Citation: Sabir Hussain, Javairiya Khalid, Yu Ming Chu. Some generalized fractional integral Simpson’s type inequalities with applications[J]. AIMS Mathematics, 2020, 5(6): 5859-5883. doi: 10.3934/math.2020375
[1] | Chunyan Luo, Yuping Yu, Tingsong Du . Estimates of bounds on the weighted Simpson type inequality and their applications. AIMS Mathematics, 2020, 5(5): 4644-4661. doi: 10.3934/math.2020298 |
[2] | Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor . Simpson’s type integral inequalities for ĸ-fractional integrals and their applications. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087 |
[3] | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218 |
[4] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[5] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[6] | Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505 |
[7] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[8] | Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807 |
[9] | Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Asifa Tassaddiq, Moheb Saad Abouzaid . Certain generalized fractional integral inequalities. AIMS Mathematics, 2020, 5(2): 1588-1602. doi: 10.3934/math.2020108 |
[10] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
Over few years, the fractional calculus has attracted the attention of many researchers due to its has wide applications in pure and applied mathematics [1,2,3,4,5,6,7]. Like ordinary calculus, the fractional integral and derivative have not unique representation, with the passage of time, different authors have different representations. It is well-known that inequality is an indispensable research object in mathematics, it can give explicit error bounds for some known and some new quadrature formulae, for example, the Simpson's inequality [8], Jensen's inequality [9,10], Hermite-Hadamard's inequality [11,12,13,14,15] and integral inequalities [16,17,18,19,20,21]. The following inequality is well known as Simpson's inequality which provides an error bound for the Simpson's rule.
Theorem 1.1. (See [7]) Let a,b∈R with a<b, and f:[a,b]→R be a four times differentiable function on (a,b) such that ‖f(4)‖∞=supx∈(a,b)|f(4)|(x)<∞. Then the inequality
|13[f(a)+f(b)2+2f(a+b2)]−1b−a∫baf(x)dx|≤‖f(4)‖∞(b−a)42880 |
holds.
In [22], Dragomir et al. improved Theorem 1.1 to the following Theorem 1.2.
Theorem 1.1. (See [22]) Let a,b∈R with a<b, and f:[a,b]→R be a differentiable function on (a,b) such that its derivative is continuous on (a,b) and ‖f′‖1=∫ba|f′(x)|dx<∞. Then the inequality
|13[f(a)+f(b)2+2f(a+b2)]−1b−a∫baf(x)dx|≤b−a3||f′||1 |
holds.
Recently, the Simpson type inequalities have been the subject of intensive research since many important inequalities can be obtained from the Simpson inequality. The main purpose of the article is to provide several generalized fractional integral versions of the Simpson's inequality and give their applications in f-divergence measures and probability density functions.
Definition 2.1. (See [23]) Let p∈R with p≠0 and I⊆(0,∞) be an interval. Then the real-valued function f:I→R is said to be p-convex (concave) if the inequality
f(p√txp+(1−t)yp)≤(≥)tf(x)+(1−t)f(y) |
holds for all x,y∈I and t∈[0,1]. Moreover, if s∈(0,1], then the function f is said to be (s,p)-convex (concave) if the inequality
f(p√txp+(1−t)yp)≤(≥)tsf(x)+(1−t)sf(y) |
holds for all x,y∈I and t∈[0,1].
Let p>0, s∈(0,1] and f:(0,∞)→(0,∞) be defined by f(x)=xsp. Then we clearly see that f is a (s,p)-convex function.
Definition 2.2. (See [24]) Let α>0, [a,b]⊆R be a finite interval and f:[a,b]→R be a real-valued function such that f∈L[a,b]. Then the right-hand side and the left-hand side Riemann-Liouville fractional integrals Jαa+f and Jαb−f of order α are defined by
(Jαa+f)(x)=1Γ(α)∫xa(x−t)α−1f(t)dt(x>a) | (2.1) |
and
(Jαb−f)(x)=1Γ(α)∫bx(t−x)α−1f(t)dt(x<b), | (2.2) |
respectively.
Definition 2.3. The gamma function Γ, beta function B and the hypergeometric function 2F1 are defined by
Γ(x)=∫∞0e−ttxdt(x>0), |
B(x,y)=Γ(x)Γ(y)Γ(x+y)=∫10tx−1(1−t)y−1dt(x,y>0) |
and
2F1(a,b;c,z)=1B(b,c−b)∫10tb−1(1−t)c−b−1(1−zt)−adt(|z|<1), |
respectively.
Definition 2.4 (See [25]) The hypergeometric function 2F1 can be given by
2F1(a,[b,c;y],x)=1B(b,c−b)∫y0tb−1(1−t)c−b−1(1−xt)−adt |
for y<1 and Re(c)>Re(b)>0.
Definition 2.5 The incomplete beta function B(z;x,y) is defined by
B(z;x,y)=∫z0tx−1(1−t)y−1dt(Re(x)>Re(y)>0,0≤z<1). |
Raina [26] introduced a class of functions as follows
Fσρ,λ(x)=Fσ(0),σ(1),⋯ρ,λ(x)=∞∑k=0σ(k)Γ(ρk+λ)xk(ρ,λ∈R+,x∈R), | (2.3) |
where the coefficients σ(k)∈R+, k∈N0 form a bounded sequence. By using (2.3), in [26,27], the authors defined the left-side and right-sided fractional integral operators
(Jσρ,λ,a+;wϕ)(x)=∫xa(x−t)λ−1Fσρ,λ[w(x−t)ρ]ϕ(t)dt(x>a) | (2.4) |
and
(Jσρ,λ,b−;wϕ)(x)=∫bx(t−x)λ−1Fσρ,λ[w(t−x)ρ]ϕ(t)dt(x<b), | (2.5) |
respectively, where w∈R and ϕ is a function such that the integrals on right hand sides exit. It is easy to verify that Jσρ,λ,a+;wϕ(x) and Jσρ,λ,b−;wϕ(x) are bounded integral operators on L(a,b) if M=Fσρ,λ+1[w(b−a)ρ]<∞. In fact, if ϕ∈L(a,b), then we have
‖Jσρ,λ,a+;wϕ‖1≤M(b−a)λ‖ϕ‖1,‖Jσρ,λ,b−;wϕ‖1≤M(b−a)λ‖ϕ‖1. |
Let λ→α, adn σ(0)→1 and w→0 in (2.4) and (2.5), respectively, then we get (2.1) and (2.2). Before starting our main results, we introduce some notations as follows.
G1(a,b;ξ,ϱ,ε)=2F1(ξp−ξp,β+ξρk+ε+1;ξβ+ξρk+ϱ+2,λ(ap−bp)λap+(1−λ)bp), |
G2(a,b;ξ,ϱ,ε)=2F1(ξp−ξp,[ξβ+ξρk+ε+1,ξβ+ξρk+ϱ+2;12],λ(ap−bp)λap+(1−λ)bp), |
H1,λ(a,b;π,ϖ)=2F1(p−1p,π,ϖ,λ(ap−bp)λap+(1−λ)bp), |
H2,λ(a,b;π,ϖ)=2F1(p−1p,[π,ϖ;12],λ(ap−bp)λap+(1−λ)bp), |
σ1=σ(k){(λ|f′(a)|+(1−λ)|f′(b)|)B(β+ρk+1,s+1)G1(a,b;1,s,0) |
+G1(a,b;1,s,s)|f′(b)|B(β+ρk+s+1,1)}, |
σ2={[G2(a,b;x,0,0)]1x[(2s+1(1−λ)+λ)|f′(b)|y+λ(2s+1−1)|f′(a)|y]1y |
+[G1(a,b;x,0,0)−G2(a,b;x,0,0)]1x[(2s+1−λ)|f′(b)|y+λ|f′(a)|y]1y} |
×σ(k)[B(xβ+xρk+1,1)]1x[2s+1(s+1)]1y, |
σ3=σ(k)[B(β+ρk+1,1)]x−1x{[G2(a,b;1,0,0)]x−1x[{λ|f′(a)|x+(1−λ)|f′(b)|x} |
×B(β+ρk+1,s+1)G2(a,b;1,s,0)+G2(a,b;1,s,s)|f′(b)|xB(β+ρk+s+1,1)]1x |
+[G1(a,b;1,0,0)−G2(a,b;1,0,0)]x−1x[{λ|f′(a)|x+(1−λ)|f′(b)|x}B(β+ρk+1,s+1) |
×{G1(a,b;1,s,0)−G2(a,b;1,s,0)}+|f′(b)|x{G1(a,b;1,s,s)−G2(a,b;1,s,s)} |
×B(β+ρk+s+1,1)]1x}. |
To establish our results for generalized Simpson's type inequality using (s,p)-convex function, we need the following lemma.
Lemma 3.1. Let I⊆R+ be an interval, I∘ be the interval of I, a,b∈I with a<b, ρ,β>0, p∈R with p≠0, and g(ξ)=p√ξ for ξ>0. Then the identity
ψ(t,a,b;f)=p[λ(bp−ap)]β[{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−u} |
×f(p√λap+(2−λ)bp2)+uf(p√λap+(1−λ)bp)]−p(Jσρ,β,[λap+(2−λ)bp2]−;w2ρf∘g) |
×(λap+(1−λ)bp)+p[λ(bp−ap)]β[{Fσρ,β+1[w(λ(bp−ap)2)ρ]−v}f(b) |
−{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−v}f(p√λap+(2−λ)bp2)]−p{(Jσρ,β,bp−;w2ρf∘g) |
×(λap+(1−λ)bp)−(Jσρ,β,[λap+(2−λ)bp2]−;w2ρf∘g)(λap+(1−λ)bp)} |
=[λ(bp−ap)]1+β∫120{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−u}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(p√(1−t)(λap+(1−λ)bp)+tbp)dt+[λ(bp−ap)]1+β |
×∫112{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−v}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(p√(1−t)(λap+(1−λ)bp)+tbp)dt. | (3.1) |
holds for u,w∈R and λ∈[0,1].
Proof. Integrating by parts leads to
I1=∫120{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−u}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(p√(1−t)(λap+(1−λ)bp)+tbp)dt |
=|ptβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−puλ(bp−ap)f(p√(1−t)(λap+(1−λ)bp)+tbp)|120 |
−∫120ptβ−1Fσρ,β+1[w(λ(bp−ap)2)ρtρ]λ(bp−ap)f(p√(1−t)(λap+(1−λ)bp)+tbp)dt |
=pλ(bp−ap)[{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−u}f(p√λap+(2−λ)bp2) |
+uf(p√(λap+(1−λ)bp))]−∫120ptβ−1Fσρ,β+1[w(λ(bp−ap)2)ρtρ]λ(bp−ap) |
×f(p√(1−t)(λap+(1−λ)bp)+tbp)dt. |
Let x=(1−t)(λap+(1−λ)bp)+tbp. Then dx=[λ(bp−ap)]dt, 0≤t≤1/2 is equivalent to (λap+(1−λ)bp)≤x≤λap+(2−λ)bp2. Therefore, we get
I1=pλ(bp−ap)[{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−u}f(p√λap+(2−λ)bp2) |
+uf(p√λap+(1−λ)bp)]−p[λ(bp−ap)]1+β∫λap+(2−λ)bp2λap+(1−λ)bp[x−(λap+(1−λ)bp)]β−1 |
×Fσρ,β[w(x−(λap+(1−λ)bp)2)ρ](f∘g)(x)dx |
and
[λ(bp−ap)]1+βpI1=[λ(bp−ap)]β[{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−u} |
×f(p√λap+(2−λ)bp2)+uf(p√λap+(1−λ)bp)] |
−(Jσρ,β,[λap+(2−λ)bp2]−;w2ρf∘g)(λap+(1−λ)bp). | (3.2) |
Again integrating by parts gives
I2=∫112{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−v}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(p√(1−t)(λap+(1−λ)bp)+tbp)dt |
=|ptβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−pvλ(bp−ap)f(p√(1−t)(λap+(1−λ)bp)+tbp)|112 |
−∫112ptβ−1Fσρ,β+1[w(λ(bp−ap)2)ρtρ]λ(bp−ap)f(p√(1−t)(λap+(1−λ)bp)+tbp)dt |
=pλ(bp−ap)[{Fσρ,β+1[w(λ(bp−ap)2)ρ]−v}f(b) |
−{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−v}f(p√λap+(2−λ)bp2)] |
−∫112ptβ−1Fσρ,β+1[w(λ(bp−ap)2)ρtρ]λ(bp−ap)f(p√(1−t)(λap+(1−λ)bp)+tbp)dt. |
Let y=(1−t)(λap+(1−λ)bp)+tbp. Then one has
I2=pλ(bp−ap)[{Fσρ,β+1[w(λ(bp−ap)2)ρ]−v}f(b) |
−{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−v}f(p√λap+(2−λ)bp2)] |
−p[λ(bp−ap)]1+β∫bpλap+(2−λ)bp2[y−(λap+(1−λ)bp)]β−1 |
×Fσρ,β[w(y−(λap+(1−λ)bp)2)ρ](f∘g)(y)dy |
=pλ(bp−ap)[{Fσρ,β+1[w(λ(bp−ap)2)ρ]−v}f(b) |
−{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−v}f(p√λap+(2−λ)bp2)] |
−∫λap+(2−λ)bp2λap+(1−λ)bp[y−(λap+(1−λ)bp)]β−1] |
×Fσρ,β[w(y−(λap+(1−λ)bp)2)ρ](f∘g)(y)dy |
and
[λ(bp−ap)]1+βpI2=[λ(bp−ap)]β[{Fσρ,β+1[w(λ(bp−ap)2)ρ]−v}f(b) |
−{2−βFσρ,β+1[w(λ(bp−ap)4)ρ]−v}f(p√λap+(2−λ)bp2)] |
−{(Jσρ,β,bp−;w2ρf∘g)(λap+(1−λ)bp)−(Jσρ,β,[λap+(2−λ)bp2]−;w2ρf∘g)(λap+(1−λ)bp)}. | (3.3) |
Therefore, the desired inequality (3.1) can be obtained by adding (3.2) and (3.3).
Remark 3.1. From Lemma 3.1 we clearly see that
(1) Lemma 3.1 reduces to Lemma 1 of [8] if β,λ,σ(0)→1, w→0, u→16 and v→56;
(2) Lemma 3.1 leads to Lemma 2 of [8] if p,β,λ,σ(0)→1, w→0 and a→am;
(3) Lemma 3.1 becomes Lemma 2.1 of [28] if p,β,λ,σ(0)→1, w→0; u→16, v→56 and a→am.
(4) Lemma 3.1 degenerates into Lemma 3 of [8] if λ,σ(0)→1, w→0 and p>0.
Theorem 3.1. Let I⊆R+ be an interval and I∘ be the interior of I, a,b∈I∘ with a<b, ρ,β>0, u,w∈R, (s,λ)∈(0,1]×[0,1], g(ξ)=p√ξ for ξ>0, and f:I→R be a differentiable function on I∘ such that |f′| is (s,p)-convex. Then one has
|ψ(t,a,b;f)|≤[λ(bp−ap)]1+β(p√(λap+(1−λ)bp))p−1{Fσ1ρ,β+1[|w|(λ(bp−ap)2)ρ] |
+(λ|f′(a)|+(1−λ)|f′(b)|){(|u|−|v|)H2,λ(a,b;1,s+2)+|v|H1,λ(a,b;1,s+2)}s+1 |
+|f′(b)|{(|u|−|v|)H2,λ(a,b;s+1,s+2)+|v|H1,λ(a,b;s+1,s+2)}s+1}. | (3.4) |
Proof. It follows from (3.1) and the (s,p)-convexity of |f′| that
|ψ(t,a,b;f)|≤[λ(bp−ap)]1+β[|I1|+|I2|], | (3.5) |
|I1|=|∫120{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−u}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(((1−t)(λap+(1−λ)bp)+tbp)1p)dt| |
≤∫120{tβFσρ,β+1[|w|(λ(bp−ap)2)ρtρ]+|u|}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(λap+(1−λ)bp)+tbp)1p)|dt |
=∫120{∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)tβ+ρk+|u|} |
×[(1−t)(λap+(1−λ)bp)+tbp]1−pp|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|dt |
≤∫120{∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)tβ+ρk+|u|} |
×(p√λap+(1−λ)bp)1−p[1−tλ(ap−bp)λap+(1−λ)bp]1−pp |
×[(1−t)s{λ|f′(a)|+(1−λ)|f′(b)|}+ts|f′(b)|]dt |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρk(p√λap+(1−λ)bp)p−1Γ(ρk+β+1){(λ|f′(a)| |
+(1−λ)|f′(b)|)∫120tβ+ρk(1−t)s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt |
+|f′(b)|∫120tβ+ρk+s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt} |
+|u|(p√λap+(1−λ)bp)1−p{(λ|f′(a)|+(1−λ)|f′(b)|) |
×∫120[1−tλ(ap−bp)λap+(1−λ)bp]1−pp(1−t)sdt |
+|f′(b)|∫120ts[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt} |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρk(p√λap+(1−λ)bp)p−1Γ(ρk+β+1) |
×{(λ|f′(a)|+(1−λ)|f′(b)|)B(β+ρk+1,s+1) |
×2F1(p−1p,[β+ρk+1,s+β+ρk+2;12],λ(ap−bp)λap+(1−λ)bp) |
+2F1(p−1p,[β+ρk+s+1,β+ρk+s+2;12],λ(ap−bp)λap+(1−λ)bp) |
×|f′(b)|B(β+ρk+s+1,1)}+|u|(p√λap+(1−λ)bp)1−p |
×{(λ|f′(a)|+(1−λ)|f′(b)|)B(1,s+1) |
×2F1(p−1p,[1,s+2;12],λ(ap−bp)λap+(1−λ)bp) |
+|f′(b)|B(s+1,1)2F1(p−1p,[s+1,s+2;12],λ(ap−bp)λap+(1−λ)bp)} | (3.6) |
and
|I2|=|∫112{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−v}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(((1−t)(λap+(1−λ)bp)+tbp)1p)dt| |
≤∫112{tβFσρ,β+1[|w|(λ(bp−ap)2)ρtρ]+|v|}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(λap+(1−λ)bp)+tbp)1p)|dt |
=∫112{∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)tβ+ρk+|v|} |
×[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|dt |
≤∫112{∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)tβ+ρk+|v|} |
×(p√λap+(1−λ)bp)1−p[1−tλ(ap−bp)λap+(1−λ)bp]1−pp |
×[(1−t)s{λ|f′(a)|+(1−λ)|f′(b)|}+ts|f′(b)|]dt |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρk(p√λap+(1−λ)bp)p−1Γ(ρk+β+1){(λ|f′(a)| |
+(1−λ)|f′(b)|)∫112tβ+ρk(1−t)s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt |
+|f′(b)|∫112tβ+ρk+s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt} |
+|v|(p√λap+(1−λ)bp)1−p{(λ|f′(a)|+(1−λ)|f′(b)|) |
×∫112[1−tλ(ap−bp)λap+(1−λ)bp]1−pp(1−t)sdt |
+|f′(b)|∫112ts[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt} |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(p√λap+(1−λ)bp)p−1{B(β+ρk+1,s+1) |
×[2F1(p−1p,β+ρk+1;s+β+ρk+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[β+ρk+1,s+β+ρk+2;12],λ(ap−bp)λap+(1−λ)bp)] |
×(λ|f′(a)|+(1−λ)|f′(b)|)+|f′(b)|B(β+ρk+s+1,1) |
×[2F1(p−1p,β+ρk+s+1,β+ρk+s+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[β+ρk+s+1,β+ρk+s+2;12],λ(ap−bp)λap+(1−λ)bp)]} |
+|v|(p√λap+(1−λ)bp)p−1{(λ|f′(a)|+(1−λ)|f′(b)|) |
×B(1,s+1)[2F1(p−1p,1,s+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[1,s+2;12],λ(ap−bp)λap+(1−λ)bp)]+|f′(b)| |
×B(s+1,1)[2F1(p−1p,s+1,s+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[s+1,s+2;12],λ(ap−bp)λap+(1−λ)bp)]}. | (3.7) |
Therefore, inequality (3.4) follows easily from (3.5)–(3.7).
Corollary 3.1. Let I⊆R+ be an interval and I∘ be the interior of I, a,b∈I∘ with a<b, β>0, u,w∈R+, s∈(0,1], p<0, g(ξ)=p√ξ for ξ>0, and f:I→R be a differentiable function on I∘ such that |f′| is (s,p)-convex. Then one has
|uf(a)+(1−v)f(b)+(v−u)f(p√ap+bp2)−1bp−ap∫bpap(f∘g)(x)dx| |
≤bp−app(s+1)ap−1[(u−v){|f′(a)|2F1(p−1p,[1,s+2;12],ap−bpap) |
+|f′(b)|2F1(p−1p,[s+1,s+2;12],ap−bpap)}+v{|f′(a)| |
×2F1(p−1p,1,s+2,ap−bpap)+|f′(b)|2F1(p−1p,s+1,s+2,ap−bpap)}]. | (3.8) |
Proof. Let β,λ,σ(0)→1 and w=0. Then Corollary 3.1 follows directly from Theorem 3.1.
Theorem 3.2. Let I⊆R+ be an interval and I∘ be the interior of I, a,b∈I∘ with a<b, ρ,β>0, (s,λ)∈(0,1]×[0,1], p∈R with p≠0, u,w,∈R, y>1, x=y/(y−1), g(ξ)=p√ξ for ξ>0, and f:I→R be a differentiable function on I∘ such that |f′|y is (s,p)-convex. Then the inequality
|ψ(t,a,b;f)|≤[λ(bp−ap)]1+β(p√λap+(1−λ)bp)x(p−1){Fσ2ρ,β+1[|w|(λ(bp−ap)2)ρ] |
+[λap+(1−λ)bpλ(ap−bp)]1x[2s+1(s+1)]1y{|u|[B(λ(ap−bp)2(λap+(1−λ)bp);1,xp−1p+1)]1x |
×{(2s+1(1−λ)+λ)|f′(b)|y+λ(2s+1−1)|f′(a)|y}1y |
+|v|[B(λ(ap−bp)λap+(1−λ)bp;1,xp−1p+1)−B(λ(ap−bp)2(λap+(1−λ)bp);1,xp−1p+1)]1x |
×{(2s+1−λ)|f′(b)|y+λ|f′(a)|y}1y}} | (3.9) |
holds.
Proof. It follows from the (s,p)-convexity of |f′|y and Hölder inequality that
|I1|=|∫120{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−u}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(((1−t)(λap+(1−λ)bp)+tbp)1p)dt| |
≤∫120{tβFσρ,β+1[|w|(λ(bp−ap)2)ρtρ]+|u|}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(λap+(1−λ)bp)+tbp)1p)|dt |
=∫120{∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)tβ+ρk+|u|} |
×[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|dt |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1) |
×{∫120tx(β+ρk)[(1−t)(λap+(1−λ)bp)+tbp]x(1−p)pdt}1x |
×{∫120|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|ydt}1y |
+|u|{∫120[(1−t)(λap+(1−λ)bp)+tbp]x(1−p)pdt}1x |
×{∫120|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|ydt}1y |
={∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(p√λap+(1−λ)bp)x(p−1) |
×[∫120tx(β+ρk)[1−tλ(ap−bp)λap+(1−λ)bp]x(1−p)pdt]1x |
+|u|(p√λap+(1−λ)bp)x(p−1) |
×[∫120[1−tλ(ap−bp)λap+(1−λ)bp]x(1−p)pdt]1x} |
×{∫120[(1−t)s{λ|f′(a)|y+(1−λ)|f′(b)|y}+ts|f′(b)|ν]dt}1y |
={∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(p√λap+(1−λ)bp)x(p−1)x√B(xβ+xρk+1,1) |
×[2F1(xp−1p,[xβ+xρk+1,xβ+xρk+2;12],λ(ap−bp)λap+(1−λ)bp)]1x |
+|u|(p√λap+(1−λ)bp)x(p−1) |
×[λap+(1−λ)bpλ(ap−bp)B(λ(ap−bp)2(λap+(1−λ)bp);1,xp−1p+1)]1x} |
×{2s+1(1−λ)+λ2s+1(s+1)|f′(b)|y+λ(2s+1−1)2s+1(s+1)|f′(a)|y}1y | (3.10) |
and
|I2|=|∫112{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−v}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(((1−t)(λap+(1−λ)bp)+tbp)1p)dt| |
≤∫112{tβFσρ,β+1[|w|(λ(bp−ap)2)ρtρ]+|v|}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(λap+(1−λ)bp)+tbp)1p)|dt |
=∫112{∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)tβ+ρk+|v|} |
×[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|dt |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1) |
×{∫112tx(β+ρk)[(1−t)(λap+(1−λ)bp)+tbp]x(1−p)pdt}1x |
×{∫112|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|ydt}1y |
+|v|{∫112[(1−t)(λap+(1−λ)bp)+tbp]x(1−p)pdt}1x |
×{∫112|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|ydt}1y |
={∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(p√λap+(1−λ)bp)x(p−1) |
×[∫112tx(β+ρk)[1−tλ(ap−bp)λap+(1−λ)bp]x(1−p)pdt]1x |
+|v|(p√λap+(1−λ)bp)x(p−1)[∫112[1−tλ(ap−bp)λap+(1−λ)bp]x(1−p)pdt]1x} |
×{∫120[(1−t)s{λ|f′(a)|y+(1−λ)|f′(b)|y}+ts|f′(b)|y]dt}1y |
={∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(p√λap+(1−λ)bp)x(p−1)x√B(xβ+xρk+1,1) |
×[2F1(xp−1p,β+xρk+1,xβ+xρk+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(xp−1p,[xβ+xρk+1,xβ+xρk+2;12],λ(ap−bp)λap+(1−λ)bp)]1x |
+|v|(p√λap+(1−λ)bp)x(p−1)(λap+(1−λ)bpλ(ap−bp)[B(λ(ap−bp)λap+(1−λ)bp;1,xp−1p+1) |
−B(λ(ap−bp)2(λap+(1−λ)bp);1,xp−1p+1)])1x} |
×{2s+1−λ2s+1(s+1)|f′(b)|y+λ2s+1(s+1)|f′(a)|y}1y. | (3.11) |
Therefore, the desired inequality (3.9) follows from (3.5) and (3.10) together with (3.11).
Corollary 3.2. Let I⊆R+ be an interval and I∘ be the interior of I, a,b∈I∘ with a<b, p<0, u,v>0, s∈(0,1], g(ξ)=p√ξ for ξ>0, y=xx−1>1, and f:I→R be a differentiable function on I∘ such that |f′|y is (s,p)-convex. Then the inequality
|uf(a)+(1−v)f(b)+(v−u)f(p√ap+bp2)−1bp−ap∫bpap(f∘g)(x)dx| |
≤(bp−ap)(x√ap−x2(p−1))px√ap−bpy√21+s(s+1)[ux√B(ap−bp2ap;1,xp−x+pp) |
×y√|f′(b)|y+(2s+1−1)|f′(a)|y |
+vx√B(ap−bpap;1,xp−x+pp)−B(ap−bp2ap;1,xp−x+pp) |
×y√(2s+1−1)|f′(b)|y+|f′(a)|y] | (3.12) |
holds.
Theorem 3.3. Let I⊆R+ be an interval and I∘ be the interior of I, a,b∈I∘ with a<b, p,ρ,β>0, x≥1, u,w∈R, (s,λ)∈(0,1]×[0,1], g(ξ)=p√ξ, and f:I→R be a differentiable function on I∘ such that |f′| is (s,p)-convex. Then one has
|ψ(t,a,b;f)|≤[λ(bp−ap)]1+β(xp√λap+(1−λ)bp)(x−1)(p−1){Fσ3ρ,β+1[|w|(λ(bp−ap)2)ρ] |
+|u|{λap+(1−λ)bpλ(ap−bp)B(λ(ap−bp)2(λap+(1−λ)bp),1,1p)}x−1x |
×x√{λ|f′(a)|x+(1−λ)|f′(b)|x}H2,λ(a,b;1,s+2)+|f′(b)|xH2,λ(a,b;s+1,s+2)s+1 |
+|v|{λap+(1−λ)bpλ(ap−bp)[B(λ(ap−bp)λap+(1−λ)bp;1,1p) |
−B(λ(ap−bp)2(λap+(1−λ)bp);1,1p)]}x−1x{{λ|f′(a)|x+(1−λ)|f′(b)|x} |
×H1,λ(a,b;1,s+2)−H2,λ(a,b;1,s+2)s+1 |
+|f′(b)|xs+1[H1,λ(a,b;s+1,s+2)−H2,λ(a,b;s+1,s+2)]}1x}. | (3.13) |
Proof. It follows from the (s,p)-convexity of |f′| and the power-mean inequality that
|I1|=|∫120{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−u}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(((1−t)(λap+(1−λ)bp)+tbp)1p)dt| |
≤∫120{tβFσρ,β+1[|w|(λ(bp−ap)2)ρtρ]+|u|}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(λap+(1−λ)bp)+tbp)1p)|dt |
=∫120{∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)tβ+ρk+|u|} |
×[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|dt |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1) |
×{∫120tβ+ρk[(1−t)(λap+(1−λ)bp)+tbp]1−ppdt}1−1x |
×{∫120tβ+ρk[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|xdt}1x |
+|u|{∫120[(1−t)(λap+(1−λ)bp)+tbp]1−ppdt}1−1x |
×{∫120[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|xdt}1x |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{∫120tβ+ρk[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1−1x |
×{∫120tβ+ρk[1−tλ(ap−bp)λap+(1−λ)bp]1−pp |
×[(1−t)s{λ|f′(a)|x+(1−λ)|f′(b)|x}+ts|f′(b)|x]dt}1x |
+|u|(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{∫120[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1−1x |
×{∫120[1−tλ(ap−bp)λap+(1−λ)bp]1−pp |
×[(1−t)s{λ|f′(a)|x+(1−λ)|f′(b)|x}+ts|f′(b)|x]dt}1x |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{∫120tβ+ρk[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1−1x |
×{{λ|f′(a)|x+(1−λ)|f′(b)|x} |
×∫120tβ+ρk(1−t)s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt |
+|f′(b)|x∫120tβ+ρk+s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1x |
+|u|(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{∫120[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1−1x{{λ|f′(a)|x+(1−λ)|f′(b)|x} |
×∫120(1−t)s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt |
+|f′(b)|x∫120ts[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1x |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(xp√λap+(1−λ)bp)(x−1)(p−1){B(β+ρk+1,1) |
×2F1(p−1p,[β+ρk+1,β+ρk+2;12],λ(ap−bp)λap+(1−λ)bp)}1−1x |
×{{λ|f′(a)|x+(1−λ)|f′(b)|x}B(β+ρk+1,s+1) |
×2F1(p−1p,[β+ρk+1,s+β+ρk+2;12],λ(ap−bp)λap+(1−λ)bp)+|f′(b)|x |
×2F1(p−1p,[β+ρk+s+1,β+ρk+s+2;12],λ(ap−bp)λap+(1−λ)bp) |
×B(β+ρk+s+1,1)}1x+|u|(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{λap+(1−λ)bpλ(ap−bp)B(λ(ap−bp)2(λap+(1−λ)bp),1,1p)}1−1x |
×{{λ|f′(a)|x+(1−λ)|f′(b)|x}B(1,s+1) |
×2F1(p−1p,[1,s+2;12],λ(ap−bp)λap+(1−λ)bp)+|f′(b)|xB(s+1,1) |
×2F1(p−1p,[s+1,s+2;12],λ(ap−bp)λap+(1−λ)bp)}1x | (3.14) |
and
|I2|=|∫112{tβFσρ,β+1[w(λ(bp−ap)2)ρtρ]−v}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×f′(((1−t)(λap+(1−λ)bp)+tbp)1p)dt| |
≤∫112{tβFσρ,β+1[|w|(λ(bp−ap)2)ρtρ]+|v|}[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(λap+(1−λ)bp)+tbp)1p)|dt |
=∫112{∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)tβ+ρk+|v|} |
×[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|dt |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1) |
×{∫112tβ+ρk[(1−t)(λap+(1−λ)bp)+tbp]1−ppdt}1−1x |
×{∫112tβ+ρk[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|xdt}1x |
+|v|{∫112[(1−t)(λap+(1−λ)bp)+tbp]1−ppdt}1−1x |
×{∫112[(1−t)(λap+(1−λ)bp)+tbp]1−pp |
×|f′(((1−t)(p√λap+(1−λ)bp)p+tbp)1p)|xdt}1x |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{∫112tβ+ρk[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1−1x |
×{∫112tβ+ρk[1−tλ(ap−bp)λap+(1−λ)bp]1−pp |
×[(1−t)s{λ|f′(a)|x+(1−λ)|f′(b)|x}+ts|f′(b)|x]dt}1x |
+|v|(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{∫112[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1−1x |
×{∫112[1−tλ(ap−bp)λap+(1−λ)bp]1−pp |
×[(1−t)s{λ|f′(a)|x+(1−λ)|f′(b)|x}+ts|f′(b)|x]dt}1x |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{∫112tβ+ρk[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1−1x |
×{{λ|f′(a)|x+(1−λ)|f′(b)|x} |
×∫112tβ+ρk(1−t)s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt+|f′(b)|x |
×∫112tβ+ρk+s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1x |
+|v|(xp√λap+(1−λ)bp)(x−1)(p−1) |
×{∫112[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1−1x |
×{{λ|f′(a)|x+(1−λ)|f′(b)|x}∫112(1−t)s[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt |
+|f′(b)|x∫112ts[1−tλ(ap−bp)λap+(1−λ)bp]1−ppdt}1x |
=∞∑k=0σ(k)|w|k(λ(bp−ap)2)ρkΓ(ρk+β+1)(xp√λap+(1−λ)bp)(x−1)(p−1){B(β+ρk+1,1) |
×[2F1(p−1p,β+ρk+1;β+ρk+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[β+ρk+1,β+ρk+2;12],λ(ap−bp)λap+(1−λ)bp)]}1−1x |
×{{λ|f′(a)|x+(1−λ)|f′(b)|x}B(β+ρk+1,s+1) |
×[2F1(p−1p,β+ρk+1;s+β+ρk+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[β+ρk+1,s+β+ρk+2;12],λ(ap−bp)λap+(1−λ)bp)]+|f′(b)|x |
×[2F1(p−1p,β+ρk+s+1;β+ρk+s+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[β+ρk+s+1,β+ρk+s+2;12],λ(ap−bp)λap+(1−λ)bp)] |
×B(β+ρk+s+1,1)}1x+|v|(xp√λap+(1−λ)bp)(x−1)(p−1) |
×[{λap+(1−λ)bpλ(ap−bp)[B(λ(ap−bp)λap+(1−λ)bp;1,1p) |
−B(λ(ap−bp)2(λap+(1−λ)bp);1,1p)]}1−1x{{λ|f′(a)|x+(1−λ)|f′(b)|x} |
×B(1,s+1)[2F1(p−1p,1;s+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[1,s+2;12],λ(ap−bp)λap+(1−λ)bp)]+|f′(b)|xB(s+1,1) |
×[2F1(p−1p,s+1;s+2,λ(ap−bp)λap+(1−λ)bp) |
−2F1(p−1p,[s+1,s+2;12],λ(ap−bp)λap+(1−λ)bp)]}1x]. | (3.15) |
Combining the inequalities (3.5), (3.14) and (3.15) gives the desired inequality (3.13).
Corollary 3.3. Let I⊆R+ be an interval and I∘ be the interior of I, a,b∈I∘ with a<b, p<0, s∈(0,1], u,v>0, g(ξ)=p√ξ, y=xx−1>1 and f:I→R be a differentiable function on I∘ such that |f′|y is (s,p)-convex. Then
|uf(a)+(1−v)f(b)+(v−u)f(p√ap+bp2)−1bp−ap∫bpap(f∘g)(x)dx| |
≤bp−app(x√a)(x−1)(p−1){u{apap−bpB(ap−bp2ap,1,1p)}x−1x |
×x√|f′(a)|xH2,1(a,b;1,s+2)+|f′(b)|xH2,1(a,b;s+1,s+2)s+1 |
+v{apap−bp[B(ap−bpap;1,1p)−B(ap−bp2ap;1,1p)]}x−1x |
×{|f′(a)|xH1,1(a,b;1,s+2)H2,1(a,b;1,s+2)s+1 |
+|f′(b)|x[H1,1(a,b;s+1,s+2)−H2,1(a,b;s+1,s+2)]s+1}1x}. | (3.16) |
Proof. Let β,λ,σ(0)→1 and w=0. Then Corollary 3.3 follows easily from Theorem 3.3.
In this section, we provide some applications on f-divergence measures and probability density functions by using the results obtained in Section 3.
Let ϕ be a set, μ be the σ finite measure, Ω={χ|χ:ϕ→R,χ(x)>0,∫ϕχ(x)dμ(x)=1} be the set of all probability densities on μ, and f:(0,∞)→R be a real-valued function. Then the Csis\'{z}ar f-divergence Df(χ,ψ) is defined by
Df(χ,ψ)=∫ϕχ(x)f[ψ(x)χ(x)]dμ(x)(χ,ψ∈Ω) | (4.1) |
if f is convex, and the Hermite-Hadamard (HH) divergence DfHH(χ,ψ) is defined by
DfHH(χ,ψ)=∫ϕχ(x)∫ψ(x)χ(x)1f(t)dtψ(x)χ(x)−1dμ(x)(χ,ψ∈Ω) | (4.2) |
if f is convex with f(1)=0. Note that DfHH(χ,ψ)≥0 and DfHH(χ,ψ)=0 if and only if χ=ψ.
Proposition 4.1. Let I⊆R+ be an interval and I∘ be the interior of I, a,b∈I∘ with a<b, s∈(0,1] and f:I→R be a differentiable function on I∘ such that |f′| is s-convex and f(1)=0. Then
|16[Df(χ,ψ)+4∫ϕχ(x)f(ψ(x)+χ(x)2χ(x))dμ(x)]−DfHH(χ,ψ)| |
≤(b−a)|f′(a)|6(s+1)∫ϕχ(x)[52F1(0,1,s+2,|ψ(x)−χ(x)|χ(x)) |
−42F1(0,[1,s+2;12],|ψ(x)−χ(x)|χ(x))]dμ(x) |
+(b−a)|f′(b)|6(s+1)∫ϕχ(x)[52F1(0,s+1,s+2,|ψ(x)−χ(x)|χ(x)) |
−42F1(0,[s+1,s+2;12],|ψ(x)−χ(x)|χ(x))]dμ(x). | (4.3) |
Proof. Let Φ1={x∈ϕ:ψ(x)>χ(x)}, Φ2={x∈ϕ:ψ(x)<χ(x)} and Φ3={x∈ϕ:ψ(x)=χ(x)}. Then we clearly see that inequality (4.3) holds if x∈Φ3.
For the case of x∈Φ1, taking a,p→1, b→ψ(x)χ(x), u→16 and v→56 in Corollary 3.1, multiplying both sides of the obtained result by χ(x) and integrating over Φ1 lead to the conclusion that
|16[4∫Φ1χ(x)f(ψ(x)+χ(x)2χ(x))dμ(x)+∫Φ1χ(x)f(ψ(x)χ(x))dμ(x)] |
−∫Φ1χ(x)∫ψ(x)χ(x)1f(t)dtψ(x)χ(x)−1dμ(x)|≤(b−a)|f′(a)|6(s+1)∫Φ1χ(x)[52F1(0,1,s+2,χ(x)−ψ(x)χ(x)) |
−42F1(0,[1,s+2;12],χ(x)−ψ(x)χ(x))]dμ(x) |
+(b−a)|f′(b)|6(s+1)∫Φ1χ(x)[52F1(0,s+1,s+2,χ(x)−ψ(x)χ(x)) |
−42F1(0,[s+1,s+2;12],χ(x)−ψ(x)χ(x))]dμ(x). | (4.4) |
Similarly, for the case of x∈Φ2, taking b,p→1, a→ψ(x)χ(x), u→16 and v→56 in Corollary 3.1, multiplying both sides to the obtained result by χ(x) and integrating over Φ2, we get
|16[4∫Φ2χ(x)f(ψ(x)+χ(x)2χ(x))dμ(x)+∫Φ2χ(x)f(ψ(x)χ(x))dμ(x)] |
−∫Φ2χ(x)∫ψ(x)χ(x)1f(t)dtψ(x)χ(x)−1dμ(x)|≤(b−a)|f′(a)|6(s+1)∫Φ2χ(x)[52F1(0,1,s+2,ψ(x)−χ(x)χ(x)) |
−42F1(0,[1,s+2;12],ψ(x)−χ(x)χ(x))]dμ(x) |
+(b−a)|f′(b)|6(s+1)∫Φ2χ(x)[52F1(0,s+1,s+2,ψ(x)−χ(x)χ(x)) |
−42F1(0,[s+1,s+2;12],ψ(x)−χ(x)χ(x))]dμ(x). | (4.5) |
Therefore, the desired inequality (4.3) can be derived by adding inequalities (4.4) and (4.5) to together with the triangular inequality.
Let a,b∈R with a<b, g:[a,b]→[0,1] be the probability density function of a continuous random variable X with the cumulative distribution function F given by
F(x)=P(X≤x)=∫xag(t)dt,E(X)=∫batdF(t)=b−∫baF(t)dt. | (4.6) |
Then from Corollary 3.1 we clearly see that
|16[4P(X≤a+b2)+1]−1b−a(b−E(X))| |
≤b−as+1{|g(a)|52F1(0,1,s+2,a−ba)−42F1(0,[1,s+2;12],a−ba)6 |
+|g(b)|5.2F1(0,s+1,s+2,a−ba)−42F1(0,[s+1,s+2;12],a−ba)6} |
if p→1, u→16 and v→56.
We have established some new estimates for the generalized Simpson's quadrature rule via the Raina fractional integrals by use of a Simpson-type generalized identity with multi-parameters, and discovered several inequalities for the f-divergence measures and probability density functions. Our obtained results are the improvements and generalizations of some previous known results, our ideas and approach may lead to a lot of follow-up research.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11971142, 11701176, 11626101, 11601485).
The authors declare no conflict of interest.
[1] |
S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
![]() |
[2] |
S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
![]() |
[3] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. |
[4] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[5] |
Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
![]() |
[6] | S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629- 2645. |
[7] |
S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[8] |
G. Hu, H. Lei, T. S. Du, Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals, AIMS Math., 5 (2020), 1425-1445. doi: 10.3934/math.2020098
![]() |
[9] |
M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[10] |
M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
![]() |
[11] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[12] |
M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[13] |
M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[14] | S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20. |
[15] | M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10. |
[16] |
M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[17] |
S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
![]() |
[18] |
T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528. doi: 10.3934/math.2020290
![]() |
[19] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[20] | M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9. |
[21] |
M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Math., 5 (2020), 4662-4680. doi: 10.3934/math.2020299
![]() |
[22] | S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533-579. |
[23] | Z. B. Fang, R. J. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), 1-16. |
[24] |
N. Mehreen, M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators, J. Math. Comput. Sci., 19 (2019), 230-240. doi: 10.22436/jmcs.019.04.02
![]() |
[25] | M. A. Özarslan, C. Ustaoğlu, Some incomplete hypergeometric functions and incomplete RiemannLiouville fractional integral operators, Mathematics, 7 (2019), 1-18. |
[26] | R. K. Raina, On generalized wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191-203. |
[27] | R. P. Agarwal, M. J. Luo, R. K. Raina, On Ostrowski type inequalities, Fasc. Math., 56 (2016), 5-27. |
[28] |
S. Qaisar, C. J. He, S. Hussain, A generalizations of Simpson's type inequality for differentiable functions using (α, m)-convex functions and applications, J. Inequal. Appl., 2013 (2013), 1-13. doi: 10.1186/1029-242X-2013-1
![]() |
1. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
2. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
3. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
4. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
5. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
6. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5 | |
7. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
8. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
9. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
10. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
11. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
12. | Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini, Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions, 2021, 6, 2504-3110, 6, 10.3390/fractalfract6010006 | |
13. | Humaira Kalsoom, Hüseyin Budak, Hasan Kara, Muhammad Aamir Ali, Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals, 2021, 19, 2391-5455, 1153, 10.1515/math-2021-0072 | |
14. | Hüseyin Budak, Seda Kılınç Yıldırım, Mehmet Zeki Sarıkaya, Hüseyin Yıldırım, Some parameterized Simpson-, midpoint- and trapezoid-type inequalities for generalized fractional integrals, 2022, 2022, 1029-242X, 10.1186/s13660-022-02773-5 | |
15. | Muhammad Aamir Ali, Hasan Kara, Jessada Tariboon, Suphawat Asawasamrit, Hüseyin Budak, Fatih Hezenci, Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators, 2021, 13, 2073-8994, 2249, 10.3390/sym13122249 | |
16. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
17. | Mehmet Ali Özarslan, Ceren Ustaoğlu, Extended incomplete Riemann-Liouville fractional integral operators and related special functions, 2022, 30, 2688-1594, 1723, 10.3934/era.2022087 | |
18. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas, On Simpson type inequalities for generalized strongly preinvex functions via (p,q)-calculus and applications, 2021, 6, 2473-6988, 9236, 10.3934/math.2021537 | |
19. | Samaira Naz, Muhammad Nawaz Naeem, Yu-Ming Chu, Ostrowski-type inequalities for n-polynomial P-convex function for k-fractional Hilfer–Katugampola derivative, 2021, 2021, 1029-242X, 10.1186/s13660-021-02657-0 | |
20. | Hüseyin Budak, Pınar Kösem, Hasan Kara, On new Milne-type inequalities for fractional integrals, 2023, 2023, 1029-242X, 10.1186/s13660-023-02921-5 | |
21. | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, 2022, 7, 2473-6988, 3959, 10.3934/math.2022218 | |
22. | Hüseyin Budak, Seda Kilinç Yildirim, Hasan Kara, Hüseyin Yildirim, On new generalized inequalities with some parameters for coordinated convex functions via generalized fractional integrals, 2021, 44, 0170-4214, 13069, 10.1002/mma.7610 | |
23. | Fatih Hezenci, Hüseyin Budak, Hasan Kara, New version of fractional Simpson type inequalities for twice differentiable functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03615-2 | |
24. | Hüseyin Budak, Abd-Allah Hyder, Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities, 2023, 8, 2473-6988, 30760, 10.3934/math.20231572 | |
25. | Hüseyin Budak, Fatih Hezenci, Hasan Kara, Mehmet Zeki Sarikaya, Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule, 2023, 11, 2227-7390, 2282, 10.3390/math11102282 | |
26. | Musa Çakmak, Mevlüt Tunç, Generalizations of Hermite-Hadamard, Bullen and Simpson inequalities via h−convexity, 2022, 30, 1584-3289, 77, 10.2478/gm-2022-0006 | |
27. | Fatih Hezenci, A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions, 2023, 73, 1337-2211, 675, 10.1515/ms-2023-0049 | |
28. | Hasan Kara, Hüseyin Budak, Muhammad Ali, On inequalities of Simpson type for co-ordinated convex functions via generalized fractional integrals, 2023, 37, 0354-5180, 2605, 10.2298/FIL2308605K | |
29. | Yukti Mahajan, Harish Nagar, Fractional Newton‐type integral inequalities for the Caputo fractional operator, 2024, 0170-4214, 10.1002/mma.10600 | |
30. | Barış Çelik, Hüseyin Budak, Erhan Set, On generalized Milne type inequalities for new conformable fractional integrals, 2024, 38, 0354-5180, 1807, 10.2298/FIL2405807C | |
31. | Qi Liu, Muhammad Uzair Awan, Bandar Bin-Mohsin, Muhammad Zakria Javed, Loredana Ciurdariu, Badreddine Meftah, Bridging Pre-Invex Mappings and Fractional Integrals: A Pathway to Iterative Schemes via Error Boundaries of Maclaurin’s Rule, 2024, 8, 2504-3110, 734, 10.3390/fractalfract8120734 | |
32. | Gamzenur Köksaldı, Tuba Tunç, Simpson-type inequalities for the functions with bounded second derivatives involving generalized fractional integrals, 2025, 2025, 1687-2770, 10.1186/s13661-025-02040-8 |