020 Accepted: 08 September 2020 Published: 18 September 2020
  • MSC : 65F10, 65F50

  • Based on the single-step iteration (SSI) method for the non-Hermitian positive definite linear systems, we propose a Uzawa-SSI method for solving the saddle point problems with non-Hermitian positive definite (1, 1) block in this paper. The convergence and semi-convergence properties of the Uzawa-SSI method, respectively, for nonsingular and singular cases are analyzed. Numerical examples with experiments are given to show the robustness and the efficiency of Uzawa-SSI method.

    Citation: Shu-Xin Miao, Jing Zhang. On Uzawa-SSI method for non-Hermitian saddle point problems[J]. AIMS Mathematics, 2020, 5(6): 7301-7315. doi: 10.3934/math.2020467

    Related Papers:

  • Based on the single-step iteration (SSI) method for the non-Hermitian positive definite linear systems, we propose a Uzawa-SSI method for solving the saddle point problems with non-Hermitian positive definite (1, 1) block in this paper. The convergence and semi-convergence properties of the Uzawa-SSI method, respectively, for nonsingular and singular cases are analyzed. Numerical examples with experiments are given to show the robustness and the efficiency of Uzawa-SSI method.


    加载中


    [1] K. J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford, 1958.
    [2] Z. J. Bai, Z. Z. Bai, On nonsingularity of block two-by-two matrices, Linear Algebra Appl., 439 (2013), 2388-2404. doi: 10.1016/j.laa.2013.06.004
    [3] Z. Z. Bai, G. H. Golub, L. Z. Lu, et al. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), 844-863. doi: 10.1137/S1064827503428114
    [4] Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603-626. doi: 10.1137/S0895479801395458
    [5] Z. Z. Bai, B. N. Parlett, Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1-38. doi: 10.1007/s00211-005-0643-0
    [6] Z. Z. Bai, Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 28 (2008), 2900-2932.
    [7] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994.
    [8] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta. Numer., 14 (2005), 1-137. doi: 10.1017/S0962492904000212
    [9] D. Bertaccini, G. H. Golub, S. S. Capizzano, et al. Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation, Numer. Math., 99 (2005), 441-484. doi: 10.1007/s00211-004-0574-1
    [10] Y. Cao, S. C. Yi, A class of Uzawa-PSS iteration methods for nonsingular and singular non-Hermitian saddle point problems, Appl. Math. Comput., 275 (2016), 41-49.
    [11] Y. Cao, J. L. Dong, Y. M. Wang, A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady navier-stokes equation, J. Comput. Appl. Math., 273 (2015), 41-60. doi: 10.1016/j.cam.2014.06.001
    [12] H. C. Elman, A. Ramage, D. J. Silvester, IFISS: A matlab toolbox for modeling incompressible flow, ACM Trans. Math. Softw., 33 (2007), Article 14.
    [13] Z. G. Huang, L. G. Wang, Z. Xu, et al. The generalized Uzawa-SHSS method for non-Hermitian saddle-point problems, Comput. Appl. Math., 37 (2018), 1213-1231. doi: 10.1007/s40314-016-0390-0
    [14] M. Q. Jiang, Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), 973-982. doi: 10.1016/j.cam.2009.05.012
    [15] Z. Li, M. C. Lai, X. Peng, et al. A least squares augmented immersed interface method for solving Navier-Stokes and Darcy coupling equations, Computers Fluids., 167 (2018), 384-399. doi: 10.1016/j.compfluid.2018.03.032
    [16] S. X. Miao, A new Uzawa-type method for saddle point problems, Appl. Math. Comput., 300 (2017), 95-102.
    [17] C. X. Li, S. L. Wu, A single-step HSS method for non-Hermitian positive definite linear systems, Appl. Math. Lett., 44 (2015), 26-29. doi: 10.1016/j.aml.2014.12.013
    [18] Z. Z. Liang, G. F. Zhang, PU-STS method for non-Hermitian saddle-point problems, Appl. Math. Lett., 46 (2015), 1-6. doi: 10.1016/j.aml.2015.01.015
    [19] X. Wang, X. Y. Xiao, Q. Q. Zheng, A single-step iteration method for non-Hermitian positive definite linear systems, J. Comput. Appl. Math., 346 (2019), 471-482. doi: 10.1016/j.cam.2018.07.021
    [20] X. Wu, B. P. B. Silva, J. Y. Yuan, Conjugate gradient method for rank deficient saddle point problems, Numer. Algor., 35 (2004), 139-154. doi: 10.1023/B:NUMA.0000021758.65113.f5
    [21] A. L. Yang, Y. J. Wu, The Uzawa-HSS method for saddle-point problems, Appl. Math. Lett., 38 (2014), 38-42. doi: 10.1016/j.aml.2014.06.018
    [22] A. L. Yang, X. Li, Y. J. Wu, On semi-convergence of the Uzawa-HSS method for singular saddle-point problems, Appl. Math. Comput., 252 (2015), 88-98.
    [23] J. Y. Yuan, Numerical methods for generalized least squares problem, J. Comput. Appl. Math., 66 (1996), 571-584. doi: 10.1016/0377-0427(95)00167-0
    [24] J. H. Yun, Variants of the Uzawa method for saddle point problem, Comput. Math. Appl., 65 (2013), 1037-1046. doi: 10.1016/j.camwa.2013.01.037
    [25] J. H. Yun, Acceleration of one-parameter relaxation methods for singular saddle point problems, J. Korean. Math. Soc., 53 (2016), 691-707. doi: 10.4134/JKMS.j150230
    [26] J. J. Zhang, J. J. Shang, A class of Uzawa-SOR methods for saddle point problems, Appl. Math. Comput., 216 (2010), 2163-2168.
    [27] B. Zheng, Z. Z. Bai, X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 431 (2009), 808-817. doi: 10.1016/j.laa.2009.03.033
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2924) PDF downloads(118) Cited by(0)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog