Loading [MathJax]/jax/output/SVG/jax.js
Research article

Comprehensive assessment of air pollutant and noise emissions at airports across different altitudes

  • Received: 04 August 2024 Revised: 10 October 2024 Accepted: 22 October 2024 Published: 25 October 2024
  • We utilized the International Civil Aviation Organization (ICAO) standard emission model, refined with adjustments for fuel flow, LTO cycle work mode time, and emission indices, to investigate the environmental footprint of airports at different altitudes. Airports categorized as high (above 5000 ft), medium (1500–5000 ft), and low (below 1500 ft) altitudes were selected to provide a comprehensive representation of the altitude spectrum. The analysis was anchored over the period spanning 2016 to 2017. Emission inventories for air pollutants and noise were computed for these airports, focusing on the LTO (Landing and Take-Off) cycle. Our findings indicated that high altitude airports exhibit the highest NOx emissions, reaching 406.4 t, whereas low altitude airports record the highest noise levels at 73.1 dB. Significant disparities in emission profiles were observed across different phases of the LTO cycle at airports of varying altitudes. Notably, during the climb phase, the types and proportion of NOx emissions at high altitude airports were as high as 71.8%, contrasting with the 45.6% at low altitude airports. Additionally, emissions of gaseous pollutants from major aircrafts, exemplified by the A320 model, escalated with altitude. Specifically, NOx emissions increased from 10.55 kg/cycle at low altitude to 20.48 kg/cycle at high altitude, and CO emissions from 10.88 kg/cycle to 22.89 kg/cycle. A robust correlation between NOx emissions and Lden was identified among airports at different altitudes, with correlation coefficients of 0.96 for low altitude, 0.97 for medium altitude, and 0.93 for high altitude airports. This study delineates the distinct characteristics of air pollutant and noise emissions from airports across altitudes, offering novel insights for the environmental assessment of airport operations.

    Citation: Weizhen Tang, Jie Dai, Zhousheng Huang. Comprehensive assessment of air pollutant and noise emissions at airports across different altitudes[J]. Metascience in Aerospace, 2024, 1(3): 292-308. doi: 10.3934/mina.2024013

    Related Papers:

    [1] Meher Langote, Saniya Saratkar, Praveen Kumar, Prateek Verma, Chetan Puri, Swapnil Gundewar, Palash Gourshettiwar . Human–computer interaction in healthcare: Comprehensive review. AIMS Bioengineering, 2024, 11(3): 343-390. doi: 10.3934/bioeng.2024018
    [2] Kuna Dhananjay Rao, Mudunuru Satya Dev Kumar, Paidi Pavani, Darapureddy Akshitha, Kagitha Nagamaleswara Rao, Hafiz Tayyab Rauf, Mohamed Sharaf . Cardiovascular disease prediction using hyperparameters-tuned LSTM considering COVID-19 with experimental validation. AIMS Bioengineering, 2023, 10(3): 265-282. doi: 10.3934/bioeng.2023017
    [3] Praveen Kumar, Sakshi V. Izankar, Induni N. Weerarathna, David Raymond, Prateek Verma . The evolving landscape: Role of artificial intelligence in cancer detection. AIMS Bioengineering, 2024, 11(2): 147-172. doi: 10.3934/bioeng.2024009
    [4] Shital Hajare, Rajendra Rewatkar, K.T.V. Reddy . Design of an iterative method for enhanced early prediction of acute coronary syndrome using XAI analysis. AIMS Bioengineering, 2024, 11(3): 301-322. doi: 10.3934/bioeng.2024016
    [5] Artur Luczak . How artificial intelligence reduces human bias in diagnostics?. AIMS Bioengineering, 2025, 12(1): 69-89. doi: 10.3934/bioeng.2025004
    [6] Eduardo Federighi Baisi Chagas, Piero Biteli, Bruno Moreira Candeloro, Miguel Angelo Rodrigues, Pedro Henrique Rodrigues . Physical exercise and COVID-19: a summary of the recommendations. AIMS Bioengineering, 2020, 7(4): 236-241. doi: 10.3934/bioeng.2020020
    [7] Norliyana Nor Hisham Shah, Rashid Jan, Hassan Ahmad, Normy Norfiza Abdul Razak, Imtiaz Ahmad, Hijaz Ahmad . Enhancing public health strategies for tungiasis: A mathematical approach with fractional derivative. AIMS Bioengineering, 2023, 10(4): 384-405. doi: 10.3934/bioeng.2023023
    [8] Maria Waqas, Urooj Ainuddin, Umar Iftikhar . An analog electronic circuit model for cAMP-dependent pathway—towards creation of Silicon life. AIMS Bioengineering, 2022, 9(2): 145-162. doi: 10.3934/bioeng.2022011
    [9] Daria Wehlage, Hannah Blattner, Al Mamun, Ines Kutzli, Elise Diestelhorst, Anke Rattenholl, Frank Gudermann, Dirk Lütkemeyer, Andrea Ehrmann . Cell growth on electrospun nanofiber mats from polyacrylonitrile (PAN) blends. AIMS Bioengineering, 2020, 7(1): 43-54. doi: 10.3934/bioeng.2020004
    [10] Leelakrishna Reddy, Segun Akinola . Transforming healthcare with the synergy of biotechnology and information technology. AIMS Bioengineering, 2023, 10(4): 421-439. doi: 10.3934/bioeng.2023025
  • We utilized the International Civil Aviation Organization (ICAO) standard emission model, refined with adjustments for fuel flow, LTO cycle work mode time, and emission indices, to investigate the environmental footprint of airports at different altitudes. Airports categorized as high (above 5000 ft), medium (1500–5000 ft), and low (below 1500 ft) altitudes were selected to provide a comprehensive representation of the altitude spectrum. The analysis was anchored over the period spanning 2016 to 2017. Emission inventories for air pollutants and noise were computed for these airports, focusing on the LTO (Landing and Take-Off) cycle. Our findings indicated that high altitude airports exhibit the highest NOx emissions, reaching 406.4 t, whereas low altitude airports record the highest noise levels at 73.1 dB. Significant disparities in emission profiles were observed across different phases of the LTO cycle at airports of varying altitudes. Notably, during the climb phase, the types and proportion of NOx emissions at high altitude airports were as high as 71.8%, contrasting with the 45.6% at low altitude airports. Additionally, emissions of gaseous pollutants from major aircrafts, exemplified by the A320 model, escalated with altitude. Specifically, NOx emissions increased from 10.55 kg/cycle at low altitude to 20.48 kg/cycle at high altitude, and CO emissions from 10.88 kg/cycle to 22.89 kg/cycle. A robust correlation between NOx emissions and Lden was identified among airports at different altitudes, with correlation coefficients of 0.96 for low altitude, 0.97 for medium altitude, and 0.93 for high altitude airports. This study delineates the distinct characteristics of air pollutant and noise emissions from airports across altitudes, offering novel insights for the environmental assessment of airport operations.



    The classical convexity and concavity of functions are two fundamental notions in mathematics, they have widely applications in many branches of mathematics and physics [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]. The origin theory of convex functions is generally attributed to Jensen [31]. The well-known book [32] played an indispensable role in the the theory of convex functions.

    The significance of inequalities is increasing day by day in the real world because of their fertile applications in our life and used to solve many complex problems in all areas of science and technology [33,34,35,36,37,38,39,40]. Integral inequalities have numerous applications in number theory, combinatorics, orthogonal polynomials, hypergeometric functions, quantum theory, linear programming, optimization theory, mechanics and in the theory of relativity [41,42,43,44,45,46,47,48]. This subject has received considerable attention from researchers [49,50,51,52,53,54] and hence it is assumed as an incorporative subject between mathematics, statistics, economics, and physics [55,56,57,58,59,60].

    One of the most well known and considerably used inequalities for convex function is the Hermite-Hadamard inequality, which can be stated as follows.

    Let IR be an interval, Y:IR be a convex function. Then the double inequality

    Y(ρ1+ρ22)1ρ2ρ1ρ2ρ1Y(ϱ)dϱY(ρ1)+Y(ρ2)2 (1.1)

    holds for all ρ1,ρ2I with ρ1ρ2. If Y is concave on the interval I, then the reversed inequality (1.1) holds.

    The Hermite-Hadamard inequality (1.1) has wide applications in the study of functional analysis (geometry of Banach spaces) and in the field of non-linear analysis [61]. Interestingly, both sides of the above integral inequality (1.1) can characterize the convex functions.

    Closely related to the convex (concave) functions, we have the concept of exponentially convex (concave) functions. The exponentially convex (concave) functions can be considered as a noteworthy extension of the convex functions and have potential applications in information theory, big data analysis, machine learning, and statistics [62,63]. Bernstein [64] and Antczak [65] introduced these exponentially convex functions implicitly and discuss their role in mathematical programming. Dragomir and Gomm [66] and Rashid et al. [67] established novel outcomes for these exponentially convex functions.

    Now we recall the concept of exponentially convex functions, which is mainly due to Awan et al. [68].

    Definition 1.1. ([68]) Let θR. Then a real-valued function Y:[0,)R is said to be θ-exponentially convex if

    Y(τρ1+(1τ)ρ2)τeθρ1Y(ρ1)+(1τ)eθρ2Y(ρ2) (1.2)

    for all ρ1,ρ2[0,) and τ[0,1]. Inequality (1.2) will hold in the reverse direction if Y is concave.

    For example, the mapping Y:RR, defined by Y(υ)=υ2 is a concave function, thus this mapping is an exponentially convex for all θ>0. Exponentially convex functions are employed for statistical analysis, recurrent neural networks, and experimental designs. The exponentially convex functions are highly useful due to their dominant features.

    Recall the concept of exponentially quasi-convex function, introduced by Nie et al. [69].

    Definition 1.2. ([69]) Let θR. Then a mapping Y:[0,)RR is said to be θ-exponentially quasi-convex if

    Y(τρ1+(1τ)ρ2)max{eθρ1Y(ρ1),eθρ2Y(ρ2)}

    for all ρ1,ρ2[0,) and τ[0,1].

    Kirmaci [70], and Pearce and Pečarič [71] established the new inequalities involving the convex functions as follows.

    Theorem 1.3. ([70]) Let IR be an interval, ρ1,ρ1I with ρ1<ρ2, and Y:IR be a differentiable mapping on I (where and in what follows I denotes the interior of I) such that YL([ρ1,ρ2]) and |Y| is convex on [ρ1,ρ2]. Then

    |Y(ρ1+ρ22)1ρ2ρ1ρ2ρ1Y(ϱ)dϱ|(ρ2ρ1)(|Y(ρ1)|+|Y(ρ2)|)8. (1.3)

    Theorem 1.4. ([71]) Let λR with λ0, IR be an interval, ρ1,ρ1I with ρ1<ρ2, and Y:IR be a differentiable mapping on I such that YL([ρ1,ρ2]) and |Y|λ is convex on [ρ1,ρ2]. Then

    |Y(ρ1+ρ22)1ρ2ρ1ρ2ρ1Y(ϱ)dϱ|(ρ2ρ1)4[|Y(ρ1)|λ+|Y(ρ2)|2]1λ. (1.4)

    The principal objective of this work is to determine the novel generalizations for weighted variants of (1.3) and (1.4) associated with the class of functions whose derivatives in absolute value at certain powers are exponentially convex with the aid of the auxiliary result. Moreover, an analogous improvement is developed for exponentially quasi-convex functions. Utilizing the obtained consequences, some new bounds for the weighted mean formula, rth moments of a continuous random variable and special bivariate means are established. The repercussions of the Hermite-Hadamard inequalities have depicted the presentations for various existing outcomes. Results obtained by the application of the technique disclose that the suggested scheme is very accurate, flexible, effective and simple to use.

    In what follows we use the notations

    L(ρ1,ρ2,τ)=n+τn+1ρ1+1τn+1ρ2

    and

    M(ρ1,ρ2,τ)=1τn+1ρ1+n+τn+1ρ2

    for τ[0,1] and all nN.

    From now onwards, let ρ1,ρ2R with ρ1<ρ2 and I=[ρ1,ρ2], unless otherwise specified. The following lemma presented as an auxiliary result which will be helpful for deriving several new results.

    Lemma 2.1. Let nN, Y:IR be a differentiable mapping on I such that YL1([ρ1,ρ2]), and U:[ρ1,ρ2][0,) be differentiable mapping. Then one has

    12[U(ρ1)[Y(ρ1)+Y(ρ2)]{U(nρ1+ρ2n+1)U(ρ1+nρ2n+1)+U(ρ2)}Y(nρ1+ρ2n+1)
    {U(nρ1+ρ2n+1)U(ρ1+nρ2n+1)+U(ρ2)}Y(nρ1+ρ2n+1)]+ρ2ρ12(n+1)10{[Y(n+τn+1ρ1
    1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)][U(n+τn+1ρ1+1τn+1ρ2)+U(1τn+1ρ1+n+τn+1ρ2)]}dτ
    =ρ2ρ12(n+1){10[U(n+τn+1ρ1+1τn+1ρ2)U(1τn+1ρ1+n+τn+1ρ2)+U(ρ2)]
    ×[Y(n+τn+1ρ1+1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)]dτ}. (2.1)

    Proof. It follows from integration by parts that

    I1=10[U(n+τn+1ρ1+1τn+1ρ2)U(1τn+1ρ1+n+τn+1ρ2)+U(ρ2)]Y(n+τn+1ρ1+1τn+1ρ2)dτ
    =n+1ρ2ρ1{U(n+τn+1ρ1+1τn+1ρ2)U(1τn+1ρ1+n+τn+1ρ2)+U(ρ2)}Y(n+τn+1ρ1+1τn+1ρ2)|10
    ρ1ρ2n+110Y(n+τn+1ρ1+1τn+1ρ2)[U(n+τn+1ρ1+1τn+1ρ2)+U(1τn+1ρ1+n+τn+1ρ2)]dτ
    =n+1ρ2ρ1[U(ρ1)Y(ρ1)[U(nρ1+ρ2n+1)U(ρ1+nρ2n+1)+U(ρ2)]]Y(nρ1+ρ2n+1)
    +10Y(n+τn+1ρ1+1τn+1ρ2)[U(n+τn+1ρ1+1τn+1ρ2)+U(1τn+1ρ1+n+τn+1ρ2)]dτ.

    Similarly, we have

    I2=10[U(n+τn+1ρ1+1τn+1ρ2)U(1τn+1ρ1+n+τn+1ρ2)+U(ρ2)]Y(1τn+1ρ1+n+τn+1ρ2)dτ
    =n+1ρ2ρ1[U(ρ1)Y(ρ1)[U(nρ1+ρ2n+1)U(ρ1+nρ2n+1)+U(ρ2)]]Y(nρ1+ρ2n+1)
    +10Y(1τn+1ρ1+n+τn+1ρ2)[U(n+τn+1ρ1+1τn+1ρ2)+U(1τn+1ρ1+n+τn+1ρ2)]dτ.

    Adding I1 and I2, then multiplying by ρ2ρ12(n+1) we get the desired identity (2.1).

    Theorem 2.2. Let nN, θR, Y:IR be a differentiable mapping on I such that |Y| is θ-exponentially convex on I, and V:I[0,) be a continuous and positive mapping such it is symmetric with respect to nρ1+ρ2n+1. Then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ1n+1[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ. (2.2)

    Proof. Let τ[ρ1,ρ2] and Y(τ)=τρ1V(ϱ)dϱ. Then it follows from Lemma 2.1 that

    ρ2ρ12(n+1)10[Y(n+τn+1ρ1+1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)][V(n+τn+1ρ1+1τn+1ρ2)
    +V(1τn+1ρ1+n+τn+1ρ2)]dτY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ
    =ρ2ρ12(n+1)10{L(ρ1,ρ2,τ)ρ1V(ϱ)dϱ+ρ2M(ρ1,ρ2,τ)V(ϱ)dϱ}
    ×[Y(n+τn+1ρ1+1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)]dτ. (2.3)

    Since V(ϱ) is symmetric with respect to ϱ=nρ1+ρ2n+1, we have

    ρ2ρ12(n+1)10[Y(n+τn+1ρ1+1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)][V(n+τn+1ρ1+1τn+1ρ2)
    +V(1τn+1ρ1+n+τn+1ρ2)]dτ
    =ρ2ρ1(n+1)10Y(n+τn+1ρ1+1τn+1ρ2)V(n+τn+1ρ1+1τn+1ρ2)dτ
    +ρ2ρ1(n+1)10Y(1τn+1ρ1+n+τn+1ρ2)V(1τn+1ρ1+n+τn+1ρ2)dτ
    =nρ1+ρ2n+1ρ1Y(ϱ)V(ϱ)dϱ+ρ2ρ1+nρ2n+1Y(ϱ)V(ϱ)dϱ=ρ2ρ1Y(ϱ)V(ϱ)dϱ (2.4)

    and

    L(ρ1,ρ2,τ)ρ1V(ϱ)dϱ=ρ2M(ρ1,ρ2,τ)V(ϱ)dϱτ[0,1]. (2.5)

    From (2.3)–(2.5) we clearly see that

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ1n+1{10L(ρ1,ρ2,τ)ρ1|Y(n+τn+1ρ1+1τn+1ρ2)|dτ+10L(ρ1,ρ2,τ)ρ1|Y(1τn+1ρ1+n+τn+1ρ2)|dτ}. (2.6)

    Making use of the exponentially convexity of |Y| we get

    10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(n+τn+1ρ1+1τn+1ρ2)|dϱdτ+10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(1τn+1ρ1+n+τn+1ρ2)|dϱdτ
    10L(ρ1,ρ2,τ)ρ1V(ϱ)[n+τn+1|eθρ1Y(ρ1)|+1τn+1|eθρ2Y(ρ2)|+1τn+1|eθρ1Y(ρ1)+n+τn+1|eθρ2Y(ρ2)||]dϱdτ
    =[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ. (2.7)

    Therefore, inequality (2.2) follows from (2.6) and (2.7).

    Corollary 2.1. Let θ=0. Then Theorem 2.2 leads to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ1n+1[|Y(ρ1)|+|Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.2. Let n=1. Then Theorem 2.2 reduces to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(ρ1+ρ22)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ12[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.3. Let V(ϱ)=1. Then then Theorem 2.3 becomes

    |Y(nρ1+ρ2n+1)1ρ2ρ1ρ2ρ1Y(ϱ)dϱ|
    ρ2ρ12(n+1)2[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|].

    Remark 2.1. Theorem 2.2 leads to the conclusion that

    (1) If n=1 and θ=0, then we get Theorem 2.2 of [72].

    (2) If n=V(ϱ)=1 and θ=0, then we obtain inequality (1.2) of [70]

    Theorem 2.3. Taking into consideration the hypothesis of Theorem 2.2 and λ1. If θR and |Y|λ is θ-exponentially convex on I, then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    2(ρ2ρ1)n+1[|eθρ1Y(ρ1)|λ+|eθρ2Y(ρ2)|λ2]1λ10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ (2.8)

    for all nN.

    Proof. Continuing inequality (2.6) in the proofs of Theorem 2.2 and using the well-known Hölder integral inequality, one has

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ1n+1{(10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ)11λ(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(n+τn+1ρ1+1τn+1ρ2)|λdϱdτ)1λ
    +(10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ)11λ(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(1τn+1ρ1+n+τn+1ρ2)|λdϱdτ)1λ}
    ρ2ρ1n+1(10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ)11λ{(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(n+τn+1ρ1+1τn+1ρ2)|λdϱdτ)1λ
    +(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(1τn+1ρ1+n+τn+1ρ2)|λdϱdτ)1λ}. (2.9)

    It follows from the power-mean inequality

    μa+νa<21a(μ+ν)a

    for μ,ν>0 and a<1 that

    (10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(n+τn+1ρ1+1τn+1ρ2)|λdϱdτ)1λ (2.10)
    +(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(1τn+1ρ1+n+τn+1ρ2)|λdϱdτ)1λ
    211λ{10L(ρ1,ρ2,τ)ρ1V(ϱ)(|Y(n+τn+1ρ1+1τn+1ρ2)|λ+|Y(1τn+1ρ1+n+τn+1ρ2)|λ)dϱdτ}1λ.

    Since |Y|λ is an θ-exponentially convex on I, we have

    |Y(n+τn+1ρ1+1τn+1ρ2)|λ+|Y(1τn+1ρ1+n+τn+1ρ2)|
    n+τn+1|eθρ1Y(ρ1)|q+1τn+1|eθρ2Y(ρ2)|q+1τn+1|eθρ1Y(ρ1)|q+n+τn+1|eθρ2Y(ρ2)|q
    =|eθρ1Y(ρ1)|q+|eθρ2Y(ρ2)|q. (2.11)

    Combining (2.9)–(2.11) gives the required inequality (2.8).

    Corollary 2.4. Let n=1. Then Theorem 2.3 reduces to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(ρ1+ρ22)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)[|eθρ1Y(ρ1)|λ+|eθρ2Y(ρ2)|λ2]1λ10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.5. Let θ=0. Then Theorem 2.3 leads to

    |ρ2ρ1Y(x)V(x)dxY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    2(ρ2ρ1)n+1[|Y(ρ1)|λ+|Y(ρ2)|λ2]1λ10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.6. Let V(ϱ)=1. Then Theorem 2.3 becomes

    |Y(nρ1+ρ2n+1)1ρ2ρ1ρ2ρ1Y(ϱ)dϱ|(ρ2ρ1)2(n+1)[|Y(ρ1)|λ+|Y(ρ2)|λ2]1λ.

    Remark 2.2. From Theorem 2.3 we clearly see that

    (1) If n=1 and θ=0, then we get Theorem 2.4 in [72].

    (2) If V(ϱ)=n=1 and θ=0, then we get inequality (1.3) in [71].

    In the following result, the exponentially convex functions in Theorem 2.3 can be extended to exponentially quasi-convex functions.

    Theorem 2.4. Using the hypothesis of Theorem 2.2. If |Y| is θ-exponentially quasi-convex on I, then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ| (2.12)
    (ρ2ρ1)n+1[max{|eθρ1Y(ρ1)|,|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|}
    +max{|eθρ2Y(ρ2)|,|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|}]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ

    for all nN.

    Proof. Using the exponentially quasi-convexity of |Y| for (2.6) in the proofs of Theorem 2.2, we get

    |Y(n+τn+1ρ1+1τn+1ρ2)|=max{|eθρ1Y(ρ1)|,|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|} (2.13)

    and

    |Y(1τn+1ρ1+n+τn+1ρ2)|=max{|eθρ2Y(ρ2)|,|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|}. (2.14)

    Combining (2.6), (2.13) and (2.14), we get the desired inequality (2.12).

    Next, we discuss some special cases of Theorem 2.4 as follows.

    Corollary 2.7. Let n=1. Then Theorem 2.4 reduces to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(ρ1+ρ22)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)2[max{|eθρ1Y(ρ1)|,|eθ(ρ1+ρ22)Y(ρ1+ρ22)|}
    +max{|eθρ2Y(ρ2)|,|eθ(ρ1+ρ22)Y(ρ1+ρ22)|}]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.8. Let θ=0. Then Theorem 2.4 leads to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)n+1[max{|Y(ρ1)|,|Y(nρ1+ρ2n+1)|}
    +max{|Y(ρ2)|,|Y(ρ1+nρ2n+1)|}]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.9. Let V(x)=1. Then Theorem 2.4 becomes

    |Y(nρ1+ρ2n+1)1ρ2ρ1ρ2ρ1Y(x)dx|
    (ρ2ρ1)2(n+1)[max{|Y(ρ1)|,|Y(nρ1+ρ2(n+1))|}
    +max{|Y(ρ2)|,|Y(ρ1+nρ2n+1)|}].

    Remark 2.3. If |Y| is increasing in Theorem 2.4, then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ| (2.15)
    (ρ2ρ1)n+1[|eθρ2Y(ρ2)|+|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|]10L.(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ

    If |Y| is decreasing in Theorem 2.4, then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ| (2.16)
    (ρ2ρ1)n+1[|eθρ1Y(ρ1)|+|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Remark 2.4. From Theorem 2.4 we clearly see that

    (1) Let n=1 and θ=0. Then Theorem 2.4 and Remark 2.3 lead to Theorem 2.8 and Remark 2.9 of [72], respectively.

    (2). Let n=V(ϱ)=1 and θ=0. Then we get Corollary 2.10 and Remark 2.11 of [72].

    Theorem 2.5. Suppose that all the hypothesis of Theorem 2.2 are satisfied, θR and λ1. If |Y|λ is θ-exponentially quasi-convex on I, then we have

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ| (2.17)
    (ρ2ρ1)n+1[(max{|eθρ1Y(ρ1)|λ,|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|λ})1λ
    +(max{|eθρ2Y(ρ2)|λ,|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|λ})1λ]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ

    for all nN.

    Proof. It follows from the exponentially quasi-convexity of |Y|λ and (2.6) that

    |Y(n+τn+1ρ1+1τn+1ρ2)|λmax{|eθρ1Y(ρ1)|λ,|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|λ} (2.18)

    and

    |Y(1τn+1ρ1+n+τn+1ρ2)|λmax{|eθρ2Y(ρ2)|λ,|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|λ}. (2.19)

    A combination of (2.6), (2.18) and (2.19) lead to the required inequality (2.17).

    Corollary 2.10. Let n=1. Then Theorem 2.5 reduces to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(ρ1+ρ22)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)2[(max{|eθρ1Y(ρ1)|λ,|eθ(ρ1+ρ22)Y(ρ1+ρ22)|λ})1λ
    +(max{|eθρ2Y(ρ2)|λ,|eθ(ρ1+1ρ22)Y(ρ1+ρ22)|λ})1λ]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.11. If θ=0, then Theorem 2.5 leads to the conclusion that

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)n+1[max{|Y(ρ1)|,|Y(nρ1+ρ2n+1)|}
    +max{|Y(ρ2)|,|Y(ρ1+nρ2n+1)|}]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    In this section, we support our main results by presenting two examples.

    Example 3.1. Let ρ1=0, ρ2=π, θ=2, n=1, Y(ϱ)=sinϱ and V(ϱ)=cosϱ. Then all the assumptions in Theorem 2.2 are satisfied. Note that

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    =|π0sinϱcosϱdϱsinπ2π0cosϱdϱ|=1 (3.1)

    and

    ρ2ρ1n+1[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ
    =π2[|e0cos0)|+|e2πcosπ|]10L(0,π,τ)0cosϱdϱdτ
    =536.50π210(1τ)π20cosϱdϱdτ536.5. (3.2)

    From (3.1) and (3.2) we clearly Example 3.1 supports the conclusion of Theorem 2.2.

    Example 3.2. Let ρ1=0, ρ2=2, θ=0.5, n=2, Y(ϱ)=ϱ+2 and V(ϱ)=ϱ. Then all the assumptions in Theorem 2.2 are satisfied. Note that

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    =|20ϱϱ+2dϱ8320ϱdϱ|0.3758 (3.3)

    and

    ρ2ρ1n+1[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ
    =23[|e0.5(0)122)|+|e0.5(2)14|]10L(0,2,τ)0ϱdϱdτ
    =0.6887102(1τ)30ϱdϱdτ1.0332. (3.4)

    From (3.3) and (3.4) we clearly see that Example 3.2 supports the conclusion of Theorem 2.2.

    Let Δ be a partition: ρ1=ϱ0<ϱ2<<ϱn1<ϱn=ρ2 of the interval [ρ1,ρ2] and consider the quadrature formula

    ρ2ρ1Y(ϱ)V(ϱ)dϱ=T(Y,V,p)+E(Y,V,p), (4.1)

    where

    T(Y,V,p)=κ1j=0Y(nϱj+ϱj+1n+1)ϱj+1ϱjV(ϱ)dϱ

    is weighted mean and E(Y,V,p) is the related approximation error.

    The aim of this subsection is to provide several new bounds for E(Y,V,p).

    Theorem 4.1. Let λ1, θR, and |Y|λ be θ-exponentially convex on I. Then the inequality

    |E(Y,V,p)|κ1j=0(ϱj+1ϱj)(|eθϱjY(ϱj)|λ+|eθϱj+1Y(ϱj+1)|λ2)1λ10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ

    holds for any pI if all the conditions of Theorem 2.2 are satisfied.

    Proof. Applying Theorem 2.3 to the interval [ϱj,ϱj+1] (j=0,1,...,κ1) of the partition Δ, we get

    |Y(nϱj+ϱj+1n+1)ϱj+1ϱjV(ϱ)dϱϱj+1ϱjY(ϱ)V(ϱ)dϱ|
    (ϱj+1ϱj)(|eθϱjY(ϱj)|λ+|eθϱj+1Y(ϱj+1)|λ2)1λ10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ.

    Summing the above inequality on j from 0 to κ1 and making use of the triangle inequality together with the exponential convexity of |Y|λ lead to

    |T(Y,V,p)ρ2ρ1Y(ϱ)V(ϱ)dϱ|
    κ1j=0(ϱj+1ϱj)(|eθϱjY(ϱj)|λ+|eθϱj+1Y(ϱj+1)|λ2)1λ10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ,

    this completes the proof of Theorem 4.1.

    Theorem 4.2. Let λ1, θR, and |Y|λ be θ-exponentially convex on I. Then the inequality

    |E(Y,V,p)|
    1n+1κ1j=0(ϱj+1ϱj)[[max{|eθϱjY(ϱj)|λ,|eθ(nϱj+ϱj+1n+1)Y(nϱj+ϱj+1n+1)|λ}]1λ
    +[max{|eθϱj+1Y(ϱj+1)|λ,|eθ(ϱj+nϱj+1n+1)τY(ϱj+nϱj+1n+1)|λ}]1λ]10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ

    holds for every partition Δ of I if all the hypothesis of Theorem 2.2 are satisfied.

    Proof. Making use of Theorem 2.5 on the interval [ϱj,ϱj+1] (j=0,1,,κ1) of the partition , we get

    |Y(nϱj+ϱj+1n+1)ϱj+1ϱjV(ϱ)dϱϱj+1ϱjY(ϱ)V(ϱ)dϱ|
    (ϱj+1ϱj)n+1[[max{|eθϱjY(ϱj)|λ,|eθ(nϱj+ϱj+1n+1)Y(nϱj+ϱj+1n+1)|λ}]1λ
    +[max{|eθϱj+1Y(ϱj+1)|λ,|eθ(ϱj+nϱj+1n+1)Y(ϱj+nϱj+1n+1)|λ}]1λ]10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ.

    Summing the above inequality on j from 0 to κ1 and making use the triangle inequality together with the exponential convexity of |Y|λ lead to the conclusion that

    |T(Y,V,p)ρ2ρ1Y(ϱ)V(ϱ)dϱ|
    1n+1κ1j=0(ϱj+1ϱj)[[max{|eθϱjY(ϱj)|λ,|eθ(nϱj+ϱj+1n+1)Y(nϱj+ϱj+1n+1)|λ}]1λ
    +[max{|eθϱj+1Y(ϱj+1)|λ,|eθ(ϱj+nϱj+1n+1)Y(ϱj+nϱj+1n+1)|λ}]1λ]10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ,

    this completes the proof of Theorem 4.2.

    Let 0<ρ1<ρ2, rR, V:[ρ1,ρ2][0,] be continuous on [ρ1,ρ2] and symmetric with respect to nρ1+ρ2n+1 and X be a continuous random variable having probability density function V. Then the rth-moment Er(X) of X is given by

    Er(X)=ρ2ρ1τrV(τ)dτ

    if it is finite.

    Theorem 4.3. The inequality

    |Er(X)(nρ1+ρ2n+1)r|r(ρ2ρ1)(n+1)2[|eθρ1ρr11|+|eθρ2ρr12|]

    holds for 0<ρ1<ρ2 and r2.

    Proof. Let Y(τ)=τr. Then |Y(τ)|=rτr1 is exponentially convex function. Note that

    ρ2ρ1Y(ϱ)V(ϱ)dϱ=Er(X),L(ρ1,ρ2,τ)ρ1V(ϱ)dϱnρ1+ρ2n+1ρ1V(ϱ)dϱ=1n+1(τ[0,1]),
    Y(nρ1+ρ2n+1)=(nρ1+ρ2n+1)r,|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|=r(eθρ1ρr11+eθρ2ρr12).

    Therefore, the desired result follows from inequality (2.2) immediately.

    Theorem 4.4. The inequality

    |Er(X)(nρ1+ρ2n+1)r|r(ρ2ρ1)(n+1)2[|eθρ2ρr12|+|eθ(nρ1+ρ2n+1)(nρ1+ρ2n+1)r1|]

    holds for 0<ρ1<ρ2 and r1.

    Proof. Let Y(τ)=τr. Then |Y(τ)|=rτr1 is increasing and exponentially quasi-convex, and the desired result can be obtained by use of inequality (2.15) and the similar arguments of Theorem 4.3.

    A real-valued function Ω:(0,)×(0,)(0,) is said to be a bivariate mean if min{ρ1,ρ2}Ω(ρ1,ρ2)max{ρ1,ρ2} for all ρ1,ρ2(0,). Recently, the properties and applications for the bivariate means and their related special functions have attracted the attention of many researchers [73,74,75,76,77,78,79,80,81,82,83,84,85,86]. In particular, many remarkable inequalities for the bivariate means can be found in the literature [87,88,89,90,91,92,93,94,95,96].

    In this subsection, we use the results obtained in Section 2 to give some applications to the special bivariate means.

    Let ρ1,ρ2>0 with ρ1ρ2. Then the arithmetic mean A(ρ1,ρ2), weighted arithmetic mean A(ρ1,ρ2;w1,w2) and n-th generalized logarithmic mean Ln(ρ1,ρ2) are defined by

    A(ρ1,ρ2)=ρ1+ρ12,A(ρ1,ρ2;w1,w2)=w1ρ1+w2ρ2w1+w2

    and

    Ln(ρ1,ρ2)=[ρn+12ρn+11(n+1)(ρ2ρ1)]1/n.

    Let ϱ>0, rN, Y(ϱ)=ϱr and V:[ρ1,ρ2]R+ be a differentiable mapping such that it is symmetric with respect to nρ1+ρ2n+1. Then Theorem 2.2 implies that

    |(nρ1+ρ2n+1)rρ2ρ1V(ϱ)dϱρ2ρ1ϱrV(ϱ)dϱ|r(ρ2ρ1)n+1[|eθρ1ρn11|+|eθρ2ρn12|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ,

    which can be rewritten as

    |(A(ρ1,ρ2;n,1))rρ2ρ1V(ϱ)dϱρ2ρ1ϱrV(ϱ)dϱ|
    2r(ρ2ρ1)n+1[A(|eθρ1ρn11|,|eθρ2ρn12|)]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ. (4.2)

    Let V=1. Then inequality (4.2) leads to Corollary 4.1 immediately.

    Corollary 4.1. Let ρ2>ρ1>0, rN and r2. Then one has

    |(A(ρ1,ρ2;n,1))rLrr(ρ1,ρ2)|r(ρ2ρ1)2(n+1)2[A(|eθρ1ρn11|,|eθρ2ρn12|)].

    We conducted a preliminary attempt to develop a novel formulation presumably for new Hermite-Hadamard type for proposing two new classes of exponentially convex and exponentially quasi-convex functions and presented their analogues. An auxiliary result was chosen because of its success in leading to the well-known Hermite-Hadamard type inequalities. An intriguing feature of an auxiliary is that this simple formulation has significant importance while studying the error bounds of different numerical quadrature rules. Such a potential the connection needs further investigation. We conclude that the results derived in this paper are general in character and give some contributions to inequality theory and fractional calculus as an application for establishing the uniqueness of solutions in boundary value problems, fractional differential equations, and special relativity theory. This interesting aspect of time is worth further investigation. Finally, the innovative concept of exponentially convex functions has potential application in rth-moments and special bivariate mean to show the reported result. Our findings are the refinements and generalizations of the existing results that stimulate futuristic research.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The research is supported by the Natural Science Foundation of China (Grant Nos. Grant Nos. 11701176, 61673169, 11301127, 11626101, 11601485).

    The authors declare that they have no competing interests.



    [1] Dessens O, Kohler M O, Rogers H L, et al. (2014) Aviation and climate change. Transport Policy 34: 14–20. https://doi.org/10.1016/j.tranpol.2014.02.014 doi: 10.1016/j.tranpol.2014.02.014
    [2] Chu YP (2013) Impacts of aircraft exhaust emissions on air quality in the vicinity of Shanghai Pudong International Airport. Environ Monit Early Warning 5: 50–52+56. https://doi.org/10.3969/j.issn.1674-6732.2013.04.016 doi: 10.3969/j.issn.1674-6732.2013.04.016
    [3] Stettler ME, Eastham S, Barrett SRH (2011) Air quality and public health impacts of UK airports. part l: Emissions. Atmos Environ 45: 5415–5424. https://doi.org/10.1016/j.atmosenv.2011.07.012 doi: 10.1016/j.atmosenv.2011.07.012
    [4] Wilcox LJ, Shine KP, Hoskins BJ (2012) Radiative forcing due to aviation water vapour emissions. Atmos Environ 63: 1–13. https://doi.org/10.1016/j.atmosenv.2012.08.072 doi: 10.1016/j.atmosenv.2012.08.072
    [5] Meister J, Schalcher S, Wunderli JM, et al. (2021) Comparison of the aircraft noise calculation programs sonAIR, FLULA2 and AEDT with noise measurements of single flights. Aerospace 8: 388. https://doi.org/10.3390/aerospace8120388 doi: 10.3390/aerospace8120388
    [6] Ollerhead J, Sharp B (2001) MAGENTA-Assessments of Future Aircraft Noise Policy Options. Aair Space Europe 3: 247–249. https://doi.org/10.1016/S1290-0958(01)90108-X doi: 10.1016/S1290-0958(01)90108-X
    [7] Mato RR, Mufuruki TS (1999) Noise Pollution Associated with the Operation of the Dar Es Salaam International Airport. Transport Res D-Tr E 4: 81–89. https://doi.org/10.1016/S1361-9209(98)00024-8 doi: 10.1016/S1361-9209(98)00024-8
    [8] Xia Q (2012) Aircraft Engine Emission Impact Assessment of Airports on the Atmospheric Environment. Nanjing U Aeronaut Astronaut. https://doi.org/10.7666/d.y1855019 doi: 10.7666/d.y1855019
    [9] Hudda N, Fruin SA (2015) International airport impacts to air quality: size and related properties of large increases in ultrafine particle number concentrations. Environ Sci Technol 50: 3362–3370. https://doi.org/10.1021/acs.est.5b05313 doi: 10.1021/acs.est.5b05313
    [10] Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151: 362–367.
    [11] Wasiuk DK, Khan MAH, Shallcross DE, et al. (2016) A commercial aircraft fuel burn and emissions inventory for 2005–2011. Atmosphere 7: 78. https://doi.org/10.3390/atmos7060078 doi: 10.3390/atmos7060078
    [12] Cao HL, Miao JH, Miao LY, et al. (2019) Study on the estimation method of daily emission inventory of aircraft engines at the capital airport based on actual flight data. J Environ Sci 39: 2699–2707. https://doi.org/10.13671/j.hjkxxb.2019.0048 doi: 10.13671/j.hjkxxb.2019.0048
    [13] Li J, Zhao ZQ, Liu XK, et al. (2018) Computational analysis of aircraft emission inventory at Capital International Airport. China Environ Sci 38: 4469–4475. https://doi.org/10.3969/j.issn.1000-6923.2018.12.009 doi: 10.3969/j.issn.1000-6923.2018.12.009
    [14] Xu R, Lang JB, Yang XW, et al. (2016) Establishment of an aircraft emission inventory at the Capital International Airport. China Environ Sci 36: 2554–2560. https://doi.org/10.3969/j.issn.1000-6923.2016.08.038 doi: 10.3969/j.issn.1000-6923.2016.08.038
    [15] Xu R, Lang JB, Cheng SY, et al. (2017) Inventory of mobile source air pollutant emissions at the Capital International Airport. J Safety Environ 17: 1957–1962. https://doi.org/10.13637/j.issn.1009-6094.2017.05.065 doi: 10.13637/j.issn.1009-6094.2017.05.065
    [16] Wang YN, Sun NX, Feng JH, et al. (2023) Emissions from Beijing Daxing International Airport and their environmental impacts and predictions. J Environ Sci 43: 153–165. https://doi.org/10.13671/j.hjkxxb.2022.0426 doi: 10.13671/j.hjkxxb.2022.0426
    [17] Li N, Sun Y, Gao Z (2019) Computational analysis of aircraft emission inventory at Pudong International Airport. Aviat Comput Technol 49: 15–19. https://doi.org/10.3969/j.issn.1671-654X.2019.03.004 doi: 10.3969/j.issn.1671-654X.2019.03.004
    [18] Huang QF, Chen GN, Hu DX, et al. (2014) Analysis of air pollutant emissions from aircraft at Guangzhou Baiyun International Airport. Environ Monit Manage Technol 26: 57–59. https://doi.org/10.3969/j.issn.1006-2009.2014.03.022 doi: 10.3969/j.issn.1006-2009.2014.03.022
    [19] Wang RL, Cheng H, Ren HJ, et al. (2018) Inventory of air pollutant emissions from the takeoff and landing (LTO) cycle of civil aircraft in the Yangtze River Delta region. J Environ Sci 38: 4472–4479. https://doi.org/10.13671/j.hjkxxb.2018.0262 doi: 10.13671/j.hjkxxb.2018.0262
    [20] Han B, Kong WK, Yao TW, et al. (2020) Inventory of air pollutant emissions from aircraft LTO in the Beijing-Tianjin-Hebei airport cluster. Environ Sci 41: 1143–1150. https://doi.org/10.13227/j.hjkx.201908199 doi: 10.13227/j.hjkx.201908199
    [21] Du YY (2022) Prediction and prevention of aircraft noise pollution at Tianjin airport based on INM model. Noise Vib Control 42: 186–190. https://doi.org/10.3969/j.issn.1006-1355.2022.02.031 doi: 10.3969/j.issn.1006-1355.2022.02.031
    [22] Cheng DL, Yi CJ, Liang ZF (2005) Research on aircraft noise and countermeasures. Noise Vib Control 25: 47–51. https://doi.org/10.3969/j.issn.1006-1355.2005.05.016 doi: 10.3969/j.issn.1006-1355.2005.05.016
    [23] Mato RR, Mufuruki TS (1999) Noise Pollution Associated with the Operation of the Dar Es Salaam International Airport. Transport Environ 4: 277–289. https://doi.org/10.1016/S1361-9209(98)00024-8 doi: 10.1016/S1361-9209(98)00024-8
    [24] International Civil Aviation Organization. 2014. ICAO Environmental Report 2013. International Civil Aviation Organization.
    [25] Wei C, Diao HZ, Han B (2014) Calculation of pollutant emissions from civil aircraft during cruise phase. Science. Technol Eng 14: 122–127. https://doi.org/10.3969/j.issn.1671-1815.2014.19.023 doi: 10.3969/j.issn.1671-1815.2014.19.023
    [26] The Environment Branch of the International Civil Aviation Organization (ICAO). (2014). ICAO Environmental Report 2013. International Civil Aviation Organization.
    [27] Chandrasekaran N, Guha A (2012) Study of prediction methods for NOx emission from turbofan engines. J Propuls Power 28: 170–180. https://doi.org/10.2514/1.B34245 doi: 10.2514/1.B34245
    [28] Huang MY, Hu R, Zhang JF, et al. (2020) Calculation and analysis of aircraft exhaust emissions based on fast access logger data. Science. Technol Eng 20: 13502–13507. https://doi.org/10.3969/j.issn.1671-1815.2020.32.060 doi: 10.3969/j.issn.1671-1815.2020.32.060
    [29] Kalivoda MT, Monika K (1998) Methodologies for estimating emissions from air trafficc: future emissions [R]. MEET Project ST-96-SC, 204, Vienna, Austria: Perchtoldsdorf-Vienna, 46–53.
    [30] ISO 20906. 2009. Acoustics-unattended monitoring of aircraft sound in the vicinity of airports.
    [31] Directive EU (2002) Directive 2002/49/EC of the European parliament and the Council of 25 June 2002 relating to the assessment and management of environmental noise. Off J Eur Commun L 189: 2002.
    [32] Federal Aviation Administration (1983) Noise control and compatibility planning for airports. Advisory circular AC150-5020-1.
    [33] Cao XY, Liu Q, Liu Z, et al. (2022) Assessment of pollutant emissions from the LTO cycle of Chinese civil aviation aircraft. Environ Sci Technol 45: 116–124. https://link.cnki.net/doi/10.19672/j.cnki.1003-6504.2303.21.338 doi: 10.19672/j.cnki.1003-6504.2303.21.338
    [34] Wu ZB (2017) Research on fuel ignition characteristics and combustion enhancement in high altitude environment. University of Science and Technology of China.
    [35] Dai SP, Jia XH, Ding SJ, et al. (2024) Experimental study on the combustion characteristics of small-scale oil pool fire in restricted space in plateau. Fire Sci Technol 43: 161–167. https://doi.org/10.3969/j.issn.1009-0029.2024.02.004 doi: 10.3969/j.issn.1009-0029.2024.02.004
    [36] Liu QY, Zhu WT, Zhu B, et al. (2021) Study on combustion characteristics of combustible liquids under high plateau airport environment. Fire Sci Technol 40: 613–616. https://doi.org/10.3969/j.issn.1009-0029.2021.05.003 doi: 10.3969/j.issn.1009-0029.2021.05.003
  • This article has been cited by:

    1. Liyun Zeng, Rita Yi Man Li, Tan Yigitcanlar, Huiling Zeng, Public Opinion Mining on Construction Health and Safety: Latent Dirichlet Allocation Approach, 2023, 13, 2075-5309, 927, 10.3390/buildings13040927
    2. Houssem Ben Khalfallah, Mariem Jelassi, Narjes Bellamine Ben Saoud, Jacques Demongeot, 2023, Chapter 19-2, 978-3-319-12125-3, 1, 10.1007/978-3-319-12125-3_19-2
    3. Houssem Ben Khalfallah, Mariem Jelassi, Narjes Bellamine Ben Saoud, Jacques Demongeot, 2023, Chapter 19, 978-3-031-40115-2, 229, 10.1007/978-3-031-40116-9_19
    4. Muhammad Hussain, Ioanna Iacovides, Tom Lawton, Vishal Sharma, Zoe Porter, Alice Cunningham, Ibrahim Habli, Shireen Hickey, Yan Jia, Phillip Morgan, Nee Ling Wong, 2024, Development and translation of human-AI interaction models into working prototypes for clinical decision-making, 9798400705830, 1607, 10.1145/3643834.3660697
    5. Mouin Jammal, Antoine Saab, Cynthia Abi Khalil, Charbel Mourad, Rosy Tsopra, Melody Saikali, Jean-Baptiste Lamy, Impact on clinical guideline adherence of Orient-COVID, a clinical decision support system based on dynamic decision trees for COVID19 management: a randomized simulation trial with medical trainees, 2024, 13865056, 105772, 10.1016/j.ijmedinf.2024.105772
    6. Ourania Manta, Nikolaos Vasileiou, Olympia Giannakopoulou, Konstantinos Bromis, Konstantinos Georgas, Theodoros P. Vagenas, Ioannis Kouris, Maria Haritou, George Matsopoulos, Dimitris Koutsouris, 2024, TeleRehaB DSS Project: Advancing Balance Rehabilitation Through Digital Health Technologies, 979-8-3503-6243-5, 1, 10.1109/ICE/ITMC61926.2024.10794240
    7. Houssem Ben Khalfallah, Mariem Jelassi, Jacques Demongeot, Narjès Bellamine Ben Saoud, Advancements in Predictive Analytics: Machine Learning Approaches to Estimating Length of Stay and Mortality in Sepsis, 2025, 13, 2079-3197, 8, 10.3390/computation13010008
    8. Divya Divya, Savita Savita, Sandeepa Kaur, Unveiling excellence in Indian healthcare: a patient-centric PRISMA analysis of hospital service quality, patient satisfaction and loyalty, 2025, 1750-6123, 10.1108/IJPHM-05-2024-0043
    9. Regina Silva, Luis Gomes, An adaptive language model-based intelligent medication assistant for the decision support of antidepressant prescriptions, 2025, 190, 00104825, 110065, 10.1016/j.compbiomed.2025.110065
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(677) PDF downloads(20) Cited by(0)

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog