Loading [MathJax]/jax/output/SVG/jax.js
Research article

Some generalized fractional integral Simpson’s type inequalities with applications

  • Received: 10 June 2020 Accepted: 08 July 2020 Published: 14 July 2020
  • MSC : 26D15, 26A51

  • In the article, we establish a Simpson-type generalized identity containing multi-parameters and derive some new estimates for the generalized Simpson's quadrature rule via the Raina fractional integrals. As applications, we provide several inequalities for the f -divergence measures and probability density functions.

    Citation: Sabir Hussain, Javairiya Khalid, Yu Ming Chu. Some generalized fractional integral Simpson’s type inequalities with applications[J]. AIMS Mathematics, 2020, 5(6): 5859-5883. doi: 10.3934/math.2020375

    Related Papers:

    [1] Chunyan Luo, Yuping Yu, Tingsong Du . Estimates of bounds on the weighted Simpson type inequality and their applications. AIMS Mathematics, 2020, 5(5): 4644-4661. doi: 10.3934/math.2020298
    [2] Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor . Simpson’s type integral inequalities for ĸ-fractional integrals and their applications. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087
    [3] Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218
    [4] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [5] Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831
    [6] Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505
    [7] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [8] Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807
    [9] Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Asifa Tassaddiq, Moheb Saad Abouzaid . Certain generalized fractional integral inequalities. AIMS Mathematics, 2020, 5(2): 1588-1602. doi: 10.3934/math.2020108
    [10] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
  • In the article, we establish a Simpson-type generalized identity containing multi-parameters and derive some new estimates for the generalized Simpson's quadrature rule via the Raina fractional integrals. As applications, we provide several inequalities for the f -divergence measures and probability density functions.


    Over few years, the fractional calculus has attracted the attention of many researchers due to its has wide applications in pure and applied mathematics [1,2,3,4,5,6,7]. Like ordinary calculus, the fractional integral and derivative have not unique representation, with the passage of time, different authors have different representations. It is well-known that inequality is an indispensable research object in mathematics, it can give explicit error bounds for some known and some new quadrature formulae, for example, the Simpson's inequality [8], Jensen's inequality [9,10], Hermite-Hadamard's inequality [11,12,13,14,15] and integral inequalities [16,17,18,19,20,21]. The following inequality is well known as Simpson's inequality which provides an error bound for the Simpson's rule.

    Theorem 1.1. (See [7]) Let a,bR with a<b, and f:[a,b]R be a four times differentiable function on (a,b) such that f(4)=supx(a,b)|f(4)|(x)<. Then the inequality

    |13[f(a)+f(b)2+2f(a+b2)]1babaf(x)dx|f(4)(ba)42880

    holds.

    In [22], Dragomir et al. improved Theorem 1.1 to the following Theorem 1.2.

    Theorem 1.1. (See [22]) Let a,bR with a<b, and f:[a,b]R be a differentiable function on (a,b) such that its derivative is continuous on (a,b) and f1=ba|f(x)|dx<. Then the inequality

    |13[f(a)+f(b)2+2f(a+b2)]1babaf(x)dx|ba3||f||1

    holds.

    Recently, the Simpson type inequalities have been the subject of intensive research since many important inequalities can be obtained from the Simpson inequality. The main purpose of the article is to provide several generalized fractional integral versions of the Simpson's inequality and give their applications in f-divergence measures and probability density functions.

    Definition 2.1. (See [23]) Let pR with p0 and I(0,) be an interval. Then the real-valued function f:IR is said to be p-convex (concave) if the inequality

    f(ptxp+(1t)yp)()tf(x)+(1t)f(y)

    holds for all x,yI and t[0,1]. Moreover, if s(0,1], then the function f is said to be (s,p)-convex (concave) if the inequality

    f(ptxp+(1t)yp)()tsf(x)+(1t)sf(y)

    holds for all x,yI and t[0,1].

    Let p>0, s(0,1] and f:(0,)(0,) be defined by f(x)=xsp. Then we clearly see that f is a (s,p)-convex function.

    Definition 2.2. (See [24]) Let α>0, [a,b]R be a finite interval and f:[a,b]R be a real-valued function such that fL[a,b]. Then the right-hand side and the left-hand side Riemann-Liouville fractional integrals Jαa+f and Jαbf of order α are defined by

     (Jαa+f)(x)=1Γ(α)xa(xt)α1f(t)dt(x>a) (2.1)

    and

    (Jαbf)(x)=1Γ(α)bx(tx)α1f(t)dt(x<b), (2.2)

    respectively.

    Definition 2.3. The gamma function Γ, beta function B and the hypergeometric function 2F1 are defined by

    Γ(x)=0ettxdt(x>0),
    B(x,y)=Γ(x)Γ(y)Γ(x+y)=10tx1(1t)y1dt(x,y>0)

    and

    2F1(a,b;c,z)=1B(b,cb)10tb1(1t)cb1(1zt)adt(|z|<1),

    respectively.

    Definition 2.4 (See [25]) The hypergeometric function 2F1 can be given by

    2F1(a,[b,c;y],x)=1B(b,cb)y0tb1(1t)cb1(1xt)adt

    for y<1 and Re(c)>Re(b)>0.

    Definition 2.5 The incomplete beta function B(z;x,y) is defined by

    B(z;x,y)=z0tx1(1t)y1dt(Re(x)>Re(y)>0,0z<1).

    Raina [26] introduced a class of functions as follows

    Fσρ,λ(x)=Fσ(0),σ(1),ρ,λ(x)=k=0σ(k)Γ(ρk+λ)xk(ρ,λR+,xR), (2.3)

    where the coefficients σ(k)R+, kN0 form a bounded sequence. By using (2.3), in [26,27], the authors defined the left-side and right-sided fractional integral operators

    (Jσρ,λ,a+;wϕ)(x)=xa(xt)λ1Fσρ,λ[w(xt)ρ]ϕ(t)dt(x>a) (2.4)

    and

    (Jσρ,λ,b;wϕ)(x)=bx(tx)λ1Fσρ,λ[w(tx)ρ]ϕ(t)dt(x<b), (2.5)

    respectively, where wR and ϕ is a function such that the integrals on right hand sides exit. It is easy to verify that Jσρ,λ,a+;wϕ(x) and Jσρ,λ,b;wϕ(x) are bounded integral operators on L(a,b) if M=Fσρ,λ+1[w(ba)ρ]<. In fact, if ϕL(a,b), then we have

    Jσρ,λ,a+;wϕ1M(ba)λϕ1,Jσρ,λ,b;wϕ1M(ba)λϕ1.

    Let λα, adn σ(0)1 and w0 in (2.4) and (2.5), respectively, then we get (2.1) and (2.2). Before starting our main results, we introduce some notations as follows.

    G1(a,b;ξ,ϱ,ε)=2F1(ξpξp,β+ξρk+ε+1;ξβ+ξρk+ϱ+2,λ(apbp)λap+(1λ)bp),
    G2(a,b;ξ,ϱ,ε)=2F1(ξpξp,[ξβ+ξρk+ε+1,ξβ+ξρk+ϱ+2;12],λ(apbp)λap+(1λ)bp),
    H1,λ(a,b;π,ϖ)=2F1(p1p,π,ϖ,λ(apbp)λap+(1λ)bp),
    H2,λ(a,b;π,ϖ)=2F1(p1p,[π,ϖ;12],λ(apbp)λap+(1λ)bp),
    σ1=σ(k){(λ|f(a)|+(1λ)|f(b)|)B(β+ρk+1,s+1)G1(a,b;1,s,0)
    +G1(a,b;1,s,s)|f(b)|B(β+ρk+s+1,1)},
    σ2={[G2(a,b;x,0,0)]1x[(2s+1(1λ)+λ)|f(b)|y+λ(2s+11)|f(a)|y]1y
    +[G1(a,b;x,0,0)G2(a,b;x,0,0)]1x[(2s+1λ)|f(b)|y+λ|f(a)|y]1y}
    ×σ(k)[B(xβ+xρk+1,1)]1x[2s+1(s+1)]1y,
    σ3=σ(k)[B(β+ρk+1,1)]x1x{[G2(a,b;1,0,0)]x1x[{λ|f(a)|x+(1λ)|f(b)|x}
    ×B(β+ρk+1,s+1)G2(a,b;1,s,0)+G2(a,b;1,s,s)|f(b)|xB(β+ρk+s+1,1)]1x
    +[G1(a,b;1,0,0)G2(a,b;1,0,0)]x1x[{λ|f(a)|x+(1λ)|f(b)|x}B(β+ρk+1,s+1)
    ×{G1(a,b;1,s,0)G2(a,b;1,s,0)}+|f(b)|x{G1(a,b;1,s,s)G2(a,b;1,s,s)} 
    ×B(β+ρk+s+1,1)]1x}.

    To establish our results for generalized Simpson's type inequality using (s,p)-convex function, we need the following lemma.

    Lemma 3.1. Let IR+ be an interval, I be the interval of I, a,bI with a<b, ρ,β>0, pR with p0, and g(ξ)=pξ for ξ>0. Then the identity

    ψ(t,a,b;f)=p[λ(bpap)]β[{2βFσρ,β+1[w(λ(bpap)4)ρ]u}
    ×f(pλap+(2λ)bp2)+uf(pλap+(1λ)bp)]p(Jσρ,β,[λap+(2λ)bp2];w2ρfg)
    ×(λap+(1λ)bp)+p[λ(bpap)]β[{Fσρ,β+1[w(λ(bpap)2)ρ]v}f(b)
    {2βFσρ,β+1[w(λ(bpap)4)ρ]v}f(pλap+(2λ)bp2)]p{(Jσρ,β,bp;w2ρfg)
    ×(λap+(1λ)bp)(Jσρ,β,[λap+(2λ)bp2];w2ρfg)(λap+(1λ)bp)}
    =[λ(bpap)]1+β120{tβFσρ,β+1[w(λ(bpap)2)ρtρ]u}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(p(1t)(λap+(1λ)bp)+tbp)dt+[λ(bpap)]1+β
    ×112{tβFσρ,β+1[w(λ(bpap)2)ρtρ]v}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(p(1t)(λap+(1λ)bp)+tbp)dt. (3.1)

    holds for u,wR and λ[0,1].

    Proof. Integrating by parts leads to

    I1=120{tβFσρ,β+1[w(λ(bpap)2)ρtρ]u}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(p(1t)(λap+(1λ)bp)+tbp)dt
    =|ptβFσρ,β+1[w(λ(bpap)2)ρtρ]puλ(bpap)f(p(1t)(λap+(1λ)bp)+tbp)|120
    120ptβ1Fσρ,β+1[w(λ(bpap)2)ρtρ]λ(bpap)f(p(1t)(λap+(1λ)bp)+tbp)dt
    =pλ(bpap)[{2βFσρ,β+1[w(λ(bpap)4)ρ]u}f(pλap+(2λ)bp2)
    +uf(p(λap+(1λ)bp))]120ptβ1Fσρ,β+1[w(λ(bpap)2)ρtρ]λ(bpap)
    ×f(p(1t)(λap+(1λ)bp)+tbp)dt.

    Let x=(1t)(λap+(1λ)bp)+tbp. Then dx=[λ(bpap)]dt, 0t1/2 is equivalent to (λap+(1λ)bp)xλap+(2λ)bp2. Therefore, we get

    I1=pλ(bpap)[{2βFσρ,β+1[w(λ(bpap)4)ρ]u}f(pλap+(2λ)bp2)
    +uf(pλap+(1λ)bp)]p[λ(bpap)]1+βλap+(2λ)bp2λap+(1λ)bp[x(λap+(1λ)bp)]β1
    ×Fσρ,β[w(x(λap+(1λ)bp)2)ρ](fg)(x)dx

    and

    [λ(bpap)]1+βpI1=[λ(bpap)]β[{2βFσρ,β+1[w(λ(bpap)4)ρ]u}
    ×f(pλap+(2λ)bp2)+uf(pλap+(1λ)bp)]
    (Jσρ,β,[λap+(2λ)bp2];w2ρfg)(λap+(1λ)bp). (3.2)

    Again integrating by parts gives

    I2=112{tβFσρ,β+1[w(λ(bpap)2)ρtρ]v}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(p(1t)(λap+(1λ)bp)+tbp)dt
    =|ptβFσρ,β+1[w(λ(bpap)2)ρtρ]pvλ(bpap)f(p(1t)(λap+(1λ)bp)+tbp)|112
    112ptβ1Fσρ,β+1[w(λ(bpap)2)ρtρ]λ(bpap)f(p(1t)(λap+(1λ)bp)+tbp)dt
    =pλ(bpap)[{Fσρ,β+1[w(λ(bpap)2)ρ]v}f(b)
    {2βFσρ,β+1[w(λ(bpap)4)ρ]v}f(pλap+(2λ)bp2)]
    112ptβ1Fσρ,β+1[w(λ(bpap)2)ρtρ]λ(bpap)f(p(1t)(λap+(1λ)bp)+tbp)dt.

    Let y=(1t)(λap+(1λ)bp)+tbp. Then one has

    I2=pλ(bpap)[{Fσρ,β+1[w(λ(bpap)2)ρ]v}f(b)
    {2βFσρ,β+1[w(λ(bpap)4)ρ]v}f(pλap+(2λ)bp2)]
    p[λ(bpap)]1+βbpλap+(2λ)bp2[y(λap+(1λ)bp)]β1
    ×Fσρ,β[w(y(λap+(1λ)bp)2)ρ](fg)(y)dy
    =pλ(bpap)[{Fσρ,β+1[w(λ(bpap)2)ρ]v}f(b)
    {2βFσρ,β+1[w(λ(bpap)4)ρ]v}f(pλap+(2λ)bp2)]
    λap+(2λ)bp2λap+(1λ)bp[y(λap+(1λ)bp)]β1]
    ×Fσρ,β[w(y(λap+(1λ)bp)2)ρ](fg)(y)dy

    and

    [λ(bpap)]1+βpI2=[λ(bpap)]β[{Fσρ,β+1[w(λ(bpap)2)ρ]v}f(b)
    {2βFσρ,β+1[w(λ(bpap)4)ρ]v}f(pλap+(2λ)bp2)]
    {(Jσρ,β,bp;w2ρfg)(λap+(1λ)bp)(Jσρ,β,[λap+(2λ)bp2];w2ρfg)(λap+(1λ)bp)}. (3.3)

    Therefore, the desired inequality (3.1) can be obtained by adding (3.2) and (3.3).

    Remark 3.1. From Lemma 3.1 we clearly see that

    (1) Lemma 3.1 reduces to Lemma 1 of [8] if β,λ,σ(0)1, w0, u16 and v56;

    (2) Lemma 3.1 leads to Lemma 2 of [8] if p,β,λ,σ(0)1, w0 and aam;

    (3) Lemma 3.1 becomes Lemma 2.1 of [28] if p,β,λ,σ(0)1, w0; u16, v56 and aam.

    (4) Lemma 3.1 degenerates into Lemma 3 of [8] if λ,σ(0)1, w0 and p>0.

    Theorem 3.1. Let IR+ be an interval and I be the interior of I, a,bI with a<b, ρ,β>0, u,wR, (s,λ)(0,1]×[0,1], g(ξ)=pξ for ξ>0, and f:IR be a differentiable function on I such that |f| is (s,p)-convex. Then one has

    |ψ(t,a,b;f)|[λ(bpap)]1+β(p(λap+(1λ)bp))p1{Fσ1ρ,β+1[|w|(λ(bpap)2)ρ]
    +(λ|f(a)|+(1λ)|f(b)|){(|u||v|)H2,λ(a,b;1,s+2)+|v|H1,λ(a,b;1,s+2)}s+1
    +|f(b)|{(|u||v|)H2,λ(a,b;s+1,s+2)+|v|H1,λ(a,b;s+1,s+2)}s+1}. (3.4)

    Proof. It follows from (3.1) and the (s,p)-convexity of |f| that

    |ψ(t,a,b;f)|[λ(bpap)]1+β[|I1|+|I2|], (3.5)
    |I1|=|120{tβFσρ,β+1[w(λ(bpap)2)ρtρ]u}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(((1t)(λap+(1λ)bp)+tbp)1p)dt|
    120{tβFσρ,β+1[|w|(λ(bpap)2)ρtρ]+|u|}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(λap+(1λ)bp)+tbp)1p)|dt
    =120{k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)tβ+ρk+|u|}
    ×[(1t)(λap+(1λ)bp)+tbp]1pp|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|dt
    120{k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)tβ+ρk+|u|}
    ×(pλap+(1λ)bp)1p[1tλ(apbp)λap+(1λ)bp]1pp
    ×[(1t)s{λ|f(a)|+(1λ)|f(b)|}+ts|f(b)|]dt
    =k=0σ(k)|w|k(λ(bpap)2)ρk(pλap+(1λ)bp)p1Γ(ρk+β+1){(λ|f(a)|
    +(1λ)|f(b)|)120tβ+ρk(1t)s[1tλ(apbp)λap+(1λ)bp]1ppdt
    +|f(b)|120tβ+ρk+s[1tλ(apbp)λap+(1λ)bp]1ppdt}
    +|u|(pλap+(1λ)bp)1p{(λ|f(a)|+(1λ)|f(b)|)
    ×120[1tλ(apbp)λap+(1λ)bp]1pp(1t)sdt
    +|f(b)|120ts[1tλ(apbp)λap+(1λ)bp]1ppdt}
    =k=0σ(k)|w|k(λ(bpap)2)ρk(pλap+(1λ)bp)p1Γ(ρk+β+1)
    ×{(λ|f(a)|+(1λ)|f(b)|)B(β+ρk+1,s+1)
    ×2F1(p1p,[β+ρk+1,s+β+ρk+2;12],λ(apbp)λap+(1λ)bp)
    +2F1(p1p,[β+ρk+s+1,β+ρk+s+2;12],λ(apbp)λap+(1λ)bp)
    ×|f(b)|B(β+ρk+s+1,1)}+|u|(pλap+(1λ)bp)1p
    ×{(λ|f(a)|+(1λ)|f(b)|)B(1,s+1)
    ×2F1(p1p,[1,s+2;12],λ(apbp)λap+(1λ)bp)
    +|f(b)|B(s+1,1)2F1(p1p,[s+1,s+2;12],λ(apbp)λap+(1λ)bp)} (3.6)

    and

    |I2|=|112{tβFσρ,β+1[w(λ(bpap)2)ρtρ]v}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(((1t)(λap+(1λ)bp)+tbp)1p)dt|
    112{tβFσρ,β+1[|w|(λ(bpap)2)ρtρ]+|v|}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(λap+(1λ)bp)+tbp)1p)|dt
    =112{k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)tβ+ρk+|v|}
    ×[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|dt
    112{k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)tβ+ρk+|v|}
    ×(pλap+(1λ)bp)1p[1tλ(apbp)λap+(1λ)bp]1pp
    ×[(1t)s{λ|f(a)|+(1λ)|f(b)|}+ts|f(b)|]dt
    =k=0σ(k)|w|k(λ(bpap)2)ρk(pλap+(1λ)bp)p1Γ(ρk+β+1){(λ|f(a)|
    +(1λ)|f(b)|)112tβ+ρk(1t)s[1tλ(apbp)λap+(1λ)bp]1ppdt
    +|f(b)|112tβ+ρk+s[1tλ(apbp)λap+(1λ)bp]1ppdt}
    +|v|(pλap+(1λ)bp)1p{(λ|f(a)|+(1λ)|f(b)|)
    ×112[1tλ(apbp)λap+(1λ)bp]1pp(1t)sdt
    +|f(b)|112ts[1tλ(apbp)λap+(1λ)bp]1ppdt} 
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(pλap+(1λ)bp)p1{B(β+ρk+1,s+1)
    ×[2F1(p1p,β+ρk+1;s+β+ρk+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[β+ρk+1,s+β+ρk+2;12],λ(apbp)λap+(1λ)bp)]
    ×(λ|f(a)|+(1λ)|f(b)|)+|f(b)|B(β+ρk+s+1,1)
    ×[2F1(p1p,β+ρk+s+1,β+ρk+s+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[β+ρk+s+1,β+ρk+s+2;12],λ(apbp)λap+(1λ)bp)]}
    +|v|(pλap+(1λ)bp)p1{(λ|f(a)|+(1λ)|f(b)|)
    ×B(1,s+1)[2F1(p1p,1,s+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[1,s+2;12],λ(apbp)λap+(1λ)bp)]+|f(b)|
    ×B(s+1,1)[2F1(p1p,s+1,s+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[s+1,s+2;12],λ(apbp)λap+(1λ)bp)]}. (3.7)

    Therefore, inequality (3.4) follows easily from (3.5)–(3.7).

    Corollary 3.1. Let IR+ be an interval and I be the interior of I, a,bI with a<b, β>0, u,wR+, s(0,1], p<0, g(ξ)=pξ for ξ>0, and f:IR be a differentiable function on I such that |f| is (s,p)-convex. Then one has

    |uf(a)+(1v)f(b)+(vu)f(pap+bp2)1bpapbpap(fg)(x)dx|
    bpapp(s+1)ap1[(uv){|f(a)|2F1(p1p,[1,s+2;12],apbpap)
    +|f(b)|2F1(p1p,[s+1,s+2;12],apbpap)}+v{|f(a)|
    ×2F1(p1p,1,s+2,apbpap)+|f(b)|2F1(p1p,s+1,s+2,apbpap)}]. (3.8)

    Proof. Let β,λ,σ(0)1 and w=0. Then Corollary 3.1 follows directly from Theorem 3.1.

    Theorem 3.2. Let IR+ be an interval and I be the interior of I, a,bI with a<b, ρ,β>0, (s,λ)(0,1]×[0,1], pR with p0, u,w,R, y>1, x=y/(y1), g(ξ)=pξ for ξ>0, and f:IR be a differentiable function on I such that |f|y is (s,p)-convex. Then the inequality

    |ψ(t,a,b;f)|[λ(bpap)]1+β(pλap+(1λ)bp)x(p1){Fσ2ρ,β+1[|w|(λ(bpap)2)ρ]
    +[λap+(1λ)bpλ(apbp)]1x[2s+1(s+1)]1y{|u|[B(λ(apbp)2(λap+(1λ)bp);1,xp1p+1)]1x
    ×{(2s+1(1λ)+λ)|f(b)|y+λ(2s+11)|f(a)|y}1y
    +|v|[B(λ(apbp)λap+(1λ)bp;1,xp1p+1)B(λ(apbp)2(λap+(1λ)bp);1,xp1p+1)]1x
    ×{(2s+1λ)|f(b)|y+λ|f(a)|y}1y}} (3.9)

    holds.

    Proof. It follows from the (s,p)-convexity of |f|y and Hölder inequality that

    |I1|=|120{tβFσρ,β+1[w(λ(bpap)2)ρtρ]u}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(((1t)(λap+(1λ)bp)+tbp)1p)dt|
    120{tβFσρ,β+1[|w|(λ(bpap)2)ρtρ]+|u|}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(λap+(1λ)bp)+tbp)1p)|dt
    =120{k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)tβ+ρk+|u|}
    ×[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|dt
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)
    ×{120tx(β+ρk)[(1t)(λap+(1λ)bp)+tbp]x(1p)pdt}1x
    ×{120|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|ydt}1y
    +|u|{120[(1t)(λap+(1λ)bp)+tbp]x(1p)pdt}1x
    ×{120|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|ydt}1y
    ={k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(pλap+(1λ)bp)x(p1)
    ×[120tx(β+ρk)[1tλ(apbp)λap+(1λ)bp]x(1p)pdt]1x
    +|u|(pλap+(1λ)bp)x(p1)
    ×[120[1tλ(apbp)λap+(1λ)bp]x(1p)pdt]1x}
    ×{120[(1t)s{λ|f(a)|y+(1λ)|f(b)|y}+ts|f(b)|ν]dt}1y
    ={k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(pλap+(1λ)bp)x(p1)xB(xβ+xρk+1,1)
    ×[2F1(xp1p,[xβ+xρk+1,xβ+xρk+2;12],λ(apbp)λap+(1λ)bp)]1x
    +|u|(pλap+(1λ)bp)x(p1)
    ×[λap+(1λ)bpλ(apbp)B(λ(apbp)2(λap+(1λ)bp);1,xp1p+1)]1x}
    ×{2s+1(1λ)+λ2s+1(s+1)|f(b)|y+λ(2s+11)2s+1(s+1)|f(a)|y}1y (3.10)

    and

    |I2|=|112{tβFσρ,β+1[w(λ(bpap)2)ρtρ]v}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(((1t)(λap+(1λ)bp)+tbp)1p)dt|
    112{tβFσρ,β+1[|w|(λ(bpap)2)ρtρ]+|v|}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(λap+(1λ)bp)+tbp)1p)|dt
    =112{k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)tβ+ρk+|v|}
    ×[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|dt
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)
    ×{112tx(β+ρk)[(1t)(λap+(1λ)bp)+tbp]x(1p)pdt}1x
    ×{112|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|ydt}1y
    +|v|{112[(1t)(λap+(1λ)bp)+tbp]x(1p)pdt}1x
    ×{112|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|ydt}1y
    ={k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(pλap+(1λ)bp)x(p1)
    ×[112tx(β+ρk)[1tλ(apbp)λap+(1λ)bp]x(1p)pdt]1x
    +|v|(pλap+(1λ)bp)x(p1)[112[1tλ(apbp)λap+(1λ)bp]x(1p)pdt]1x}
    ×{120[(1t)s{λ|f(a)|y+(1λ)|f(b)|y}+ts|f(b)|y]dt}1y
    ={k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(pλap+(1λ)bp)x(p1)xB(xβ+xρk+1,1)
    ×[2F1(xp1p,β+xρk+1,xβ+xρk+2,λ(apbp)λap+(1λ)bp)
    2F1(xp1p,[xβ+xρk+1,xβ+xρk+2;12],λ(apbp)λap+(1λ)bp)]1x
    +|v|(pλap+(1λ)bp)x(p1)(λap+(1λ)bpλ(apbp)[B(λ(apbp)λap+(1λ)bp;1,xp1p+1)
    B(λ(apbp)2(λap+(1λ)bp);1,xp1p+1)])1x}
    ×{2s+1λ2s+1(s+1)|f(b)|y+λ2s+1(s+1)|f(a)|y}1y. (3.11)

    Therefore, the desired inequality (3.9) follows from (3.5) and (3.10) together with (3.11).

    Corollary 3.2. Let IR+ be an interval and I be the interior of I, a,bI with a<b, p<0, u,v>0, s(0,1], g(ξ)=pξ for ξ>0, y=xx1>1, and f:IR be a differentiable function on I such that |f|y is (s,p)-convex. Then the inequality

    |uf(a)+(1v)f(b)+(vu)f(pap+bp2)1bpapbpap(fg)(x)dx|
    (bpap)(xapx2(p1))pxapbpy21+s(s+1)[uxB(apbp2ap;1,xpx+pp)
    ×y|f(b)|y+(2s+11)|f(a)|y
    +vxB(apbpap;1,xpx+pp)B(apbp2ap;1,xpx+pp)
    ×y(2s+11)|f(b)|y+|f(a)|y] (3.12)

    holds.

    Theorem 3.3. Let IR+ be an interval and I be the interior of I, a,bI with a<b, p,ρ,β>0, x1, u,wR, (s,λ)(0,1]×[0,1], g(ξ)=pξ, and f:IR be a differentiable function on I such that |f| is (s,p)-convex. Then one has

    |ψ(t,a,b;f)|[λ(bpap)]1+β(xpλap+(1λ)bp)(x1)(p1){Fσ3ρ,β+1[|w|(λ(bpap)2)ρ]
    +|u|{λap+(1λ)bpλ(apbp)B(λ(apbp)2(λap+(1λ)bp),1,1p)}x1x
    ×x{λ|f(a)|x+(1λ)|f(b)|x}H2,λ(a,b;1,s+2)+|f(b)|xH2,λ(a,b;s+1,s+2)s+1
    +|v|{λap+(1λ)bpλ(apbp)[B(λ(apbp)λap+(1λ)bp;1,1p)
    B(λ(apbp)2(λap+(1λ)bp);1,1p)]}x1x{{λ|f(a)|x+(1λ)|f(b)|x}
    ×H1,λ(a,b;1,s+2)H2,λ(a,b;1,s+2)s+1
    +|f(b)|xs+1[H1,λ(a,b;s+1,s+2)H2,λ(a,b;s+1,s+2)]}1x}. (3.13)

    Proof. It follows from the (s,p)-convexity of |f| and the power-mean inequality that

    |I1|=|120{tβFσρ,β+1[w(λ(bpap)2)ρtρ]u}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(((1t)(λap+(1λ)bp)+tbp)1p)dt|
    120{tβFσρ,β+1[|w|(λ(bpap)2)ρtρ]+|u|}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(λap+(1λ)bp)+tbp)1p)|dt
    =120{k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)tβ+ρk+|u|}
    ×[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|dt
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)
    ×{120tβ+ρk[(1t)(λap+(1λ)bp)+tbp]1ppdt}11x
    ×{120tβ+ρk[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|xdt}1x
    +|u|{120[(1t)(λap+(1λ)bp)+tbp]1ppdt}11x
    ×{120[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|xdt}1x
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(xpλap+(1λ)bp)(x1)(p1)
    ×{120tβ+ρk[1tλ(apbp)λap+(1λ)bp]1ppdt}11x
    ×{120tβ+ρk[1tλ(apbp)λap+(1λ)bp]1pp
    ×[(1t)s{λ|f(a)|x+(1λ)|f(b)|x}+ts|f(b)|x]dt}1x
    +|u|(xpλap+(1λ)bp)(x1)(p1)
    ×{120[1tλ(apbp)λap+(1λ)bp]1ppdt}11x
    ×{120[1tλ(apbp)λap+(1λ)bp]1pp
    ×[(1t)s{λ|f(a)|x+(1λ)|f(b)|x}+ts|f(b)|x]dt}1x
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(xpλap+(1λ)bp)(x1)(p1)
    ×{120tβ+ρk[1tλ(apbp)λap+(1λ)bp]1ppdt}11x
    ×{{λ|f(a)|x+(1λ)|f(b)|x}
    ×120tβ+ρk(1t)s[1tλ(apbp)λap+(1λ)bp]1ppdt
    +|f(b)|x120tβ+ρk+s[1tλ(apbp)λap+(1λ)bp]1ppdt}1x
    +|u|(xpλap+(1λ)bp)(x1)(p1)
    ×{120[1tλ(apbp)λap+(1λ)bp]1ppdt}11x{{λ|f(a)|x+(1λ)|f(b)|x}
    ×120(1t)s[1tλ(apbp)λap+(1λ)bp]1ppdt
    +|f(b)|x120ts[1tλ(apbp)λap+(1λ)bp]1ppdt}1x
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(xpλap+(1λ)bp)(x1)(p1){B(β+ρk+1,1)
    ×2F1(p1p,[β+ρk+1,β+ρk+2;12],λ(apbp)λap+(1λ)bp)}11x
    ×{{λ|f(a)|x+(1λ)|f(b)|x}B(β+ρk+1,s+1)
    ×2F1(p1p,[β+ρk+1,s+β+ρk+2;12],λ(apbp)λap+(1λ)bp)+|f(b)|x
    ×2F1(p1p,[β+ρk+s+1,β+ρk+s+2;12],λ(apbp)λap+(1λ)bp)
    ×B(β+ρk+s+1,1)}1x+|u|(xpλap+(1λ)bp)(x1)(p1)
    ×{λap+(1λ)bpλ(apbp)B(λ(apbp)2(λap+(1λ)bp),1,1p)}11x
    ×{{λ|f(a)|x+(1λ)|f(b)|x}B(1,s+1)
    ×2F1(p1p,[1,s+2;12],λ(apbp)λap+(1λ)bp)+|f(b)|xB(s+1,1)
    ×2F1(p1p,[s+1,s+2;12],λ(apbp)λap+(1λ)bp)}1x (3.14)

    and

    |I2|=|112{tβFσρ,β+1[w(λ(bpap)2)ρtρ]v}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×f(((1t)(λap+(1λ)bp)+tbp)1p)dt|
    112{tβFσρ,β+1[|w|(λ(bpap)2)ρtρ]+|v|}[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(λap+(1λ)bp)+tbp)1p)|dt
    =112{k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)tβ+ρk+|v|}
    ×[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|dt
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)
    ×{112tβ+ρk[(1t)(λap+(1λ)bp)+tbp]1ppdt}11x
    ×{112tβ+ρk[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|xdt}1x
    +|v|{112[(1t)(λap+(1λ)bp)+tbp]1ppdt}11x
    ×{112[(1t)(λap+(1λ)bp)+tbp]1pp
    ×|f(((1t)(pλap+(1λ)bp)p+tbp)1p)|xdt}1x
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(xpλap+(1λ)bp)(x1)(p1)
    ×{112tβ+ρk[1tλ(apbp)λap+(1λ)bp]1ppdt}11x
    ×{112tβ+ρk[1tλ(apbp)λap+(1λ)bp]1pp
    ×[(1t)s{λ|f(a)|x+(1λ)|f(b)|x}+ts|f(b)|x]dt}1x
    +|v|(xpλap+(1λ)bp)(x1)(p1)
    ×{112[1tλ(apbp)λap+(1λ)bp]1ppdt}11x
    ×{112[1tλ(apbp)λap+(1λ)bp]1pp
    ×[(1t)s{λ|f(a)|x+(1λ)|f(b)|x}+ts|f(b)|x]dt}1x
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(xpλap+(1λ)bp)(x1)(p1)
    ×{112tβ+ρk[1tλ(apbp)λap+(1λ)bp]1ppdt}11x
    ×{{λ|f(a)|x+(1λ)|f(b)|x}
    ×112tβ+ρk(1t)s[1tλ(apbp)λap+(1λ)bp]1ppdt+|f(b)|x
    ×112tβ+ρk+s[1tλ(apbp)λap+(1λ)bp]1ppdt}1x
    +|v|(xpλap+(1λ)bp)(x1)(p1)
    ×{112[1tλ(apbp)λap+(1λ)bp]1ppdt}11x
    ×{{λ|f(a)|x+(1λ)|f(b)|x}112(1t)s[1tλ(apbp)λap+(1λ)bp]1ppdt
    +|f(b)|x112ts[1tλ(apbp)λap+(1λ)bp]1ppdt}1x
    =k=0σ(k)|w|k(λ(bpap)2)ρkΓ(ρk+β+1)(xpλap+(1λ)bp)(x1)(p1){B(β+ρk+1,1)
    ×[2F1(p1p,β+ρk+1;β+ρk+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[β+ρk+1,β+ρk+2;12],λ(apbp)λap+(1λ)bp)]}11x
    ×{{λ|f(a)|x+(1λ)|f(b)|x}B(β+ρk+1,s+1)
    ×[2F1(p1p,β+ρk+1;s+β+ρk+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[β+ρk+1,s+β+ρk+2;12],λ(apbp)λap+(1λ)bp)]+|f(b)|x
    ×[2F1(p1p,β+ρk+s+1;β+ρk+s+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[β+ρk+s+1,β+ρk+s+2;12],λ(apbp)λap+(1λ)bp)]
    ×B(β+ρk+s+1,1)}1x+|v|(xpλap+(1λ)bp)(x1)(p1)
    ×[{λap+(1λ)bpλ(apbp)[B(λ(apbp)λap+(1λ)bp;1,1p)
    B(λ(apbp)2(λap+(1λ)bp);1,1p)]}11x{{λ|f(a)|x+(1λ)|f(b)|x}
    ×B(1,s+1)[2F1(p1p,1;s+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[1,s+2;12],λ(apbp)λap+(1λ)bp)]+|f(b)|xB(s+1,1)
    ×[2F1(p1p,s+1;s+2,λ(apbp)λap+(1λ)bp)
    2F1(p1p,[s+1,s+2;12],λ(apbp)λap+(1λ)bp)]}1x]. (3.15)

    Combining the inequalities (3.5), (3.14) and (3.15) gives the desired inequality (3.13).

    Corollary 3.3. Let IR+ be an interval and I be the interior of I, a,bI with a<b, p<0, s(0,1], u,v>0, g(ξ)=pξ, y=xx1>1 and f:IR be a differentiable function on I such that |f|y is (s,p)-convex. Then

    |uf(a)+(1v)f(b)+(vu)f(pap+bp2)1bpapbpap(fg)(x)dx|
    bpapp(xa)(x1)(p1){u{apapbpB(apbp2ap,1,1p)}x1x
    ×x|f(a)|xH2,1(a,b;1,s+2)+|f(b)|xH2,1(a,b;s+1,s+2)s+1
    +v{apapbp[B(apbpap;1,1p)B(apbp2ap;1,1p)]}x1x
    ×{|f(a)|xH1,1(a,b;1,s+2)H2,1(a,b;1,s+2)s+1
    +|f(b)|x[H1,1(a,b;s+1,s+2)H2,1(a,b;s+1,s+2)]s+1}1x}. (3.16)

    Proof. Let β,λ,σ(0)1 and w=0. Then Corollary 3.3 follows easily from Theorem 3.3.

    In this section, we provide some applications on f-divergence measures and probability density functions by using the results obtained in Section 3.

    Let ϕ be a set, μ be the σ finite measure, Ω={χ|χ:ϕR,χ(x)>0,ϕχ(x)dμ(x)=1} be the set of all probability densities on μ, and f:(0,)R be a real-valued function. Then the Csis\'{z}ar f-divergence Df(χ,ψ) is defined by

    Df(χ,ψ)=ϕχ(x)f[ψ(x)χ(x)]dμ(x)(χ,ψΩ) (4.1)

    if f is convex, and the Hermite-Hadamard (HH) divergence DfHH(χ,ψ) is defined by

    DfHH(χ,ψ)=ϕχ(x)ψ(x)χ(x)1f(t)dtψ(x)χ(x)1dμ(x)(χ,ψΩ) (4.2)

    if f is convex with f(1)=0. Note that DfHH(χ,ψ)0 and DfHH(χ,ψ)=0 if and only if χ=ψ.

    Proposition 4.1. Let IR+ be an interval and I be the interior of I, a,bI with a<b, s(0,1] and f:IR be a differentiable function on I such that |f| is s-convex and f(1)=0. Then

    |16[Df(χ,ψ)+4ϕχ(x)f(ψ(x)+χ(x)2χ(x))dμ(x)]DfHH(χ,ψ)|
    (ba)|f(a)|6(s+1)ϕχ(x)[52F1(0,1,s+2,|ψ(x)χ(x)|χ(x))
    42F1(0,[1,s+2;12],|ψ(x)χ(x)|χ(x))]dμ(x)
    +(ba)|f(b)|6(s+1)ϕχ(x)[52F1(0,s+1,s+2,|ψ(x)χ(x)|χ(x))
    42F1(0,[s+1,s+2;12],|ψ(x)χ(x)|χ(x))]dμ(x). (4.3)

    Proof. Let Φ1={xϕ:ψ(x)>χ(x)}, Φ2={xϕ:ψ(x)<χ(x)} and Φ3={xϕ:ψ(x)=χ(x)}. Then we clearly see that inequality (4.3) holds if xΦ3.

    For the case of xΦ1, taking a,p1, bψ(x)χ(x), u16 and v56 in Corollary 3.1, multiplying both sides of the obtained result by χ(x) and integrating over Φ1 lead to the conclusion that

    |16[4Φ1χ(x)f(ψ(x)+χ(x)2χ(x))dμ(x)+Φ1χ(x)f(ψ(x)χ(x))dμ(x)]
    Φ1χ(x)ψ(x)χ(x)1f(t)dtψ(x)χ(x)1dμ(x)|(ba)|f(a)|6(s+1)Φ1χ(x)[52F1(0,1,s+2,χ(x)ψ(x)χ(x))
    42F1(0,[1,s+2;12],χ(x)ψ(x)χ(x))]dμ(x)
    +(ba)|f(b)|6(s+1)Φ1χ(x)[52F1(0,s+1,s+2,χ(x)ψ(x)χ(x))
    42F1(0,[s+1,s+2;12],χ(x)ψ(x)χ(x))]dμ(x). (4.4)

    Similarly, for the case of xΦ2, taking b,p1, aψ(x)χ(x), u16 and v56 in Corollary 3.1, multiplying both sides to the obtained result by χ(x) and integrating over Φ2, we get

    |16[4Φ2χ(x)f(ψ(x)+χ(x)2χ(x))dμ(x)+Φ2χ(x)f(ψ(x)χ(x))dμ(x)]
    Φ2χ(x)ψ(x)χ(x)1f(t)dtψ(x)χ(x)1dμ(x)|(ba)|f(a)|6(s+1)Φ2χ(x)[52F1(0,1,s+2,ψ(x)χ(x)χ(x))
    42F1(0,[1,s+2;12],ψ(x)χ(x)χ(x))]dμ(x)
    +(ba)|f(b)|6(s+1)Φ2χ(x)[52F1(0,s+1,s+2,ψ(x)χ(x)χ(x))
    42F1(0,[s+1,s+2;12],ψ(x)χ(x)χ(x))]dμ(x). (4.5)

    Therefore, the desired inequality (4.3) can be derived by adding inequalities (4.4) and (4.5) to together with the triangular inequality.

    Let a,bR with a<b, g:[a,b][0,1] be the probability density function of a continuous random variable X with the cumulative distribution function F given by

    F(x)=P(Xx)=xag(t)dt,E(X)=batdF(t)=bbaF(t)dt. (4.6)

    Then from Corollary 3.1 we clearly see that

    |16[4P(Xa+b2)+1]1ba(bE(X))|
    bas+1{|g(a)|52F1(0,1,s+2,aba)42F1(0,[1,s+2;12],aba)6
    +|g(b)|5.2F1(0,s+1,s+2,aba)42F1(0,[s+1,s+2;12],aba)6}

    if p1, u16 and v56.

    We have established some new estimates for the generalized Simpson's quadrature rule via the Raina fractional integrals by use of a Simpson-type generalized identity with multi-parameters, and discovered several inequalities for the f-divergence measures and probability density functions. Our obtained results are the improvements and generalizations of some previous known results, our ideas and approach may lead to a lot of follow-up research.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11971142, 11701176, 11626101, 11601485).

    The authors declare no conflict of interest.



    [1] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [2] S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [3] A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18.
    [4] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [5] Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
    [6] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629- 2645.
    [7] S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [8] G. Hu, H. Lei, T. S. Du, Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals, AIMS Math., 5 (2020), 1425-1445. doi: 10.3934/math.2020098
    [9] M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [10] M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
    [11] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [12] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [13] M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [14] S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20.
    [15] M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10.
    [16] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [17] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [18] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528. doi: 10.3934/math.2020290
    [19] Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [20] M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9.
    [21] M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Math., 5 (2020), 4662-4680. doi: 10.3934/math.2020299
    [22] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533-579.
    [23] Z. B. Fang, R. J. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), 1-16.
    [24] N. Mehreen, M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators, J. Math. Comput. Sci., 19 (2019), 230-240. doi: 10.22436/jmcs.019.04.02
    [25] M. A. Özarslan, C. Ustaoğlu, Some incomplete hypergeometric functions and incomplete RiemannLiouville fractional integral operators, Mathematics, 7 (2019), 1-18.
    [26] R. K. Raina, On generalized wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191-203.
    [27] R. P. Agarwal, M. J. Luo, R. K. Raina, On Ostrowski type inequalities, Fasc. Math., 56 (2016), 5-27.
    [28] S. Qaisar, C. J. He, S. Hussain, A generalizations of Simpson's type inequality for differentiable functions using (α, m)-convex functions and applications, J. Inequal. Appl., 2013 (2013), 1-13. doi: 10.1186/1029-242X-2013-1
  • This article has been cited by:

    1. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    2. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7
    3. Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412
    4. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451
    5. Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456
    6. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5
    7. Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139
    8. Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441
    9. Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036
    10. Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453
    11. Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418
    12. Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini, Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions, 2021, 6, 2504-3110, 6, 10.3390/fractalfract6010006
    13. Humaira Kalsoom, Hüseyin Budak, Hasan Kara, Muhammad Aamir Ali, Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals, 2021, 19, 2391-5455, 1153, 10.1515/math-2021-0072
    14. Hüseyin Budak, Seda Kılınç Yıldırım, Mehmet Zeki Sarıkaya, Hüseyin Yıldırım, Some parameterized Simpson-, midpoint- and trapezoid-type inequalities for generalized fractional integrals, 2022, 2022, 1029-242X, 10.1186/s13660-022-02773-5
    15. Muhammad Aamir Ali, Hasan Kara, Jessada Tariboon, Suphawat Asawasamrit, Hüseyin Budak, Fatih Hezenci, Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators, 2021, 13, 2073-8994, 2249, 10.3390/sym13122249
    16. Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338
    17. Mehmet Ali Özarslan, Ceren Ustaoğlu, Extended incomplete Riemann-Liouville fractional integral operators and related special functions, 2022, 30, 2688-1594, 1723, 10.3934/era.2022087
    18. Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas, On Simpson type inequalities for generalized strongly preinvex functions via (p,q)-calculus and applications, 2021, 6, 2473-6988, 9236, 10.3934/math.2021537
    19. Samaira Naz, Muhammad Nawaz Naeem, Yu-Ming Chu, Ostrowski-type inequalities for n-polynomial P-convex function for k-fractional Hilfer–Katugampola derivative, 2021, 2021, 1029-242X, 10.1186/s13660-021-02657-0
    20. Hüseyin Budak, Pınar Kösem, Hasan Kara, On new Milne-type inequalities for fractional integrals, 2023, 2023, 1029-242X, 10.1186/s13660-023-02921-5
    21. Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, 2022, 7, 2473-6988, 3959, 10.3934/math.2022218
    22. Hüseyin Budak, Seda Kilinç Yildirim, Hasan Kara, Hüseyin Yildirim, On new generalized inequalities with some parameters for coordinated convex functions via generalized fractional integrals, 2021, 44, 0170-4214, 13069, 10.1002/mma.7610
    23. Fatih Hezenci, Hüseyin Budak, Hasan Kara, New version of fractional Simpson type inequalities for twice differentiable functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03615-2
    24. Hüseyin Budak, Abd-Allah Hyder, Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities, 2023, 8, 2473-6988, 30760, 10.3934/math.20231572
    25. Hüseyin Budak, Fatih Hezenci, Hasan Kara, Mehmet Zeki Sarikaya, Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule, 2023, 11, 2227-7390, 2282, 10.3390/math11102282
    26. Musa Çakmak, Mevlüt Tunç, Generalizations of Hermite-Hadamard, Bullen and Simpson inequalities via h−convexity, 2022, 30, 1584-3289, 77, 10.2478/gm-2022-0006
    27. Fatih Hezenci, A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions, 2023, 73, 1337-2211, 675, 10.1515/ms-2023-0049
    28. Hasan Kara, Hüseyin Budak, Muhammad Ali, On inequalities of Simpson type for co-ordinated convex functions via generalized fractional integrals, 2023, 37, 0354-5180, 2605, 10.2298/FIL2308605K
    29. Yukti Mahajan, Harish Nagar, Fractional Newton‐type integral inequalities for the Caputo fractional operator, 2024, 0170-4214, 10.1002/mma.10600
    30. Barış Çelik, Hüseyin Budak, Erhan Set, On generalized Milne type inequalities for new conformable fractional integrals, 2024, 38, 0354-5180, 1807, 10.2298/FIL2405807C
    31. Qi Liu, Muhammad Uzair Awan, Bandar Bin-Mohsin, Muhammad Zakria Javed, Loredana Ciurdariu, Badreddine Meftah, Bridging Pre-Invex Mappings and Fractional Integrals: A Pathway to Iterative Schemes via Error Boundaries of Maclaurin’s Rule, 2024, 8, 2504-3110, 734, 10.3390/fractalfract8120734
    32. Gamzenur Köksaldı, Tuba Tunç, Simpson-type inequalities for the functions with bounded second derivatives involving generalized fractional integrals, 2025, 2025, 1687-2770, 10.1186/s13661-025-02040-8
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4277) PDF downloads(280) Cited by(32)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog