Research article Special Issues

Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation

  • Received: 06 February 2021 Accepted: 13 April 2021 Published: 19 April 2021
  • MSC : 26A33, 34A37, 34A08, 34D20

  • In this paper, we discuss existence and stability results for a new class of impulsive fractional boundary value problems with non-separated boundary conditions containing the Caputo proportional fractional derivative of a function with respect to another function. The uniqueness result is discussed via Banach's contraction mapping principle, and the existence of solutions is proved by using Schaefer's fixed point theorem. Furthermore, we utilize the theory of stability for presenting different kinds of Ulam's stability results of the proposed problem. Finally, an example is also constructed to demonstrate the application of the main results.

    Citation: Chutarat Treanbucha, Weerawat Sudsutad. Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation[J]. AIMS Mathematics, 2021, 6(7): 6647-6686. doi: 10.3934/math.2021391

    Related Papers:

  • In this paper, we discuss existence and stability results for a new class of impulsive fractional boundary value problems with non-separated boundary conditions containing the Caputo proportional fractional derivative of a function with respect to another function. The uniqueness result is discussed via Banach's contraction mapping principle, and the existence of solutions is proved by using Schaefer's fixed point theorem. Furthermore, we utilize the theory of stability for presenting different kinds of Ulam's stability results of the proposed problem. Finally, an example is also constructed to demonstrate the application of the main results.



    加载中


    [1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
    [2] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
    [3] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional Dynamics and Control, Springer, New York, 2002.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol 204, Elsevier Science BV, Amsterdam, 2006.
    [5] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Redding, 2006.
    [6] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062
    [7] U. N. Katugampola, A new approach to generalized fractional derivatives, Bul. Math. Anal. Appl., 6 (2014), 1–15.
    [8] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016
    [9] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. doi: 10.22436/jnsa.010.05.27
    [10] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys. 80 (2017), 11–27.
    [11] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006
    [12] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), Article ID 247.
    [13] F. Jarad, M. A. Alqudah, T. Abdeljawad, On more generalized form of proportional fractional operators, Open Math., 18 (2020), 167–176. doi: 10.1515/math-2020-0014
    [14] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), Article ID 303.
    [15] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
    [16] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York, 2006.
    [17] R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. doi: 10.1007/s10440-008-9356-6
    [18] J. Wang, Y. Zhou, M. Feckan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008–3020. doi: 10.1016/j.camwa.2011.12.064
    [19] J. R. Graef, J. Henderson, A. Ouahab, Impulsive Differential Inclusions, A Fixed Point Approch. de Gruyter, Berlin, 2013.
    [20] W. T. Coffey, Y. P. Kalmykov, J. T. Waldron, The Langevin equation, 2Eds. Singapore, World Scientific, 2004.
    [21] F. Mainardi, P. Pironi, F. Tampieri, On a generalized of the Basset problem via fractional calculus, Proc. CANCAM 95, 2 (1995), 836–837.
    [22] K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E., 73 (2006), 061104. doi: 10.1103/PhysRevE.73.061104
    [23] S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. doi: 10.1016/j.physleta.2008.08.045
    [24] M. Uranagase, T. Munakata, Generalized Langevin equation revisited: Mechanical random force and self-consistent structure, J. Phys. A: Math. Theor., 43 (2010), Art. ID 455003.
    [25] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., 13 (2012), 599–606. doi: 10.1016/j.nonrwa.2011.07.052
    [26] J. Tariboon, S. K. Ntouyas, C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys., 2014 (2014), Article ID 372749.
    [27] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1940.
    [28] D. H. Hyers, On the stability of the linear functional equations, Proc. Natl. Acad. Sci., 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222
    [29] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
    [30] T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1
    [31] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26 (2010), 103–107.
    [32] J. M. Rassias, Functional Equations, Difference Inequalities and Ulam Stability Notions (F.U.N.), NovaScience Publishers, New York, 2010.
    [33] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, NewYork, 2011.
    [34] T. M. Rassias, J. Brzdek, Functional Equations in Mathematical Analysis, vol.86, Springer, NewYork, 2012.
    [35] G. Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., Theory Methods Appl., 74 (2011), 792–804. doi: 10.1016/j.na.2010.09.030
    [36] J. Wang, M. Feckan, Y. Zhou, Presentation of solutions of impulsive fractional Langevin equations and existence results, Eur. Phys. J. Spec. Top., 222 (2013), 1857–1874. doi: 10.1140/epjst/e2013-01969-9
    [37] J. Wang, Z. Lin, On the impulsive fractional anti-periodic BVP modelling with constant coefficients, J. Appl. Math. Comput., 46 (2014), 107–121. doi: 10.1007/s12190-013-0740-7
    [38] J. Wang, X. Li, Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258 (2015), 72–83. doi: 10.1016/j.amc.2015.01.111
    [39] H. Wang, X. Lin, Existence of solutions for impulsive fractional Langevin functional differential equations with variable parameter, Revista de la Real Academia de Ciencias Exactas, Fasicas y Naturales. Serie A. Matematicas, 8 (2015), 1–18.
    [40] W. Sudsutad, B. Ahmad, S. K. Ntouyas, J. Tariboon, Impulsively hybrid fractional quantum Langevin equation with boundary conditions involving Caputo $q_k$-fractional derivatives, Chaos, Solitons Fractals, 91 (2016), 47–62. doi: 10.1016/j.chaos.2016.05.002
    [41] Y. Liu, Solvability of impulsive periodic boundary value problems for higher order fractional differential equations, Arab. J. Math., 6 (2016), 195–214.
    [42] S. Yang, S. Zhang, Boundary value problems for impulsive fractional differential equations in Banach spaces, Filomat, 31 (2017), 5603–5616. doi: 10.2298/FIL1718603Y
    [43] H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an $ABC$-fractional order impulsive system, Chaos Solitons Fractals, 131 (2019), 109477.
    [44] R. Rizwan, A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Meth. Appl. Sci., 43 (2019).
    [45] R. Rizwan, A. Zada, X. Wang, Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses, Adv. Differ. Equ., 2019 (2019), Article ID 85.
    [46] I. Ahmed, P. Kumam, J. Abubakar, P. Borisut, K. Sitthithakerngkiet, Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition, Adv. Differ. Equ., 2020 (2020), Article ID 477.
    [47] A. Ali, K. Shah, T. Abdeljawad, H. Khan, A. Khan, Study of fractional order pantograph type impulsive antiperiodic boundary value problem, Adv. Differ. Equ., 2020 (2020), Article ID 572.
    [48] A. Salim, M. Benchohra, E. Karapınar, J. E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations, Adv. Differ. Equ., 2020 (2020), Article ID 601.
    [49] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. doi: 10.1016/j.heliyon.2020.e05109
    [50] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, USA, 2003.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2573) PDF downloads(195) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog