Research article

Bifurcation phenomena in a single-species reaction-diffusion model with spatiotemporal delay

  • Received: 14 February 2021 Accepted: 14 April 2021 Published: 19 April 2021
  • MSC : 35K57, 35B32

  • In this paper we investigate bifurcation phenomena in a single-species reaction-diffusion model with spatiotemporal delay under the conditions of the weak and strong kernel functions. We have found that when the weak kernel function is introduced there is Hopf bifurcation but no Turing bifurcation and wave bifurcation to occur, but when the strong kernel function is introduced there exist Hopf bifurcation and wave bifurcation but no Turing bifurcation to occur. Especially, taking the inverse of the average time delay as a bifurcation parameter, we investigate influences of the time delay on the formation of spatiotemporal patterns through the numerical method. Some spatiotemporal patterns induced by Hopf bifurcation and wave bifurcation are respectively shown to illustrate the mechanism of the complexity of spatiotemporal dynamics.

    Citation: Gaoxiang Yang, Xiaoyu Li. Bifurcation phenomena in a single-species reaction-diffusion model with spatiotemporal delay[J]. AIMS Mathematics, 2021, 6(7): 6687-6698. doi: 10.3934/math.2021392

    Related Papers:

  • In this paper we investigate bifurcation phenomena in a single-species reaction-diffusion model with spatiotemporal delay under the conditions of the weak and strong kernel functions. We have found that when the weak kernel function is introduced there is Hopf bifurcation but no Turing bifurcation and wave bifurcation to occur, but when the strong kernel function is introduced there exist Hopf bifurcation and wave bifurcation but no Turing bifurcation to occur. Especially, taking the inverse of the average time delay as a bifurcation parameter, we investigate influences of the time delay on the formation of spatiotemporal patterns through the numerical method. Some spatiotemporal patterns induced by Hopf bifurcation and wave bifurcation are respectively shown to illustrate the mechanism of the complexity of spatiotemporal dynamics.



    加载中


    [1] N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663–1688. doi: 10.1137/0150099
    [2] N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57–66. doi: 10.1016/S0022-5193(89)80189-4
    [3] S. A. Gourley, M. A. Chaplain, F. A. Davidson, Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation, Dyn. Syst., 16 (2001), 173–192. doi: 10.1080/14689360116914
    [4] J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313–346.
    [5] S. Merchant, W. Nagata, Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition, Theor. Popul. Biol., 80 (2011), 289–297. doi: 10.1016/j.tpb.2011.10.001
    [6] W. Zuo, Y. Song, Stability and bifurcation analysis of a reaction-diffusion equation with spatio-temporal delay, J. Math. Anal. Appl., 430 (2015), 243–261. doi: 10.1016/j.jmaa.2015.04.089
    [7] B. Han, Z. Wang, Turing patterns of a Lotka-Volterra competitive system with nonlocal delay, Int. J. Bifurcat. Chaos, 28 (2018), 1830021. doi: 10.1142/S0218127418300215
    [8] M. Banerjee, V. Volpert, Spatio-temporal pattern formation in Rosenzweig-MacArthur model: Effect of nonlocal interactions, Ecol. Complex., 30 (2017), 2–10. doi: 10.1016/j.ecocom.2016.12.002
    [9] S. Wu, Y. Song, Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition, Nonlinear Anal.-Real World Appl., 48 (2019), 12–39. doi: 10.1016/j.nonrwa.2019.01.004
    [10] H. Jiang, Turing bifurcation in a diffusive predator-prey model with schooling behavior, Appl. Math. Lett., 96 (2019), 230–235. doi: 10.1016/j.aml.2019.05.010
    [11] M. Baurmann, T. Gross, U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theor. Biol., 245 (2007), 220–229. doi: 10.1016/j.jtbi.2006.09.036
    [12] Y. Song, H. Jiang, Y. Yuan, Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model, J. Appl. Anal. Comput., 9 (2019), 1132–1146.
    [13] Y. Song, T. Zhang, Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci., 33 (2016), 229–258. doi: 10.1016/j.cnsns.2015.10.002
    [14] Y. Song, S. Wu, H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equations, 267 (2019), 6316–6351. doi: 10.1016/j.jde.2019.06.025
    [15] L. Yang, M. Dolnik, A. M. Zhabotinsky, I. R. Epstein, Pattern formation arising from interactions between Turing and wave instabilities, J. Chem. Phys., 117 (2002), 7259–7265. doi: 10.1063/1.1507110
    [16] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press, 1981.
    [17] J. D. Murray, Mathematical biology I: An introduction (3 Eds.), Springer-Verlag, 2002.
    [18] S. A. Gourley, J. W. H. So, Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 77 (2002), 49–78.
    [19] S. Pal, S. Ghorai, M. Banerjee, Effect of kernels on spatio-temporal patterns of a non-local prey-predator model, Math. Biosci., 310 (2019), 96–107. doi: 10.1016/j.mbs.2019.01.011
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2361) PDF downloads(144) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog