Citation: Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park. Stability of an n-variable mixed type functional equation in probabilistic modular spaces[J]. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378
[1] | J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge, 1989. |
[2] | Y. Cho, M. B. Ghaemi, M. Choubin, et al. On the Hyers-Ulam stability of sextic functional equations in β-homogeneous probabilistic modular spaces, Math. Inequal. Appl., 16 (2013), 1097- 1114. |
[3] | I. EL-Fassi, Generalized hyperstability of a Drygas functional equation on a restricted domain using Brzdek's fixed point theorem, J. Fixed Point Theory Appl., 19 (2017), 2529-2540. doi: 10.1007/s11784-017-0439-8 |
[4] | K. Fallahi and K. Nourouzi, Probabilistic modular spaces and linear operators, Acta Appl. Math., 105 (2009), 123-140. doi: 10.1007/s10440-008-9267-6 |
[5] | P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211 |
[6] | V. Govindan, C. Park, S. Pinelas, et al. Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705. |
[7] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222 |
[8] | K. Jun and H. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive functional equation, Bull. Korean Math. Soc., 42 (2005), 133-148. doi: 10.4134/BKMS.2005.42.1.133 |
[9] | S. Jung, D. Popa and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 165-171. doi: 10.1007/s10898-013-0083-9 |
[10] | Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372. doi: 10.1007/BF03322841 |
[11] | Y. Lee, S. Jung and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61. |
[12] | J. Lee, J. Kim and C. Park, A fixed point approach to the stability of an additive-quadratic-cubicquartic functional equation, Fixed Point Theory Appl., 2010 (2010), 185780. |
[13] | P. Nakmahachalasint, On the generalized Ulam-Găvruta-Rassias stability of mixed-type linear and Euler-Lagrange-Rassias functional equation, Int. J. Math. Math. Sci., 2007 (2007), 63239. |
[14] | K. Nourouzi, Probabilistic modular spaces, Proceedings of the 6th International ISAAC Congress, Ankara, Turkey, 2007. |
[15] | K. Nourouzi, Probabilistic modular spaces, WSPC Proceedings, (2009), 814-818. |
[16] | C. Park, S. Jang, J. Lee, et al. On the stability of an AQCQ-functional equation in radom normed spaces, J. Inequal. Appl., 2011 (2011), 34. |
[17] | M. Ramdoss, J. M. Rassias and D. Pachaiyappan, Stability of generalized AQCQ-functional equation in modular space, J. Eng. Appl. Sci., 15 (2020), 1148-1157. |
[18] | J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130. doi: 10.1016/0022-1236(82)90048-9 |
[19] | J. M. Rassias, On the Ulam stability of the mixed type mappings on restricted domains, J. Math. Anal. Appl., 276 (2002), 747-762. doi: 10.1016/S0022-247X(02)00439-0 |
[20] | Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[21] | K. Ravi, M. Arunkumar and J. M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Sci., 3 (2008), 36-47. |
[22] | K. Ravi, J. M. Rassias, M. Arunkumar, et al. Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equational equation, J. Inequal. Pure Appl. Math., 10 (2009), 1-29. |
[23] | S. M. Ulam, Problems in Modern Mathematics, Science Ed., Wiley, New York, 1940. |
[24] | T. Z. Xu, J. M. Rassias and W. X. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQfunctional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math., 3 (2010), 1032-1047. |
[25] | S. Zolfaghari, A. Ebadian, S. Ostadbashi, et al. A fixed point approach to the Hyers-Ulam stability of an AQ functional equation in probabilistic modular spaces, Int. J. Nonlinear Anal. Appl., 4 (2013), 89-101. |