Citation: Liangying Miao, Zhiqian He. Reversed S -shaped connected component for second-order periodic boundary value problem with sign-changing weight[J]. AIMS Mathematics, 2020, 5(6): 5884-5892. doi: 10.3934/math.2020376
[1] | F. M. Atici, G. S. Guseinov, On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. Comput. Appl. Math., 132 (2001), 341-356. doi: 10.1016/S0377-0427(00)00438-6 |
[2] | A. Boscaggin, F. Zanolin, Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight, J. Differ. Equations, 252 (2012), 2900-2921. doi: 10.1016/j.jde.2011.09.011 |
[3] | A. Constantin, A general-weighted Sturm-Liouville problem, Ann. Sci. Ec. Norm. Super., 24 (1997), 767-782. |
[4] | G. Dai, R. Ma, H. Wang, Eigenvalues, bifurcation and one-sign solutions for the periodic p-Laplacian, Commun. Pure Appl. Anal., 12 (2013), 2839-2872. doi: 10.3934/cpaa.2013.12.2839 |
[5] | J. R. Graef, L. Kong, H. Wang, Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem, J. Differ. Equations, 245 (2008), 1185-1197. |
[6] | R. Hakl, M. Zamora, Periodic solutions to second-order indefinite singular equations, J. Differ. Equations, 263 (2017), 451-469. doi: 10.1016/j.jde.2017.02.044 |
[7] | X. Hao, L. Liu,Y. Wu, Existence and multiplicity results for nonlinear periodic boundary value problems, Nonlinear Anal., 72 (2010), 3635-3642. doi: 10.1016/j.na.2009.12.044 |
[8] | Z. He, R. Ma, M. Xu, Positive solutions for a class of semipositone periodic boundary value problems via bifurcation theory, Electron. J. Qual. Theory Differ. Equ., 29 (2019), 1-15. |
[9] | Z. He, R. Ma, M. Xu, Three positive solutions for second-order periodic boundary value problems with sign-changing weight, Bound. Value Probl., 93 (2018), 1-17. |
[10] | A. Lomtatidze, J. Šremr, On periodic solutions to second-order Duffing type equations, Nonlinear Anal. Real, 40 (2018), 215-242. doi: 10.1016/j.nonrwa.2017.09.001 |
[11] | R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 71 (2009), 4364-4376. doi: 10.1016/j.na.2009.02.113 |
[12] | R. Ma, J. Xu, X. Han, Global bifurcation of positive solutions of a second-order periodic boundary value problem with indefinite weight, Nonlinear Anal., 74 (2011), 3379-3385. doi: 10.1016/j.na.2011.02.013 |
[13] | R. Ma, C. Gao, R. Chen, Existence of positive solutions of nonlinear second-order periodic boundary value problems, Bound. Value Probl., 2010 (2010), 1-18. doi: 10.1155/2010/728101 |
[14] | R. Ma, J. Xu, X. Han, Global structure of positive solutions for superlinear second-order periodic boundary value problems, Appl. Math. Comput., 218 (2012), 5982-5988. |
[15] | N. S. Papageorgiou, C. Vetro, F. Vetro, Solutions for parametric double phase Robin problems, Asymptotic Anal., 1 (2020), 1-12. |
[16] | N. S. Papageorgiou, C. Vetro, F. Vetro, Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems, RACSAM, 114 (2020), 1-29. doi: 10.1007/s13398-019-00732-2 |
[17] | I. Sim, S. Tanaka, Three positive solutions for one-dimensional p-Laplacian problem with signchanging weight, Appl. Math. Lett., 49 (2015), 42-50. doi: 10.1016/j.aml.2015.04.007 |
[18] | J. Xu, R. Ma, Bifurcation from interval and positive solutions for second order periodic boundary value problems, Appl. Math. Comput., 216 (2010), 2463-2471. |