Citation: Yitao Yang, Dehong Ji. Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function[J]. AIMS Mathematics, 2020, 5(6): 7359-7371. doi: 10.3934/math.2020471
[1] | S. Corlay, J. Lebovits, J. Vhel, Multifractional stochastic volatility models, Math. Finance, 24 (2014), 364-402. |
[2] | C. Fang, H. Sun, J. Gu, Application of fractional calculus methods to viscoelastic response of amorphous shape memory polymers, J. Mech., 31 (2015), 427-432. |
[3] | J. Gmez-Aguilar, M. Lpez-Lpez, V. Alvarado-Martnez, et al. Modeling diffusive transport with a fractional derivative without singular kernel, Phys. A, 447 (2016), 467-481. |
[4] | S. Pooseh, R. Almeida, D. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim., 10 (2014), 363-381. |
[5] | A. Sapora, P. Cornetti, A. Carpinteri, et al. The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders, Mater. Struct., 49 (2016), 45-55. |
[6] | D. Tien, Fractional stochastic differential equations with applications to finance, J. Math. Anal. Appl., 397 (2013), 334-348. |
[7] | X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a singular fractional differential system involving derivatives, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1400-1409. |
[8] | X. Zhang, Y. Wu, L. Caccetta, Nonlocal fractional order differential equations with changing-sign singular perturbation, Appl. Math. Modell., 39 (2015), 6543-6552. |
[9] | A. Sasso, G. Palmieri, D. Amodio, Application of fractional derivative models in linear viscoelastic problems, Mech. Time Depend. Mater., 15 (2011), 367-387. |
[10] | J. Surez, B. Vinagre, A. Caldern, et al. Using fractional calculus for lateral and longitudinal control of autonomous vehicles, Springer, Berlin, Heidelberg, (2003), 337-348. |
[11] | V. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particle, Springer-Verlag, Fields and Media, Berlin-Heidelberg, 2010. |
[12] | M. Wyrwas, E. Girejko, D. Mozyrska, Fractional discrete-time consensus models for single- and double-summator dynamics, Int. J. Syst. Sci., 49 (2018), 1212-1225. |
[13] | J. Wang, Y. Zhang, On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39 (2015), 85-90. |
[14] | J. Jiang, D. O'Regan, J. Xu, et al. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019 (2019), 1-18. |
[15] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481. |
[16] | C. Zhai, L. Xu, Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2820-2827. |
[17] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Boston and New York: Academic Press, 1988. |
[18] | M. Krasnoselskii, Positive solutions of operator equations, Groningen: Noordoff; 1964. |
[19] | Y. Du, Fixed points of a class of noncompact operator and its application, Acta Math. Sin., 32 (1989), 618-627 (in Chinese). |
[20] | D. Guo, Fixed points and eigenelements of a class of concave and convex operator, Chin. Sci. Bull., 30 (1985), 1132-1135 (in Chinese). |
[21] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland mathematics studies, 204. Elsevier Science B.V, Amsterdam, 2006. |
[22] | A. Seemab, M. U. Rehman, J. Alzabut, et al. On the existence of positive solutions for generalized fractional boundary value problems, Boundary Value Probl., 2019 (2019), 1-20. |
[23] | M. S. Abdo, S. K. Panchal, A. M. Saeed, Fractional boundary value problem with ψ-Caputo fractional Derivative, Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), 1-14. |
[24] | R. Almeida, A. B. Malinowska, M. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci., 41 (2018), 336-352. |