Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation

  • Received: 06 February 2021 Accepted: 13 April 2021 Published: 19 April 2021
  • MSC : 26A33, 34A37, 34A08, 34D20

  • In this paper, we discuss existence and stability results for a new class of impulsive fractional boundary value problems with non-separated boundary conditions containing the Caputo proportional fractional derivative of a function with respect to another function. The uniqueness result is discussed via Banach's contraction mapping principle, and the existence of solutions is proved by using Schaefer's fixed point theorem. Furthermore, we utilize the theory of stability for presenting different kinds of Ulam's stability results of the proposed problem. Finally, an example is also constructed to demonstrate the application of the main results.

    Citation: Chutarat Treanbucha, Weerawat Sudsutad. Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation[J]. AIMS Mathematics, 2021, 6(7): 6647-6686. doi: 10.3934/math.2021391

    Related Papers:

    [1] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
    [2] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [3] Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371
    [4] Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787
    [5] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [6] Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989
    [7] Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275
    [8] Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa . Some new integral inequalities for a general variant of polynomial convex functions. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121
    [9] Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for s-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310
    [10] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
  • In this paper, we discuss existence and stability results for a new class of impulsive fractional boundary value problems with non-separated boundary conditions containing the Caputo proportional fractional derivative of a function with respect to another function. The uniqueness result is discussed via Banach's contraction mapping principle, and the existence of solutions is proved by using Schaefer's fixed point theorem. Furthermore, we utilize the theory of stability for presenting different kinds of Ulam's stability results of the proposed problem. Finally, an example is also constructed to demonstrate the application of the main results.



    In recent years, convexity theory has gained special attention by many researchers because of it engrossing properties and expedient characterizations. It has many applications in fields like biology, numerical analysis and statistics (see [1,2,3,4]). Mathematical inequalities are extensively studied with all type of convex functions (see[1,3,11,13,14,16]). One of the fundamental inequality is Hermite-Hadamard inequality. It has been discussed via different types of convexities and became the center of attention for many researchers. Recently, in 2016, Khan et al. have discussed generalizations of Hermite-Hadamard type for MT-convex functions [26]. In 2017, Khan et al. studied some new inequalities of Hermite-Hadamard types [27]. In 2019, Khurshid et al. have utilized conformable fractional integrals via preinvex functions [28]. In 2020, Khan et al. have discussed Hermite-Hadamard type inequalities via quantum calculus involving green function [29], Mohammed et al. have established a new version of Hermite-Hadamard inequality for Riemann-Liouville fractional integrals [30], Han et al. used fractional integral to generalize Hermite-Hadamard inequality for convex functions [31], Zhao et al. utilized harmonically convex functions to generalized fractional integral inequalities of Hermite-Hdamrd type [32], Awan et al. presented new inequalities of Hermite-Hdamard type for n-polynomial harmonically convex functions [33]. In 2022, Khan et al. introduced some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued settings [34]. This reflects the importance of Hermite Hadamard type inequalities among current research.

    In [9], s-convex function is given as,

    Definition 1.1. A real valued function χ is called s-convex function on R, if

    χ(ςρ+(1ς)γ)ςsχ(ρ)+(1ς)sχ(γ),

    for each ρ,γR and ς(0,1) where s(0,1].

    In [10], m-convexity is discussed as,

    Definition 1.2. A real valued function χ defined on [0,b] is said to be a m-convex function for m[0,1], if

    χ(ςρ+m(1ς)γ)ςχ(ρ)+m(1ς)χ(γ),

    holds for all ρ,γ[0,b] and ς[0,1].

    (s,m)-convexity in [17] is discussed as,

    Definition 1.3. A function χ:[0,b]R, b>0 is said to be a (s,m)-convex function in the second sense where s,m(0,1]2, if

    χ(ςρ+m(1ς)γ)ςsχ(ρ)+m(1ς)sχ(γ),

    holds provided that all ρ,γ[0,b] and ς[0,1].

    Equivalent definition for (s,m)–convex functions:

    Let ρ,α,γ[0,b], ρ<α<γ

    χ(α)(γαγρ)sχ(ρ)+m(αργρ)sχ(γ). (1.1)

    Hölder-İşcan Inequality [5]:

    Let p>1, χ and ψ be real valued functions defined on [ρ,γ] and |χ|p,|ψ|q are integrable functions on interval [ρ,γ]

    γρ|χ(ω)ψ(ω)|dω1γρ(γρ(γω)|χ(ω)|pdω)1p(γρ(γω)|ψ(ω)|qdω)1q+1γρ(γρ(ωρ)|χ(ω)|pdω)1p(γρ(ωρ)|ψ(ω)|qdω)1q, (1.2)

    where 1p+1q=1.

    Following lemma is useful to obtain our main results.

    Lemma 1.4. [8] For nN, let χ:URR be n-times differentiable mapping on U, where ρ,γU, ρ<γ and χnL[ρ,γ], we have following identity

    n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)γρχ(ω)dω=(1)n+1n!γρωnχ(n)(ω)dω, (1.3)

    where an empty set is understood to be nil.

    In this paper, Hölder-İşcan inequality is used to modify inequalities involving functions having s-convex or s-concave derivatives at certain powers. The purpose of this paper is to establish some generalized inequalities for n-times differentiable (s,m)-convex functions. Applications of these inequalities to means are also discussed. Means are defined as,

    Let 0<ρ<γ,

    A(ρ,γ)=ρ+γ2,
    G(ρ,γ)=ργ,
    Lp(ρ,γ)=(γp+1ρp+1(p+1)(γρ))1p,

    where p0,1 and ργ.

    Theorem 2.1. For any positive integer n, let χ:U(0,)R be n-times differentiable mapping on U, where ρ,γU with ρ<γ. If χ(n)L[ρ,γ] and |χ(n)|q for q>1 is (s,m)-convex on interval [ρ,γ] then

    |n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)μρχ(ω)dω|1n!(γρ)1q([γLnpnp(ρ,γ)Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q), (2.1)

    where 1p+1q=1.

    Proof. Since |χn|q is (s,m)-convex by using inequality (1.1) for ρ<ω<γ, using Lemma 1.4 and Hölder-Işcan inequality (1.2),

    |χn(ω)|q|χn(ωργργ+mγωγρρ)|q(ωργρ)s|χn(γ)|q+m(γωγρ)s|χn(ρ)|q,|n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)γρχ(ω)dω|1n!γρωn|χ(n)(ω)|dω,1n!1γρ{(γρ(γω)ωnpdω)1p(γρ(γω)|χ(n)(ω)|qdω)1q+(γρ(ωρ)ωnpdω)1p(γρ(ωρ)|χ(n)(ω)|qdω)1q},1n!1γρ(γρ(γω)ωnpdω)1p(γρ(γω)[(ωργρ)s|χn(γ)|q+m(γωγρ)s|χn(ρ)|q]dω)1q+1n!1γρ(γρ(ωρ)ωnpdω)1p(γρ(ωρ)[(ωργρ)s|χn(γ)|q+m(γωγρ)s|χn(ρ)|q]dω)1q, (2.2)

    Let

    I1=[γρ(γω)ωnpdω]1p=[γρ(γωnpωnp+1)dω]1p=(γρ)1p[γ(γnp+1ρnp+1(γρ)(np+1))(γnp+2ρnp+2(γρ)(np+2))]1p=(γρ)1p[γLnpnp(ρ,γ)Lnp+1np+1(ρ,γ)]1p,
    I2=[γρ(ωρ)ωnpdt]1p=[γρ(ωnp+1ρωnp)dω]1p=(γρ)1p[(γnp+2ρnp+2(γρ)(np+2))ρ(γnp+1ρnp+1(γρ)(np+1))]1p=(γρ)1p[Lnp+1np+1(ρ,γ)ρLnpnp(ρ,γ)]1p,
    I3=γρ(γω)(ωρ)sdω=(γω)(ωρ)s+1s+1|γρ+γρ(ωρ)s+1s+1dω=(γρ)s+2(s+1)(s+2),
    I4=γρ(γω)s+1dω=(γρ)s+2s+2,I5=γρ(ωρ)s+1dω=(γρ)s+2s+2,I6=γρ(ωρ)(γω)sdω=(ωρ)(γω)s+1(s+1)|γρ+γρ(γω)s+1(s+1)dω=(γρ)s+2(s+1)(s+2).

    Substituting integrals I1,I2,I3,I4,I5,I6 in inequality (2.2) we have,

    |n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)γρχ(ω)dω|1n!(γρ)((γρ)1p[γLnpnp(ρ,γ)Lnp+1np+1(ρ,γ)]1p[(γρ)2(|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2))]1q+(γρ)1p[Lnp+1np+1(ρ,γ)ρLnpnp(ρ,γ)]1p[(γρ)2(|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2))]1q)
    =(γρ)1p1+2qn!([γLnpnp(ρ,γ)Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q)
    =1n!(γρ)1q([γLnpnp(ρ,γ)Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q).

    which is required inequality (2.1).

    For n=1 inequality (2.1) becomes,

    |(χ(γ)γχ(ρ)ργρ)1γργρχ(ω)dω|(γρ)1q1([γLpp(ρ,γ)Lp+1p+1(ρ,γ)]1p[|χ(γ)|q(s+1)(s+2)+m|χ(ρ)|(s+2)q]1q+[Lp+1p+1(ρ,γ)ρLpp(ρ,γ)]1p[m|χ(ρ)|q(s+1)(s+2)+|χ(γ)|(s+2)q]1q). (2.3)

    Remark 2.2. For s=1 and m=1 our resulting inequality (2.1) becomes the inequality (2) of [5].

    Theorem 2.3. For nN, let χ:U(0,)R be n-times differentiable mapping on U, where, ρ,γU, ρ<γ, χ(n)L[ρ,γ] and |χ(n)|q for q>1, is (s,m)-convex on interval [ρ,γ] then following inequality holds

    |n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)γρχ(ω)dω|1s1qn!(12)1p(γρ)2p1((|χ(n)(γ)|q(γρ)s1[Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)ργLnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γρ)s1[Lnq+2nq+2(ρ,γ)2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)])1q+(|χ(n)(γ)|q(γρ)s1[Lnq+2nq+2(ρ,γ)2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γρ)s1[Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)ργLnqnq(ρ,γ)])1q). (2.4)

    Proof. Since |χ(n)|q for q>1 is (s,m)-convex on [ρ,γ], by using Lemma 1.4 and Hölder-İşcan inequality (1.2), since s(0,1], this fact can be used for ω,ρ,γU(0,),

    (ωρ)s<(ωρ)s,(γω)s<(γω)s|n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)γρχ(ω)dω|1n!γρ1.ωn|χ(n)(ω)|dω,1n!1(γρ)([(γρ(γω)dω)1p(γρ(γω)ωnq|χ(n)(ω)|qdω)1q]+[(γρ(ωρ)dω)1p(γρ(ωρ)ωnq|χ(n)(ω)|qdω)1q]),1n!1(γρ)(γρ(γω)dω)1p(γρ(γω)ωnq[(ωργρ)s|χn(γ)|q+m(γωγρ)s|χn(ρ)|q]dt)1q+1n!1(γρ)(γρ(ωρ)dt)1p(γρ(ωρ)ωnq[(ωργρ)s|χn(γ)|q+m(γωγρ)s|χn(ρ)|q]dx)1q,1s1qn!1(γρ)(γρ(γω)dω)1p(γρ(γω)ωnq[(ωρ)(γρ)s|χn(γ)|q+m(γω)(γρ)s|χn(ρ)|q]dω)1q+1s1qn!1(γρ)(γρ(ωρ)dω)1p(γρ(ωρ)ωnq[(ωρ)(γρ)s|χn(γ)|q+m(γω)(γρ)s|χn(ρ)|q]dω)1q,    I1=γρ(γω)dω=(γρ)22    I2=γρ(γω)(ωρ)ωnqdω=γωnq+1nq+1ργωnq+1nq+1ωnq+3nq+3+ρωnq+2nq+2|γρ    =(γnq+3ρnq+3nq+3)+ρ(γnq+2ρnq+2nq+2)+γ(γnq+2ρnq+2nq+2)ργ(γnq+1ρnq+1nq+1)    =(γρ)[Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)ργLnqnq(ρ,γ)],        I3=γρ(γω)2ωnqdω=γ2ωnq+1nq+1+ωnq+3nq+32γωnq+2nq+2|γρ        =(γnq+3ρnq+3nq+3)2γ(γnq+2ρnq+2nq+2)+γ2(γnq+1ρnq+1nq+1)        =(γρ)[Lnq+2nq+2(ρ,γ)2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)],        I4=γρ(ωρ)2ωnqdω=ωnq+3nq+3+ρ2ωnq+1nq+12ρωnq+2nq+2|γρ        =(γnq+3ρnq+3nq+3)+ρ2(γnq+1ρnq+1nq+1)2ρ(γnq+2ρnq+2nq+2)        =(γρ)[Lnq+2nq+2(ρ,γ)+ρ2Lnqnq(ρ,γ)2ρLnq+1nq+1(ρ,γ)]. (2.5)

    Substituting integrals I1,I2,I3,I4,I5,I6 in inequality (2.5) we have,

    |n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)γρχ(ω)dω|1s1qn!(12)1p(γρ)2p1×((|χ(n)(γ)|q(γρ)s[(γρ)(Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)ργLnqnq(ρ,γ))]+m|χ(n)(ρ)|q(γρ)s[(γρ)(Lnq+2nq+2(ρ,γ)2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ))])1q+(|χ(n)(γ)|q(γρ)s[(γρ)(Lnq+2nq+2(ρ,γ)2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ))]+m|χ(n)(ρ)|q(γρ)s[(γρ)(Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)ργLnqnq(ρ,γ))])1q),
    =1s1qn!(12)1p(γρ)2p1×((|χ(n)(γ)|q(γρ)s1[Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)ργLnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γρ)s1[Lnq+2nq+2(ρ,γ)2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)])1q+(|χ(n)(γ)|q(γρ)s1[Lnq+2nq+2(ρ,γ)2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γρ)s1[Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)ργLnqnq(ρ,γ)])1q).

    For n=1, Theorem2.3 reduced to the inequality

    |γχ(γ)ρχ(ρ)(γρ)1(γρ)γρχ(ω)dω|1s1q(12)1p(γρ)2p2((|χ(1)(γ)|q(γρ)s1[Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)ργLqq(ρ,γ)]+m|χ(1)(ρ)|(γρ)s1q[Lq+2q+2(ρ,γ)2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(|χ(1)(γ)|(γρ)s1q[Lq+2q+2(ρ,γ)2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+m|χ(1)(ρ)|(γρ)s1q[Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)ργLqq(ρ,γ)])1q). (2.6)

    Remark 2.4. For s=1 and m=1 our resulting inequality (2.4) becomes the inequality (6) of [5].

    Theorem 2.5. If function χ:[0,b]R, b>0 is a (s, m)-convex function in the second sense where (s,m)(0,1]2, holds provided that all ρ,γ[0,b] and ς[0,1], then

    2sχ(ρ+mγ2)[1mγρmγρχ(ω)dω+m2mγργρmχ(l)dl]χ(ρ)+mχ(γ)s+1+χ(γ)+mχ(ρm2)s+1. (2.7)

    Proof. A function χ:[0,b]R, b>0 is said to be a (s,m)-convex function in the second sense where s,m(0,1]2, if

    χ(ςρ+m(1ς)γ)ςsχ(ρ)+m(1ς)sχ(γ),

    holds provided that all ρ,γ[0,b] and ς[0,1].

    Integrating w.r.t ς on [0,1],

    10χ(ςρ+m(1ς)γ)dς10ςsχ(ρ)dς+10m(1ς)sχ(γ)dς,=ςs+1s+1|10χ(ρ)mχ(γ)(1ς)s+1s+1|10=χ(ρ)+mχ(γ)s+1.      10χ(ςρ+m(1ς)γ)dςχ(ρ)+mχ(γ)s+1. (2.8)

    and

    χ(ςγ+m(1ς)ρm2)ςsχ(γ)+m(1ς)sχ(ρm2),10χ(ςγ+m(1ς)ρm2)dςχ(γ)+mχ(ρm2)s+1. (2.9)

    As χ is (s,m)-convex,

    χ(ρ+mγ2)=χ(ςρ+(1ς)mγ2+m.(1ς)ρm+ςγ2)(12)sχ(ςρ+(1ς)γm)+m(12)sχ(ςγ+(1ς)ρm),

    Integrating w.r.t ς over [0,1] and by using (2.8) and (2.9) we get,

    2sχ(ρ+mγ2)10(χ(ςρ+(1ς)γm)dς+m10χ(ςγ+(1ς)ρm)dςχ(ρ)+mχ(γ)s+1+χ(γ)+mχ(ρm2)s+1. (2.10)

    Substituting in first integral,

    ςρ+(1ς)γm=ω,

    10χ(ςρ+(1ς)mγ)dς=1γmργmρχ(ω)dω. (2.11)

    Substituting in the second integral,

    ςγ+(1ς)ρm=l,

    10χ(ςγ+(1ς)ρm)dς=mγmργρmχ(l)dl, (2.12)

    Using (2.11) and (2.12) in (2.10) required inequality (2.7) obtained.

    Remark 2.6. For s,m=1 inequality (2.7) becomes classical Hadamard inequality for convex functions.

    Theorem 2.7. For nN, let χ:U(0,)R be n-times differentiable mapping on U, where, ρ,γU, ρ<γ and χ(n)L[ρ,γ] and |χ(n)|q for q>1 is (s, m)-concave on interval [ρ,mγ], then

    |n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)mγρχ(ω)dω|2sq(mγρ)1q|χ(n)(ρ+mγ2)|n!((γLnpnp(ρ,mγ)Lnp+1np+1(ρ,mγ))1p+(Lnp+1np+1(ρ,mγ)ρLnpnp(ρ,mγ))1p). (2.13)

    Proof. |χ(n)|q for q>1 is (s,m)-concave then by using Theorem 2.5 we have,

    |χ(n)(ρ)|q+m|χ(n)(γ)|qs+1+|χ(n)(γ)|q+m|χ(n)(ρm2)|qs+1m2(mγρ)γρm|χ(n)(l)|qdl1(mγρ)mγρ|χ(n)(ω)|qdω2s|χ(n)(ρ+mγ2)|q,
    mγρ|χ(n)(ω)|qdω2s(mγρ)|χ(n)(ρ+mγ2)|q,
    1(mγρ)γmρ(γω)|χ(n)(ω)|qdωγmρ|χ(n)(ω)|qdω2s(mγρ)|χ(n)(ρ+mγ2)|q,
    1(mγρ)γmρ(γω)|χ(n)(ω)|qdωγmρ|χ(n)(ω)|qdω2s(mγρ)|χ(n)(ρ+mγ2)|q.

    Using Lemma 1.4 and Hölder-Îşcan inequality (1.2),

    |n1ν=0(1)ν(χ(ν)(γ)γν+1χ(ν)(ρ)ρν+1(ν+1)!)γmρχ(ω)dω|1n!γmρωn|χ(n)(ω)|dω,      1n!1γρ{(γmρ(γω)ωnpdω)1p(mγρ(γω)|χn(ω)|qdω)1q+(γmρ(ωρ)ωnpdω)1p(mγρ(ωρ)|χn(ω)|qdω)1q},      1n!1γρ((γmρ(γω)ωnpdω)1p(2s(mγρ)2|χ(n)(ρ+mγ2)|q)1q+(γmρ(ωρ)ωnpdω)1p(2s(mγρ)2|χ(n)(ρ+mγ2)|q)1q),            I1=(γmρ(γω)ωnpdω)1p=(γωnp+1np+1|γmρωnp+2np+2|γmρ)1p            =(mγρ)1p(γLnpnp(ρ,mγ)Lnp+1np+1(ρ,mγ))1p,            I2=(γmρ(ωρ)ωnpdω)1p=(ωnp+2np+2|γmρρωnp+1np+1|γmρ)1p            =(mγρ)1p(Lnp+1np+1(ρ,mγ)ρLnpnp(ρ,mγ))1p. (2.14)

    Substituting integrals I1,I2 in inequality (2.14) required inequality (2.13) is obtained.

    For n=1 inequality (2.13) becomes,

    |χ(γ)γρχ(ρ)(γρ)1(γρ)γmρχ(ω)dω|2sq(mγρ)1q|χ(1)(ρ+γ2)|1!((γLpp(ρ,mγ)Lp+1p+1(ρ,mγ))1p+(Lp+1p+1(ρ,mγ)ρLpp(ρ,mγ))1p). (2.15)

    Remark 2.8. For s=1 and m=1 our resulting inequality becomes the inequality obtained in Theorem 4 of [5].

    Proposition 2.9. Let ρ,γ(0,), where ρ<γ, q>1, n,iN with in,

    |Lii(ρ,γ)[(i+1)n1ν=0(1)νP(i,ν)(ν+1)!1]|1n!(γρ)1q1×([γLnpnp(ρ,γ)Lnp+1np+1(ρ,γ)]1p(γ(in)q(s+1)(s+2)+mρ(in)q(s+2))1q+[Lnp+1np+1(ρ,γ)ρLnpnp(ρ,γ)]1p(mρ(in)q(s+1)(s+2)+γ(in)q(s+2))1q), (2.16)

    where

    P(i,n)={i(i1)...(in+1),i>nn!,i=n1,n=0}.

    Proof. Let

    χ(ω)=ωi,|χ(n)(ω)|q=|P(i,n)ωin|q

    Let

    g(ς)=|P(i,n)(ςρ+m(1ς)γ|(in)q|P(i,n)ςsρ|(in)q|mP(i,n)(1ς)sγ|(in)q,
    g

    {g^{''}}(\varsigma) \ge 0 means g is convex and g(1) = g(0) = 0 , which omplies g\leq 0 , hence

    \begin{equation*} {\left| {P(i, n)(\varsigma \rho + m(1 - \varsigma )\gamma) } \right|^{(i - n)q}} \le {\left| {P(i, n){\varsigma ^s}\rho } \right|^{(i - n)q}} + \left| m{P(i, n){{(1 - \varsigma )}^s}\gamma) } \right|^{(i-n)q}. \end{equation*}

    By using Theorem 2.1 for |\chi^{n}(\omega)|^{q} which is (s, m) –convex for s, m \in (0, 1]^{2} inequality (2.16) obtained.

    Remark 2.10. For s, m = 1 inequality (2.16) becomes inequality (3) of [5].

    Example 2.11. Taking i = 2 , n = 1 , p = q = 2 in Proposition 2.9, the following is valid:

    \begin{equation*} \begin{array}{l} 2A({\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma ) \le (\frac{3}{{2\sqrt 6 }})\left( \begin{array}{l} {\left[ {A(3{\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma )} \right]^{\frac{1}{2}}}{\left( {\frac{{{\gamma ^2}}}{{(s + 1)(s + 2)}} + \frac{{{m\rho ^2}}}{{(s + 2)}}} \right)^{\frac{1}{2}}}\\ + {\left[ {A({\rho ^2}, 3{\gamma ^2}) + {G^2}(\rho , \gamma )} \right]^{\frac{1}{2}}}{\left( {\frac{{{m\rho ^2}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^2}}}{{(s + 2)}}} \right)^{\frac{1}{2}}} \end{array} \right), \end{array} \end{equation*}

    where A and G are classical arithmetic and geometric means, respectively.

    Proposition 2.12. Let \rho, \gamma \in (0, \infty) , with, \rho < \gamma , q > 1 and n \in \mathbb{N} ,

    \begin{equation} \begin{array}{l} 1 \le {(\gamma - \rho )^{\frac{1}{q} - 1}}\left( \begin{array}{l} {\left[ {\gamma L_p^p(\rho , \gamma ) - L_{p + 1}^{p + 1}(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left[ {(\frac{{{\gamma ^{ - q}}}}{{(s + 1)(s + 2)}} + \frac{{{m\rho ^{ - q}}}}{{(s + 2)}})} \right]^{\frac{1}{q}}} + \\ {\left[ { L_{p + 1}^{p + 1}(\rho , \gamma ) -\rho L_p^p(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left[ {(\frac{{{m\rho ^{ - q}}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^{ - q}}}}{{(s + 2)}})} \right]^{\frac{1}{q}}} \end{array} \right), \end{array} \end{equation} (2.17)

    where L is classical logarithmic mean.

    Proof.

    \begin{equation*} \chi (\omega) = \ln \omega, {\left| {{\chi ^{(1)}}(\omega)} \right|^q} = {\left| {{\omega^{ - 1}}} \right|^q} \end{equation*}

    Let

    \begin{equation*} g(\varsigma) = {\left| {(\varsigma \rho + m(1 - \varsigma )\gamma } \right|^{ - q}} - {\left| {{\varsigma ^s}\rho } \right|^{ - q}} - {\left| {{{m(1 - \varsigma )}^s}\gamma } \right|^{ - q}} \end{equation*}
    \begin{equation*} \begin{array}{l} {g^{''}}(\varsigma) = ( - q)( - q - 1){(\varsigma \rho + m(1 - \varsigma )\gamma )^{ - q - 2}}{(\rho - m\gamma )^2}\\ - s(s - 1){\varsigma ^{s - 2}}{\rho ^{ - q}} - ms(s - 1){(1 - \varsigma )^{s - 2}}{\gamma ^{-q}}, \end{array} \end{equation*}

    {g^{''}}(\varsigma) \ge 0 means g is convex and g(1) = g(0) = 0 which implies g\leq 0 as

    \begin{equation*} {\left| {(\varsigma \rho +m (1 - \varsigma )\gamma } \right|^{ - q}} \le {\left| {{\varsigma ^s}\rho } \right|^{ - q}}\\ + {\left| {{{m(1 - \varsigma )}^s}\gamma } \right|^{ - q}}. \end{equation*}

    So {\left| {{\chi ^{(1)}}(\omega)} \right|^q} is (s, m) -convex. Then by using inequality (2.3) required inequality (2.17) obtained.

    Remark 2.13. For s, m = 1 inequality (2.17) becomes (4) of [5].

    Example 2.14. For n = 1 and p = q = 2 , Proposition 2.12 gives:

    \begin{equation*} \label{45} 1 \le \frac{1}{{\sqrt 6 }}\left( {\begin{array}{*{20}{l}} {{{\left[ {A(3{\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma )} \right]}^{\frac{1}{p}}}{{\left[ {(\frac{{{\gamma ^{ - 2}}}}{{(s + 1)(s + 2)}} + \frac{{m{\rho ^{ - 2}}}}{{(s + 2)}})} \right]}^{\frac{1}{2}}} + }\\ {{{\left[ {A({\rho ^2}, 3{\gamma ^2}) + {G^2}(\rho , \gamma )} \right]}^{\frac{1}{p}}}{{\left[ {(\frac{{m{\rho ^{ - 2}}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^{ - 2}}}}{{(s + 2)}})} \right]}^{\frac{1}{2}}}} \end{array}} \right). \end{equation*}

    Proposition 2.15. Let \rho, \gamma \in (0, \infty) , \rho < \gamma , q > 1 , i \in (- \infty, 0] \cup [1, \infty)\backslash\{ - 2q, - q\}

    then

    \begin{equation} L_{\frac{i}{q} + 1}^{\frac{i}{q} + 1}(\rho , \gamma ) \le {(\gamma - \rho )^{\frac{1}{q} - 1}}\left( \begin{array}{l} {\left[ {\gamma L_p^p(\rho , \gamma ) - L_{p + 1}^{p + 1}(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left[ {(\frac{{{\gamma ^i}}}{{(s + 1)(s + 2)}} + \frac{{m{\rho ^i}}}{{(s + 2)}})} \right]^{\frac{1}{q}}}\\ + {\left[ {L_{p + 1}^{p + 1}(\rho , \gamma ) - \rho L_p^p(\rho , \gamma )} \right]^{\frac{1}{p}}}{\left[ {(\frac{{m{\rho ^i}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^i}}}{{(s + 2)}})} \right]^{\frac{1}{q}}} \end{array} \right). \end{equation} (2.18)

    Proof.

    \begin{equation*} \chi (t) = \frac{q}{{i + q}}{\omega^{\frac{i}{q} + 1}}, |\chi^{'} (\omega)|^{q} = \omega^{i} \end{equation*}

    Let

    \begin{equation*} g(\varsigma) = {\left| {(\varsigma \rho + m(1 - \varsigma )\gamma } \right|^i} - {\left| {{\varsigma ^s}\rho } \right|^i} - {\left| {{{m(1 - \varsigma )}^s}\gamma } \right|^i}, \end{equation*}
    \begin{equation*} {g^{''}}(\varsigma) = (i)(i - 1){(\varsigma \rho +m (1 - \varsigma )\gamma )^{i - 2}}{(\rho - m\gamma )^2} - s(s - 1){\varsigma ^{s - 2}}{\rho ^i} - ms(s - 1){(1 - \varsigma )^{s - 2}}{\gamma ^i}, \end{equation*}

    g^{''}(\varsigma) \geq 0 and g(1) = g(0) so g\leq0 and |\chi^{'} (\omega)|^{q} is (s, m) -convex, by using inequality (2.3) we have (2.18).

    Remark 2.16. For s, m = 1 inequality (2.18) becomes (5) of [5].

    Example 2.17. For i = 2 and p = q = 2 Proposition 2.15 reduced to

    \begin{equation} \begin{array}{l} 2A({\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma ) \le \\ {(\frac{3}{\sqrt{6}})}\left( \begin{array}{l} {\left[ {A(3{\rho ^2}, {\gamma ^2}) + {G^2}(\rho , \gamma )} \right]^{\frac{1}{2}}}{\left[ {(\frac{{{\gamma ^2}}}{{(s + 1)(s + 2)}} + \frac{{{m\rho ^2}}}{{(s + 2)}})} \right]^{\frac{1}{2}}} + \\ {\left[ {A({\rho ^2}, 3{\gamma ^2}) + {G^2}(\rho , \gamma )} \right]^{\frac{1}{2}}}{\left[ {(\frac{{{m\rho ^2}}}{{(s + 1)(s + 2)}} + \frac{{{\gamma ^2}}}{{(s + 2)}})} \right]^{\frac{1}{2}}} \end{array} \right). \end{array} \end{equation} (2.19)

    Proposition 2.18. Let \rho, \gamma \in (0, \infty) with \rho < \gamma , q > 1 and n \in \mathbb{N} then we have

    \begin{equation} \times \begin{array}{*{20}{l}} {\left| {L_i^i(\rho , \gamma )\left[ {\sum\limits_{\nu = 0}^{n - 1} {\frac{{{{( - 1)}^\nu}P(i, \nu)}}{{(\nu + 1)!}} - 1} } \right]} \right| \le \frac{{P(i, n)}}{s^{\frac{1}{q}}{n!}}{{\left( {\frac{1}{2}} \right)}^{\frac{1}{p}}}{{(\gamma - \rho )}^{\frac{2}{p} - 1}}}\\ {{{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^{(i - n)q}}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^{(i - n)q}}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\gamma L_{nq + 1}^{nq + 1}(\kappa , \mu ) + {\mu ^2}L_{nq}^{nq}(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}}\\ { + \frac{{P(i, n)}}{s^{\frac{1}{q}}{n!}}{{\left( {\frac{1}{2}} \right)}^{\frac{1}{p}}}{{(\gamma - \rho )}^{\frac{2}{p} - 1}}{{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^{(i - n)q}}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ {L_{nq + 2}^{nq + 2}(\rho , \gamma ) - 2\rho L_{nq + 1}^{nq + 1}(\rho , \gamma ) + {\rho ^2}L_{nq}^{nq}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^{(i - n)q}}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{nq + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{nq + 1}^{nq + 1}(\rho , \gamma ) - \rho \gamma L_{nq}^{nq}(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}}. \end{array} \end{equation} (2.20)

    Proof. Let,

    \begin{equation*} \chi (\omega) = {\omega^i}\\, {\left| {{\chi ^{(n)}}(\omega)} \right|^q} = {\left[ {P(i, n){\omega^{i - n}}} \right]^q} \end{equation*}

    As |\chi^{n}(\omega)|^{q} is (s, m) -convex on (0, \infty) , therefore by using Theorem 2.3 required inequality (2.20) is obtained.

    Remark 2.19. For s, m = 1 inequality (2.20) becomes inequality obtained in Proposition 4 of [5].

    Proposition 2.20. Let \rho, \gamma \in (0, \infty) with \rho < \gamma q > 1 and n \in \mathbb{N} then we have,

    \begin{equation} 1 \le \frac{{{{(\gamma - \rho )}^{\frac{2}{p} - 2}}}}{{{s^{\frac{1}{q}}.2^{\frac{1}{p}}}}}\left( \begin{array}{l} {\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^{ - q}}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_{q}^{q}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^{ - q}}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\gamma L_{q + 1}^{q + 1}(\rho , \gamma ) + {\gamma ^2}L_{q}^{q}(\rho , \gamma )} \right]} \end{array}} \right)^{\frac{1}{q}}}\\ +{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^{ - q}}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\rho L_{q + 1}^{q + 1}(\rho , \gamma ) + {\rho ^2}L_{q}^{q}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^{ - q}}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_{q}^{q}(\rho , \gamma )} \right]} \end{array}} \right)^{\frac{1}{q}}} \end{array} \right), \end{equation} (2.21)

    Proof.

    \begin{equation*} \chi (\omega) = \ln \omega, {\left| {{\chi ^{(1)}}(\omega)} \right|^q} = {\left[ {{\omega^{ - 1}}} \right]^q} \end{equation*}

    As {\left| {{\chi ^{(1)}}(\omega)} \right|^q} is (s, m) –convex, therefore by using inequality (2.6) required (2.21) obtained.

    Remark 2.21. For s, m = 1 inequality (2.21) becomes inequality obtained in Proposition 5 of [5].

    Proposition 2.22. Let \rho, \gamma \in (0, \infty) with \rho < \gamma q > 1 and i \in (-\infty, 0]\backslash\{-2q, q\} , then

    \begin{equation} L_{\frac{i}{q} + 1}^{\frac{i}{q} + 1}(\rho , \gamma ) \le \frac{{{{(\gamma - \rho )}^{\frac{2}{p} - 2}}}}{{{s^{\frac{1}{q}}.2^{\frac{1}{p}}}}}\left( \begin{array}{l} {\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^i}}}{{{{(\gamma - \rho )}^{s-1}{}}}}\left[ { - L_{q + 2}^{nq + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_{q}^{q}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^i}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\gamma L_{q + 1}^{q + 1}(\rho , \gamma ) + {\gamma ^2}L_{q}^{q}(\rho , \gamma )} \right]} \end{array}} \right)^{\frac{1}{q}}}\\ +{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^i}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\rho L_{q + 1}^{q + 1}(\rho , \gamma ) + {\rho ^2}L_{q}^{q}(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^m}}}{{{{(\gamma - \rho )}^{s-1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_{q}^{q}(\rho , \gamma )} \right]} \end{array}} \right)^{\frac{1}{q}}} \end{array} \right). \end{equation} (2.22)

    Proof.

    \begin{equation*} \chi (\omega) = \frac{q}{{i + q}}{\omega^{\frac{i}{q} + 1}} |\chi^{'} (\omega)|^{q} = \omega^{i} \end{equation*}

    |\chi^{'} (w)|^{q} is (s, m) -convex by using inequality (2.6) required (2.22) obtained.

    For i = 1 inequality (2.22) becomes,

    \begin{equation} L_{\frac{1}{q} + 1}^{\frac{1}{q} + 1}(\rho , \gamma ) \le \frac{{{{(\gamma - \rho )}^{\frac{2}{p} - 2}}}}{{{s^{\frac{1}{q}}.2^{\frac{1}{p}}}}}\left( {\begin{array}{*{20}{l}} {{{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma^1}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_q^q(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^1}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\gamma L_{q + 1}^{q + 1}(\rho , \gamma ) + {\gamma ^2}L_q^q(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}}\\ +{{{\left( {\begin{array}{*{20}{l}} {\frac{{{\gamma ^1}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ {L_{q + 2}^{q + 2}(\rho , \gamma ) - 2\rho L_{q + 1}^{q + 1}(\rho , \gamma ) + {\rho ^2}L_q^q(\rho , \gamma )} \right] + }\\ {\frac{{{m\rho ^1}}}{{{{(\gamma - \rho )}^{s - 1}}}}\left[ { - L_{q + 2}^{q + 2}(\rho , \gamma ) + (\rho + \gamma )L_{q + 1}^{q + 1}(\rho , \gamma ) - \rho \gamma L_q^q(\rho , \gamma )} \right]} \end{array}} \right)}^{\frac{1}{q}}}} \end{array}} \right). \end{equation} (2.23)

    Remark 2.23. For s, m = 1 inequality (2.22) becomes inequality obtained in Proposition 6 of [5].

    Proposition 2.24. Let \rho, \gamma \in (0, \infty) with \rho < \gamma , q > 1 and i \in [0, 1] we have,

    \begin{equation} \begin{array}{l} L_{\frac{i}{q} + 1}^{\frac{i}{q} + 1}(\rho , \gamma ) \le \\ \frac{{{2^{\frac{s}{q}}}{{(m\gamma - \rho )}^{\frac{1}{q}}}}}{{1!}} {A^{\frac{i}{q}}}(\rho , \gamma )\left( \begin{array}{l} {\left( {\gamma L_p^p(\rho , m\gamma ) - L_{p + 1}^{p + 1}(\rho , m\gamma )} \right)^{\frac{1}{p}}}\\ + {\left( {L_{p + 1}^{p + 1}(\rho , m\gamma ) - \rho L_p^p(\rho , m\gamma )} \right)^{\frac{1}{p}}} \end{array} \right). \end{array} \end{equation} (2.24)

    Proof.

    \begin{equation*} \chi (\omega) = \frac{q}{{i + q}}{\omega^{\frac{i}{q} + 1}}, |\chi^{'} (\omega)|^{q} = \omega^{i}. \end{equation*}

    As |\chi^{'} (\omega)|^{q} is (s, m) -concave by using inequality (2.15) we obtain required inequality (2.24).

    Remark 2.25. For s, m = 1 inequality (2.24) becomes the inequality obtained in Proposition 9 of [5].

    In this paper, Hölder-Isçan inequality is utilized to prove Hermite-Hadamard type inequalities for n -times differentiable (s, m) -convex functions. The method is adequate and provide many generalizations of existing results as shown in remarks. Moreover, many other inequalities can be generalized for other types of convex functions.

    This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018)

    The authors declare no conflict of interest.



    [1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
    [2] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
    [3] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional Dynamics and Control, Springer, New York, 2002.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol 204, Elsevier Science BV, Amsterdam, 2006.
    [5] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Redding, 2006.
    [6] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062
    [7] U. N. Katugampola, A new approach to generalized fractional derivatives, Bul. Math. Anal. Appl., 6 (2014), 1–15.
    [8] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016
    [9] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. doi: 10.22436/jnsa.010.05.27
    [10] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys. 80 (2017), 11–27.
    [11] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006
    [12] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), Article ID 247.
    [13] F. Jarad, M. A. Alqudah, T. Abdeljawad, On more generalized form of proportional fractional operators, Open Math., 18 (2020), 167–176. doi: 10.1515/math-2020-0014
    [14] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), Article ID 303.
    [15] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
    [16] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York, 2006.
    [17] R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. doi: 10.1007/s10440-008-9356-6
    [18] J. Wang, Y. Zhou, M. Feckan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008–3020. doi: 10.1016/j.camwa.2011.12.064
    [19] J. R. Graef, J. Henderson, A. Ouahab, Impulsive Differential Inclusions, A Fixed Point Approch. de Gruyter, Berlin, 2013.
    [20] W. T. Coffey, Y. P. Kalmykov, J. T. Waldron, The Langevin equation, 2Eds. Singapore, World Scientific, 2004.
    [21] F. Mainardi, P. Pironi, F. Tampieri, On a generalized of the Basset problem via fractional calculus, Proc. CANCAM 95, 2 (1995), 836–837.
    [22] K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E., 73 (2006), 061104. doi: 10.1103/PhysRevE.73.061104
    [23] S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. doi: 10.1016/j.physleta.2008.08.045
    [24] M. Uranagase, T. Munakata, Generalized Langevin equation revisited: Mechanical random force and self-consistent structure, J. Phys. A: Math. Theor., 43 (2010), Art. ID 455003.
    [25] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., 13 (2012), 599–606. doi: 10.1016/j.nonrwa.2011.07.052
    [26] J. Tariboon, S. K. Ntouyas, C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys., 2014 (2014), Article ID 372749.
    [27] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1940.
    [28] D. H. Hyers, On the stability of the linear functional equations, Proc. Natl. Acad. Sci., 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222
    [29] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
    [30] T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1
    [31] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26 (2010), 103–107.
    [32] J. M. Rassias, Functional Equations, Difference Inequalities and Ulam Stability Notions (F.U.N.), NovaScience Publishers, New York, 2010.
    [33] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, NewYork, 2011.
    [34] T. M. Rassias, J. Brzdek, Functional Equations in Mathematical Analysis, vol.86, Springer, NewYork, 2012.
    [35] G. Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., Theory Methods Appl., 74 (2011), 792–804. doi: 10.1016/j.na.2010.09.030
    [36] J. Wang, M. Feckan, Y. Zhou, Presentation of solutions of impulsive fractional Langevin equations and existence results, Eur. Phys. J. Spec. Top., 222 (2013), 1857–1874. doi: 10.1140/epjst/e2013-01969-9
    [37] J. Wang, Z. Lin, On the impulsive fractional anti-periodic BVP modelling with constant coefficients, J. Appl. Math. Comput., 46 (2014), 107–121. doi: 10.1007/s12190-013-0740-7
    [38] J. Wang, X. Li, Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258 (2015), 72–83. doi: 10.1016/j.amc.2015.01.111
    [39] H. Wang, X. Lin, Existence of solutions for impulsive fractional Langevin functional differential equations with variable parameter, Revista de la Real Academia de Ciencias Exactas, Fasicas y Naturales. Serie A. Matematicas, 8 (2015), 1–18.
    [40] W. Sudsutad, B. Ahmad, S. K. Ntouyas, J. Tariboon, Impulsively hybrid fractional quantum Langevin equation with boundary conditions involving Caputo q_k-fractional derivatives, Chaos, Solitons Fractals, 91 (2016), 47–62. doi: 10.1016/j.chaos.2016.05.002
    [41] Y. Liu, Solvability of impulsive periodic boundary value problems for higher order fractional differential equations, Arab. J. Math., 6 (2016), 195–214.
    [42] S. Yang, S. Zhang, Boundary value problems for impulsive fractional differential equations in Banach spaces, Filomat, 31 (2017), 5603–5616. doi: 10.2298/FIL1718603Y
    [43] H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Solitons Fractals, 131 (2019), 109477.
    [44] R. Rizwan, A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Meth. Appl. Sci., 43 (2019).
    [45] R. Rizwan, A. Zada, X. Wang, Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses, Adv. Differ. Equ., 2019 (2019), Article ID 85.
    [46] I. Ahmed, P. Kumam, J. Abubakar, P. Borisut, K. Sitthithakerngkiet, Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition, Adv. Differ. Equ., 2020 (2020), Article ID 477.
    [47] A. Ali, K. Shah, T. Abdeljawad, H. Khan, A. Khan, Study of fractional order pantograph type impulsive antiperiodic boundary value problem, Adv. Differ. Equ., 2020 (2020), Article ID 572.
    [48] A. Salim, M. Benchohra, E. Karapınar, J. E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations, Adv. Differ. Equ., 2020 (2020), Article ID 601.
    [49] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. doi: 10.1016/j.heliyon.2020.e05109
    [50] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, USA, 2003.
  • This article has been cited by:

    1. Ammara Nosheen, Maria Tariq, Khuram Ali Khan, Nehad Ali Shah, Jae Dong Chung, On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions, 2023, 7, 2504-3110, 187, 10.3390/fractalfract7020187
    2. Jie Li, Yong Lin, Serap Özcan, Muhammad Shoaib Saleem, Ahsan Fareed Shah, A study of Hermite-Hadamard inequalities via Caputo-Fabrizio fractional integral operators using strongly (s, m)-convex functions in the second sense, 2025, 2025, 1029-242X, 10.1186/s13660-025-03266-x
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2862) PDF downloads(200) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog