Citation: Chunhong Li, Dandan Yang, Chuanzhi Bai. Some Opial type inequalities in (p, q)-calculus[J]. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
[1] | Z. Opial, Sur une inegalite, Ann. Pol. Math., 8 (1960), 29-32. doi: 10.4064/ap-8-1-29-32 |
[2] | W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317- 321. |
[3] | M. Z. Sarikaya, H. Budak, New inequalities of Opial Type for conformable fractional integrals, Turk. J. Math., 41 (2017), 1164-1173. doi: 10.3906/mat-1606-91 |
[4] | H. L. Keng, On an inequality of Opial, Scientia Sinica, 14 (1965), 789-790. |
[5] | B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl., 120 (1986), 547-556. doi: 10.1016/0022-247X(86)90176-9 |
[6] | B. G. Pachpatte, A note on some new Opial type integral inequalities, Octogan Math. Mag., 7 (1999), 80-84. |
[7] | S. H. Saker, M. D. Abdou, I. Kubiaczyk, Opial and Polya type inequalities via convexity, Fasciculi Mathematici, 60 (2018), 145-159. doi: 10.1515/fascmath-2018-0009 |
[8] | T. Z. Mirković, S. B. Tričković, M. S. Stanković, Opial inequality in q-calculus, J. Inequal. Appl., 2018 (2018), 1-8. doi: 10.1186/s13660-017-1594-6 |
[9] | N. Alp, C. C. Bilisik, M. Z. Sarikaya, On q-Opial type inequality for quantum integral, Filomat, 33 (2019), 4175-4184. doi: 10.2298/FIL1913175A |
[10] | R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), 711-718. doi: 10.1088/0305-4470/24/13/002 |
[11] | I. M. Burban, A. U. Klimyk, (P, Q)-Differentiation, (P, Q) integration, and (P, Q)-hypergeometric functions related to quantum groups, Integr. Transf. Spec. F., 2 (1994), 15-36. doi: 10.1080/10652469408819035 |
[12] | M. Mursaleen, K. J. Ansari, A. Khan, Erratum to "On (p, q)-analogue of Bernstein Operators" [Appl. Math. Comput. 266 (2015) 874-882], Appl. Math. Comput., 278 (2016), 70-71. |
[13] | P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results Math., 73 (2018), 1-21. doi: 10.1007/s00025-018-0773-1 |
[14] | M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some Opial-type integral inequalities via (p, q)- calculus, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4 |
[15] | M. N. Hounkonnou, J. D. B. Kyemba, R(p, q)-calculus: differentiation and integration, SUT J. Math., 49 (2013), 145-167. |
[16] | M. Mursaleen, M. Nasiruzzaman, A. Khan, et al. Some approximation results on Bleimann-ButzerHahn operators defined by (p, q)-integers, Filomat, 30 (2016), 639-648. doi: 10.2298/FIL1603639M |
[17] | N. Rao, A. Wafi, Bivariate-Schurer-Stancu operators based on (p, q)-integers, Filomat, 32 (2018), 1251-1258. doi: 10.2298/FIL1804251R |
[18] | M. Mursaleen, M. Nasiruzzaman, K. J. Ansari, et al. Generalized (p, q)-Bleimann-Butzer-Hahn operators and some approximation results, J. Inequal. Appl., 2017 (2017), 1-14. doi: 10.1186/s13660-016-1272-0 |