Research article

Stability of an n-variable mixed type functional equation in probabilistic modular spaces

  • Received: 15 May 2020 Accepted: 13 July 2020 Published: 15 July 2020
  • MSC : 39B72, 68U10, 94A08, 47H10, 39B52

  • In this research paper, we solve a new n-variable mixed type additive-quadratic functional equation and prove the Ulam stability of the new n-variable mixed type additive-quadratic functional equation in probabilistic modular spaces by using fixed point method.

    Citation: Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park. Stability of an n-variable mixed type functional equation in probabilistic modular spaces[J]. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378

    Related Papers:

  • In this research paper, we solve a new n-variable mixed type additive-quadratic functional equation and prove the Ulam stability of the new n-variable mixed type additive-quadratic functional equation in probabilistic modular spaces by using fixed point method.


    加载中


    [1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge, 1989.
    [2] Y. Cho, M. B. Ghaemi, M. Choubin, et al. On the Hyers-Ulam stability of sextic functional equations in β-homogeneous probabilistic modular spaces, Math. Inequal. Appl., 16 (2013), 1097- 1114.
    [3] I. EL-Fassi, Generalized hyperstability of a Drygas functional equation on a restricted domain using Brzdek's fixed point theorem, J. Fixed Point Theory Appl., 19 (2017), 2529-2540. doi: 10.1007/s11784-017-0439-8
    [4] K. Fallahi and K. Nourouzi, Probabilistic modular spaces and linear operators, Acta Appl. Math., 105 (2009), 123-140. doi: 10.1007/s10440-008-9267-6
    [5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211
    [6] V. Govindan, C. Park, S. Pinelas, et al. Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705.
    [7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [8] K. Jun and H. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive functional equation, Bull. Korean Math. Soc., 42 (2005), 133-148. doi: 10.4134/BKMS.2005.42.1.133
    [9] S. Jung, D. Popa and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 165-171. doi: 10.1007/s10898-013-0083-9
    [10] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372. doi: 10.1007/BF03322841
    [11] Y. Lee, S. Jung and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61.
    [12] J. Lee, J. Kim and C. Park, A fixed point approach to the stability of an additive-quadratic-cubicquartic functional equation, Fixed Point Theory Appl., 2010 (2010), 185780.
    [13] P. Nakmahachalasint, On the generalized Ulam-Găvruta-Rassias stability of mixed-type linear and Euler-Lagrange-Rassias functional equation, Int. J. Math. Math. Sci., 2007 (2007), 63239.
    [14] K. Nourouzi, Probabilistic modular spaces, Proceedings of the 6th International ISAAC Congress, Ankara, Turkey, 2007.
    [15] K. Nourouzi, Probabilistic modular spaces, WSPC Proceedings, (2009), 814-818.
    [16] C. Park, S. Jang, J. Lee, et al. On the stability of an AQCQ-functional equation in radom normed spaces, J. Inequal. Appl., 2011 (2011), 34.
    [17] M. Ramdoss, J. M. Rassias and D. Pachaiyappan, Stability of generalized AQCQ-functional equation in modular space, J. Eng. Appl. Sci., 15 (2020), 1148-1157.
    [18] J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130. doi: 10.1016/0022-1236(82)90048-9
    [19] J. M. Rassias, On the Ulam stability of the mixed type mappings on restricted domains, J. Math. Anal. Appl., 276 (2002), 747-762. doi: 10.1016/S0022-247X(02)00439-0
    [20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [21] K. Ravi, M. Arunkumar and J. M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Sci., 3 (2008), 36-47.
    [22] K. Ravi, J. M. Rassias, M. Arunkumar, et al. Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equational equation, J. Inequal. Pure Appl. Math., 10 (2009), 1-29.
    [23] S. M. Ulam, Problems in Modern Mathematics, Science Ed., Wiley, New York, 1940.
    [24] T. Z. Xu, J. M. Rassias and W. X. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQfunctional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math., 3 (2010), 1032-1047.
    [25] S. Zolfaghari, A. Ebadian, S. Ostadbashi, et al. A fixed point approach to the Hyers-Ulam stability of an AQ functional equation in probabilistic modular spaces, Int. J. Nonlinear Anal. Appl., 4 (2013), 89-101.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3548) PDF downloads(257) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog