Citation: Chunyan Luo, Yuping Yu, Tingsong Du. Estimates of bounds on the weighted Simpson type inequality and their applications[J]. AIMS Mathematics, 2020, 5(5): 4644-4661. doi: 10.3934/math.2020298
[1] | Sabir Hussain, Javairiya Khalid, Yu Ming Chu . Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Mathematics, 2020, 5(6): 5859-5883. doi: 10.3934/math.2020375 |
[2] | Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor . Simpson’s type integral inequalities for ĸ-fractional integrals and their applications. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087 |
[3] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[4] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[5] | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen . A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Mathematics, 2020, 5(6): 6404-6418. doi: 10.3934/math.2020412 |
[6] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
[7] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[8] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[9] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[10] | Arslan Hojat Ansari, Sumit Chandok, Liliana Guran, Shahrokh Farhadabadi, Dong Yun Shin, Choonkil Park . (F, h)-upper class type functions for cyclic admissible contractions in metric spaces. AIMS Mathematics, 2020, 5(5): 4853-4873. doi: 10.3934/math.2020310 |
The following inequality is well known as Simpson's inequality:
|16[F(ε1)+4F(ε1+ε22)+F(ε2)]−1ε2−ε1∫ε2ε1F(x)dx|≤12880‖F(4)‖∞(ε2−ε1)4, | (1.1) |
where F:[ε1,ε2]→R is a four times continuously differentiable mapping on (ε1,ε2) and ‖F(4)‖∞=supt∈(ε1,ε2)|F(4)(t)|<∞.
Because of the extensive applications of the Simpson's inequality (1.1), many authors have extended their studies via different classes of mappings. For example, Noor et al. [17] presented certain Simpson-type inequalities for geometrically relative convex functions. Du et al. [4] gave several properties and inequalities pertaining to Hadamard–Simpson type for the generalized (s,m)-preinvexity. Matłoka [16] established some weighted Simpson type inequalities for h-convexity. Further inequalities of the Simpson type related to other kinds of convex mappings in question with applications to fractional integrals can be found in [2,3,6,7,11,18,20]. More recent results with respect to (1.1), the interested reader is directed to [5,8,10,13,15,19] and the references cited therein.
Let us recall that Hudzik and Maligranda [9] introduced a class of mappings, called s-convex mapping, as follows: A mapping F:R0=(0,∞)→R is named s-convex if
F(tε1+(1−t)ε2)≤tsF(ε1)+(1−t)sF(ε2) |
holds for all ε1,ε2∈R0 and t∈[0,1] with certain fixed s∈(0,1]. In [22], Shuang and Qi proved the following result for this mapping.
Theorem 1. Let F:H⊆R0→R be differentiable on H∘(the interior of H) , ε1,ε2∈H along with ε1<ε2 and F′∈L1([ε1,ε2]). If |F′|q with q>1 is an s-convex mapping on [ε1,ε2] for certain fixed s∈(0,1], then
|110[F(ε1)+8F(ε1+ε22)+F(ε2)]−1ε2−ε1∫ε2ε1F(x)dx|≤ε2−ε14((q−1)(4(2q−1)/(q−1)+1)(2q−1)5(2q−1)/(q−1))1−1q(1s+1)1q{[|F′(ε1)|q+|F′(ε1+ε22)|q]1q+[|F′(ε1+ε22)|q+|F′(ε2)|q]1q}. |
We next recall the concept of the η-path and m-preinvex mappings.
Definition 1. [1] Let K⊂Rn be a nonempty invex set with regard to η:K×K→Rn. For all x,y∈K, the η-path Pxv joining the points x and v=x+η(y,x) is defined by
Pxv:={z|z=x+tη(y,x),t∈[0,1]}. |
Definition 2. [12] Let K⊆[0,d∗] with d∗>0 be an invex set with regard to η:K×K→R, for mapping F:K→R, if
F(u+tη(v,u))≤(1−t)F(u)+mtF(vm) |
is valid for all u,v∈K, t∈[0,1] and m∈(0,1], then we say that F is an m-preinvex mapping with regard to η.
Recently, in [14], Li et al. introduced the following class of mappings of (s,m)-preinvex.
Definition 3. [14] Let K⊆[0,d∗] with d∗>0 be an invex set with regard to η:K×K→R, for mapping F:K→R, if
F(u+tη(v,u))≤(1−t)sF(u)+mtsF(vm) |
is valid for all u,v∈K, t∈[0,1] and (s,m)∈(0,1]×(0,1] with vm≤d∗, then we say that f is a (s,m)-preinvex mapping with regard to η.
Here, our main purpose is to obtain some bounds pertaining to the weighted Simpson type inequality. To this end, we consider the coming three cases: (ⅰ) the considered mapping is (m,h)-preinvex; (ⅱ) the derivative of the considered mapping is bounded; (ⅲ) the derivative of the considered mapping satisfies the Lipschitz condition.
As one can see, the definitions of the m-preinvex and (s,m)-preinvex mappings have similar configurations. This observation leads us to generalize these convexities and presents the following definition, to be referred to as the (m,h)-perinvex mapping.
Definition 4. Let J, K be intervals in R, (0,1)⊆J, and let h:J→R be a non-negative real mapping. A mapping F:K→(0,∞) is said to be (m,h)-perinvex mapping, if the following inequality
F(u+tη(v,u))≤h(1−t)F(u)+mh(t)F(vm) | (2.1) |
is valid for all u,v∈K and t∈(0,1) with certain fixed m∈(0,1].
Some particular cases of Definition 4 are discussed as follows.
Ⅰ. If h(t)=t, then Definition 4 reduces to the definition for m-preinvexity.
Ⅱ. If h(t)=ts for s∈(0,1], then Definition 4 reduces to the definition for (s,m)-preinvexity.
Ⅳ. If h(t)=1, then Definition 4 reduces to the definition for (m,P)-preinvexity.
Ⅴ. If h(t)=t(1−t), then Definition 4 reduces to the definition for (m,tgs)-preinvexity.
Example 1. Consider the mapping F(u)=−|u| with
η(v,u)={v−u,uv≥0,u−v,uv<0. |
If we take h(t)=ts, t∈(0,1) with s≥1, then by Definition 4, F is an (m,h)-perinvex mapping with regard to η:K×K→R and certain fixed m∈(0,1]. However, if we take h(t)=ts, t∈(0,1) with 0<s<1, by letting u=1, v=5, t=13 and s=14, then we have
F(u+tη(v,u))=−73≈−2.3333>−4.7028≈−214+5314=h(1−t)F(u)+mh(t)F(vm), |
which demonstrates that F is not (m,h)-perinvex on R with respect to the same η.
In the whole article, let K⊆[0,d∗] with d∗>0 be an invex set with respect to η:K×K→R and a,b∈K with η(b,a)>0. Assume that F:K→R is a differentiable mapping such that F′ is integrable on the η-Path Pxτ:τ=x+η(y,x) with x,y∈[a,b]. Let g:[a,a+η(b,a)]→[0,+∞) be differentiable mapping on K and be symmetric to a+12η(b,a). We write ||g||[a,a+η(b,a)],∞=supx∈[a,a+η(b,a)]|g(x)|.
For the sake of simplicity, we define the following notation:
ΨF,g(a,b;η):=110η(b,a)[F(a)+8F(a+12η(b,a))+F(a+η(b,a))]∫a+η(b,a)ag(x)dx−1η(b,a)∫a+η(b,a)ag(x)F(x)dx. |
Now, we present the succeeding lemma.
Lemma 1. The subsequent integral identity with F′,g∈L1([a,a+η(b,a)]) exists:
ΨF,g(a,b;η)=η(b,a)4{∫10R1(t)F′(a+1−t2η(b,a))dt+∫10R2(t)F′(a+2−t2η(b,a))dt}, | (2.2) |
where
R1(t)=45∫10g(a+1−u2η(b,a))du−∫t0g(a+1−u2η(b,a))du |
and
R2(t)=15∫10g(a+2−u2η(b,a))du−∫t0g(a+2−u2η(b,a))du. |
Proof. By integration by parts and changing the variables, one has
Q1=∫10R1(t)F′(a+1−t2η(b,a))dt=∫10[45∫10g(a+1−u2η(b,a))du−∫t0g(a+1−u2η(b,a))du]F′(a+1−t2η(b,a))dt=−2η(b,a)[45∫10g(a+1−u2η(b,a))du−∫t0g(a+1−u2η(b,a))du]F(a+1−t2η(b,a))|10−2η(b,a)∫10g(a+1−t2η(b,a))F(a+1−t2η(b,a))dt=−2η(b,a)[−15F(a)−45F(a+12η(b,a))]∫10g(a+1−u2η(b,a))du−2η(b,a)∫10g(a+1−t2η(b,a))F(a+1−t2η(b,a))dt=4η2(b,a)[15F(a)+45F(a+12η(b,a))]∫a+12η(b,a)ag(x)dx−4η2(b,a)∫a+12η(b,a)ag(x)F(x)dx. |
Similarly, we obtain
Q2=∫10R2(t)F′(a+2−t2η(b,a))dt=1η2(b,a)[45F(a+12η(b,a))+15F(a+η(b,a))]∫a+η(b,a)a+12η(b,a)g(x)dx−4η2(b,a)∫a+η(b,a)a+12η(b,a)g(x)F(x)dx. |
Since g(x) is symmetric with relate to a+12η(b,a), one has
∫a+12η(b,a)ag(x)dx=∫a+η(b,a)a+12η(b,a)g(x)dx=12∫a+η(b,a)ag(x)dx. |
As a result, one has
η(b,a)4(Q1+Q2)=ΨF,g(a,b;η), |
which completes the proof.
Remark 1. If we take η(b,a)=b−a in Lemma 1, then we have
110(b−a)[F(a)+8F(a+b2)+F(b)]∫bag(x)dx−1b−a∫baF(x)g(x)dx=b−a4{∫10[45∫10g(ua+(1−u)a+b2)du−∫t0g(ua+(1−u)a+b2)du]F′(ta+(1−t)a+b2)dt+∫10[15∫10g(ua+b2+(1−u)b)du−∫t0g(ua+b2+(1−u)b)du]F′(ta+b2+(1−t)b)dt}. |
Specially, if we choose g(x)=1, then we obtain Lemma 2.1 proved by Shuang and Qi in [22].
Our first main result is stated by the coming theorem.
Theorem 2. If |F′|q for q≥1 is (m,h)-preinvex on K∘ with certain fixed m∈(0,1], then the following inequality is valid:
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞×{(1310)1−1q[|F′(a)|q∫10|45+t|h(1+t2)dt+m|F′(bm)|q∫10|45+t|h(1−t2)dt]1q+(710)1−1q[|F′(a)|q∫10|15+t|h(t2)dt+m|F′(bm)|q∫10|15+t|h(1−t2)dt]1q}. | (3.1) |
Proof. Using Lemma 1 and noticing that ||g||[a,a+12η(b,a)],∞,||g||[a+12η(b,a),a+η(b,a)],∞≤||g||[a,a+η(b,a)],∞, we have that
|ΨF,g(a,b;η)|≤η(b,a)4{∫10|R1(t)F′(a+1−t2η(b,a))|dt+∫10|R2(t)F′(a+2−t2η(b,a))|dt}=η(b,a)4{∫10|45∫10g(a+1−u2η(b,a))du−∫t0g(a+1−u2η(b,a))du||F′(a+1−t2η(b,a))|dt+∫10|15∫10g(a+2−u2η(b,a))du−∫t0g(a+2−u2η(b,a))du||F′(a+2−t2η(b,a))|dt}≤η(b,a)4||g||[a,a+η(b,a)],∞{∫10|45∫10du+∫t0du||F′(a+1−t2η(b,a))|dt+∫10|15∫10du+∫t0du||F′(a+2−t2η(b,a))|dt}=η(b,a)4||g||[a,a+η(b,a)],∞{∫10|45+t||F′(a+1−t2η(b,a))|dt+∫10|15+t||F′(a+2−t2η(b,a))|dt}. | (3.2) |
Utilizing the power mean inequality, one has
|ΨF,g(a,b;η)|≤b−a4||g||[a,a+η(b,a)],∞{(∫10|45+t|dt)1−1q[∫10|45+t||F′(a+1−t2η(b,a))|qdt]1q+(∫10|15+t|dt)1−1q[∫10|15+t||F′(a+2−t2η(b,a))|qdt]1q}. |
Direct computation yields that
∫10|45+t|dt=1310 | (3.3) |
and
∫10|15+t|dt=710. | (3.4) |
Using the (m,h)-preinvexity of |F′|q on K∘, we have
|F′(a+1−t2η(b,a))|q≤h(1+t2)|F′(a)|q+h(1−t2)m|F′(bm)|q | (3.5) |
and
|F′(a+2−t2η(b,a))|q≤h(t2)|F′(a)|q+h(1−t2)m|F′(bm)|q. | (3.6) |
Thus, the proof is completed.
Direct computation yields the subsequent corollary.
Corollary 1. Consider Theorem 2.
(i) Taking h(t)=t, we get the following inequality for m-preinvex mappings:
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞{(1310)1−1q[6160|F′(a)|q+1760m|F′(bm)|q]1q+(710)1−1q[1360|F′(a)|q+2960m|F′(bm)|q]1q}. |
(ii) Taking h(t)=ts with s∈(0,1), we get the coming inequality for (m,s)-preinvex mappings:
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞{(1310)1−1q[Φ1|F′(a)|q+Φ2m|F′(bm)|q)]1q+(710)1−1q[Φ3|F′(a)|q+Φ4m|F′(bm)|q]1q}, |
where
Φ1=2s+4+9s⋅2s+1−4s−35⋅2s(s+1)(s+2), |
Φ2=4s+135⋅2s(s+1)(s+2), |
Φ3=6s+75⋅2s(s+1)(s+2) |
and
Φ4=3⋅2s+3+s2s+1−6s−175⋅2s(s+1)(s+2). |
(iii) Taking h(t)=1, we get the succeeding inequality for (m,P)-preinvex mappings:
|ΨF,g(a,b;η)|≤η(b,a)2||g||[a,a+η(b,a)],∞[|F′(a)|q+m|F′(bm)|q]1q. |
(iv) Taking h(t)=t(1−t), we get the subsequent inequality for (m,tgs)-preinvex mappings:
|ΨF,g(a,b;η)|≤η(b,a)40||g||[a,a+η(b,a)],∞[13(47312)1q+7(1114)1q][|F′(a)|q+m|F′(bm)|q]1q. |
Another similar result is obtained in the following theorem.
Theorem 3. If |F′|q for q>1 is (m,h)-preinvex on K∘ with certain fixed m∈(0,1], then the succeeding inequality is effective:
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞×{Θ1−1q1[|F′(a)|q∫10h(1+t2)dt+m|F′(bm)|q∫10h(1−t2)dt]1q+Θ1−1q2[|F′(a)|q∫10h(t2)dt+m|F′(bm)|q∫10h(1−t2)dt]1q}, | (3.7) |
where
Θ1=(q−1)(9(2q−1)/(q−1)−4(2q−1)/(q−1))(2q−1)5(2q−1)/(q−1) |
and
Θ2=(q−1)(6(2q−1)/(q−1)−1)(2q−1)5(2q−1)/(q−1). |
Proof. Continuing from inequality (3.2) in the proof of Theorem 2 and using the Hölder's integral inequality, one has
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞×{(∫10|45+t|qq−1dt)1−1q[∫10|F′(a+1−t2η(b,a))|qdt]1q+(∫10|15+t|qq−1dt)1−1q[∫10|F′(a+2−t2η(b,a))|qdt]1q}. | (3.8) |
Utilizing (3.5) and (3.6) in (3.8) we obtain the desired inequality in (3.7), since
∫10|45+t|qq−1dt=(q−1)(9(2q−1)/(q−1)−4(2q−1)/(q−1))(2q−1)5(2q−1)/(q−1). |
and
∫10|15+t|qq−1dt=(q−1)(6(2q−1)/(q−1)−1)(2q−1)5(2q−1)/(q−1). |
Thus, the proof is completed.
By elementary calculation, it is easy to obtain the coming result.
Corollary 2. Considered Theorem 3.
(i) Taking h(t)=t, we get the subsequent inequality for m-preinvex mappings:
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞×{Θ1−1q1[34|F′(a)|q+14m|F′(bm)|q]1q+Θ1−1q2[14|F′(a)|q+34m|F′(bm)|q]1q}≤η(b,a)4||g||[a,a+η(b,a)],∞Θ1−1q1×{[34|F′(a)|q+14m|F′(bm)|q]1q+[14|F′(a)|q+34m|F′(bm)|q]1q}. |
(ii) Taking h(t)=ts with s∈(0,1), we get the succeeding inequality for (m,s)-preinvex mappings:
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞{Θ1−1q1[2s+1−12s(s+1)|F′(a)|q+12s(s+1)m|F′(bm)|q]1q+Θ1−1q2[12s(s+1)|F′(a)|q+2s+1−12s(s+1)m|F′(bm)|q]1q}. |
(iii) Taking h(t)=1, we get the coming inequality for (m,P)-preinvex mappings:
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞[Θ1−1q1+Θ1−1q2][|F′(a)|q+m|F′(bm)|q]1q. |
(iv) Taking h(t)=t(1−t), we get the following inequality for (m,tgs)-preinvex mappings:
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞(16)1q[Θ1−1q1+Θ1−1q2][|F′(a)|q+m|F′(bm)|q]1q. |
A different approach leads to the following result.
Theorem 4. If |F′| is (m,h)-preinvex on K∘ with certain fixed m∈(0,1], then the succeeding inequality
|ΨF,g(a,b;η)|≤η(b,a)4||g||[a,a+η(b,a)],∞×{(1310)1−1q[(∫10|45+t|hq(1+t2)dt)1q|F′(a)|+(∫10|45+t|hq(1−t2)dt)1qm|F′(bm)|]+(710)1−1q[(∫10|15+t|hq(t2)dt)1q|F′(a)|+(∫10|15+t|hq(1−t2)dt)1qm|F′(bm)|]} | (3.9) |
holds for q>1.
Proof. Utilizing Lemma 1 and the (m,h)-preinvexity of |F′| on K∘, one has
|ΨF,g(a,b;η)|≤η(b,a)4{∫10|45∫10g(a+1−u2η(b,a))du−∫t0g(a+1−u2η(b,a))du||F′(a+1−t2η(b,a))|dt+∫10|15∫10g(a+2−u2η(b,a))du−∫t0g(a+2−u2η(b,a))du||F′(a+2−t2η(b,a))|dt}≤η(b,a)4||g||[a,a+η(b,a)],∞{∫10|45+t||F′(a+1−t2η(b,a))|dt+∫10|15+t||F′(a+2−t2η(b,a))|dt}≤η(b,a)4||g||[a,a+η(b,a)],∞{∫10|45+t|[h(1+t2)|F′(a)|+h(1−t2)m|F′(bm)|]dt+∫10|15+t|[h(t2)|F′(a)|+h(1−t2)m|F′(bm)|]dt}. | (3.10) |
Using the power mean inequality, one has
∫10|45+t|[h(1+t2)|F′(a)|+h(1−t2)m|F′(bm)|]dt≤(∫10|45+t|dt)1−1q[(∫10|45+t|hq(1+t2)dt)1q|F′(a)|+(∫10|45+t|hq(1−t2)dt)1qm|F′(bm)|] | (3.11) |
and
∫10|15+t|[h(t2)|F′(a)|+h(1−t2)m|F′(bm)|]dt≤(∫10|15+t|dt)1−1q[(∫10|15+t|hq(t2)dt)1q|F′(a)|+(∫10|15+t|hq(1−t2)dt)1qm|F′(bm)|]. | (3.12) |
Making use of (3.3), (3.4), (3.11) and (3.12) in (3.10), we deduce the desired result inequality in (3.9). Thus, the proof is completed.
Remark 2. By taking different mapping for h in Theorems 3.3, we also establish a series of Simpson type inequalities similar to Corollary 1 and Corollary 2.
To prove the following result, we deal with the boundedness of F′.
Theorem 5. Let F′ be integrable on [a,a+η(b,a)] and there exist constants γ<δ such that −∞<γ≤F′(x)≤δ<+∞ for all x∈[a,a+η(b,a)]. Then
|ΨF,g(a,b;η)−η(b,a)(γ+δ)8[∫10R1(t)dt+∫10R2(t)dt]|≤η(b,a)(δ−γ)4||g||[a,a+η(b,a)],∞, | (3.13) |
where R1(t) and R2(t) are defined in Lemma 1.
Proof. From Lemma 1, one has
ΨF,g(a,b;η)=η(b,a)4{∫10R1(t)[F′(a+1−t2η(b,a))−γ+δ2+γ+δ2]dt+∫10R2(t)[F′(a+2−t2η(b,a))−γ+δ2+γ+δ2]dt}=η(b,a)4{∫10R1(t)[F′(a+1−t2η(b,a))−γ+δ2]dt+∫10R2(t)[F′(a+2−t2η(b,a))−γ+δ2]dt}+η(b,a)(γ+δ)8[∫10R1(t)dt+∫10R2(t)dt]. |
For simplicity we define the quantity
T:=ΨF,g(a,b;η)−η(b,a)(γ+δ)8[∫10R1(t)dt+∫10R2(t)dt]. |
Thus
T=η(b,a)4{∫10R1(t)[F′(a+1−t2η(b,a))−γ+δ2]dt+∫10R2(t)[F′(a+2−t2η(b,a))−γ+δ2]dt}. |
Therefore
|T|≤η(b,a)4{∫10|R1(t)||F′(a+1−t2η(b,a))−γ+δ2|dt+∫10|R2(t)||F′(a+2−t2η(b,a))−γ+δ2|dt}≤η(b,a)(δ−γ)8{∫10|R1(t)|dt+∫10|R2(t)|dt}. |
Since F′ satisfies −∞<γ≤F′(x)≤δ<+∞, one has
γ−γ+δ2≤F′(x)−γ+δ2≤δ−γ+δ2, |
which implies that
|F′(x)−γ+δ2|≤δ−γ2. |
Also, g is symmetric to a+12η(b,a), we obtain
|T|≤η(b,a)(δ−γ)8{∫10|45∫10g(a+1−u2η(b,a))du−∫t0g(a+1−u2η(b,a))du|dt+∫10|15∫10g(a+2−u2η(b,a))du−∫t0g(a+2−u2η(b,a))du|dt}≤η(b,a)(δ−γ)8||g||[a,a+η(b,a)],∞{∫10|45∫10du+∫t0du|dt+∫10|15∫10du+∫t0du|dt}=η(b,a)(δ−γ)4||g||[a,a+η(b,a)],∞. |
This ends the proof.
If the considered mapping F′ satisfies a Lipschitz condition, then one has the coming result.
Theorem 6. Assume that F′ satisfies a Lipschitz condition for some L>0, then the following inequality holds:
|ΨF,g(a,b;η)−η(b,a)4[F′(a)∫10R1(t)dt+F′(a+η(b,a))∫10R2(t)dt]|≤η2(b,a)L8||g||[a,a+η(b,a)],∞, | (3.14) |
where R1(t) and R2(t) are defined in Lemma 1.
Proof. Using Lemma 1, one has
ΨF,g(a,b;η)=η(b,a)4{∫10R1(t)[F′(a+1−t2η(b,a))−F′(a)+F′(a)]dt+∫10R2(t)[F′(a+2−t2η(b,a))−F′(a+η(b,a))+F′(a+η(b,a))]dt}=η(b,a)4{∫10R1(t)[F′(a+1−t2η(b,a))−F′(a)]dt+∫10R2(t)[F′(a+2−t2η(b,a))−F′(a+η(b,a))]dt}+η(b,a)4[F′(a)∫10R1(t)dt+F′(a+η(b,a))∫10R2(t)dt]. |
For simplicity we define the quantity
G:=ΨF,g(a,b;η)−η(b,a)4[∫10R1(t)dtF′(a)+∫10R2(t)dtF′(a+η(b,a))]. |
Thus,
G=η(b,a)4{∫10R1(t)[F′(a+1−t2η(b,a))−F′(a)]dt+∫10R2(t)[F′(a+2−t2η(b,a))−F′(a+η(b,a))]dt}. |
Since F′ satisfies Lipschitz conditions for certain L>0, one has
|F′(a+1−t2η(b,a))−F′(a)|≤L|a+1−t2η(b,a)−a|=L|1−t|η(b,a)2 |
and
|F′(a+2−t2η(b,a))−F′(a+η(b,a))|≤L|a+2−t2η(b,a)−a−η(b,a)|=L|t|η(b,a)2. |
As a result, we have
|G|≤η2(b,a)L8{∫10(1−t)|R1(t)|dt+∫10t|R2(t)|dt}. |
Also, since g is symmetric to a+12η(b,a), we get
|G|≤η2(b,a)L8||g||[a,a+η(b,a)],∞{∫10(1−t)|45+t|dt+∫10t|15+t|dt}=η2(b,a)L8||g||[a,a+η(b,a)],∞. |
This completes the proof.
Let X be a partition of the interval [a,b], i.e., X:a=x0<x1<⋯<xn−1<xn=b, and let lj:=xj+1−xj for j=0,1,⋯,n−1. Let us consider the quadrature formula
∫baF(x)g(x)dx=AS(F,g,X)+RS(F,g,X), |
where
AS(F,g,X)=n−1∑j=015[F(xj)+F(xj+1)2+4F(xj+xj+12)]∫xj+1xjg(x)dx |
for the weighted Simpson type formula and RS(F,g,X) denotes the related approximation error of the integral ∫baF(x)g(x)dx.
Now, we derive an error estimate related to the weighted Simpson type formula.
Proposition 1. Suppose that all hypotheses of Theorem 2 are satisfied and q=1, η(b,a)=b−a with m=1. Then the following weighted Simpson type error estimate satisfies
|RS(F,g,X)|≤n−1∑j=0l2j4[3730|F′(xj)|+2330|F′(xj+1)|]||g||[xj,xj+1],∞, |
where lj:=xj+1−xj for j=0,1,⋯,n−1.
Proof. Applying the inequality (ⅰ) in Corollary 1 with q=1 on subinterval [xj,xj+1](j=0,1,⋯,n−1) of the partition X, we deduce that
|110lj[F(xj)+8F(xj+xj+12)+F(xj+1)]∫xj+1xjg(x)dx−1lj∫xj+1xjF(x)g(x)dx|≤lj4||g||[xj,xj+1],∞[3730|F′(xj)|+2330|F′(xj+1)|]. |
Summing over j from 0 to n−1 and using the triangle inequality, we have that
|RS(F,g,X)|=|AS(F,g,X)−∫baF(x)g(x)dx|=n−1∑j=0|110[F(xj)+8F(xj+xj+12)+F(xj+1)]∫xj+1xjg(x)dx−∫xj+1xjF(x)g(x)dx|≤n−1∑j=0l2j4[3730|F′(xj)|+2330|F′(xj+1)|]||g||[xj,xj+1],∞. |
Thus, the proof is completed.
Let 0<a<b, r∈R, and let X be a continuous random variable having the continuous probability density mapping g:[a,b]→[0,1], which is symmetric with respect to a+b2.
Also, the r-moment is defined by
Er(X):=∫baxrg(x)dx, |
which is assumed to be finite.
Now we have the following results.
Proposition 2. Suppose that all hypotheses of Theorem 4 are satisfied and η(b,a)=b−a with m=1. Then we have the following ineqaulity
|110[ar+8(a+b2)r+br]−Er(X)|≤|r|(b−a)24||g||[a,b],∞{(1310)1−1q[Δ1q1ar−1+Δ1q2br−1]+(710)1−1q[Δ1q3ar−1+Δ1q4br−1]}, |
where
Δ1=2qτ+4+9qτ⋅2qτ+1−4qτ−35⋅2qτ(qτ+1)(qτ+2), |
Δ2=4qτ+135⋅2qτ(qτ+1)(qτ+2), |
Δ3=6qτ+75⋅2qτ(qτ+1)(qτ+2) |
and
Δ4=3⋅2qτ+3+qτ2qτ+1−6qτ−172qτ5qτ+2(qτ+1)(qτ+2). |
Proof. Let F(x)=xrr, x∈[a,b] with r∈(−∞,0)∪(0,1]∪[2,+∞), and let h(t)=tτ for τ∈(−∞,−1)∪(−1,1]. Then |F′| is h-convex (see Example 7 in [23]). Applying F(x)=xrr, x∈[a,b] to the inequality (3.9), we have that
|110[ar+8(a+b2)r+br]−Er(X)|≤|r|(b−a)24||g||[a,b],∞×{(1310)1−1q[(∫10|45+t|(1+t2)qτdt)1qar−1+(∫10|45+t|(1−t2)qτdt)1qbr−1]+(710)1−1q[(∫10|15+t|(t2)qτdt)1qar−1+(∫10|15+t|(1−t2)qτdt)1qbr−1]}. |
The desired inequality follows from the above by noting that
∫10|45+t|(1+t2)qτdt=2qτ+4+9qτ⋅2qτ+1−4qτ−35⋅2qτ(qτ+1)(qτ+2), |
∫10|45+t|(1−t2)qτdt=4qτ+135⋅2qτ(qτ+1)(qτ+2), |
∫10|15+t|(t2)qτdt=6qτ+75⋅2qτ(qτ+1)(qτ+2) |
and
∫10|15+t|(1−t2)qτdt=3⋅2qτ+3+qτ2qτ+1−6qτ−175⋅2qτ(qτ+1)(qτ+2). |
Thus, the proof is completed.
Among the various applications of probability theory, one of the primary topics is to find an appropriate measure of the distance between any two probability distributions. The set ϕ and the σ-finite measure μ are given, and the set of all probability densities on μ to be defined on Λ:={ϱ|ϱ:ϕ→R,ϱ(x)>0,∫ϕϱ(x)dμ(x)=1} are considered.
Let F:(0,∞)→R be given mapping and consider DF(ϱ,ω) be defined by
DF(ϱ,ω):=∫ϕϱ(x)F[ω(x)ϱ(x)]dμ(x),ϱ,ω∈Λ. | (4.1) |
If F is convex, then (4.1) is called as the Csisźar F-divergence.
In [21], Shioya and Da-te proposed the Hermite–Hadamard (HH) divergence
DFHH(ϱ,ω)=∫ϕϱ(x)∫ω(x)ϱ(x)1F(t)dtω(x)ϱ(x)−1dμ(x),ϱ,ω∈Λ, | (4.2) |
where F is convex on (0,∞) with F(1)=0. In the same article, they also introduced the property of HH divergence that DFHH(ϱ;ω)≥0 with the equality holds if and only if ϱ=ω. Now, we have the following results.
Proposition 3. Let all hypotheses of Theorem 3 and g(x)=1, m=1, q=2 with F(1)=0. If ϱ, ω∈Λ, then the following inequality holds:
|110[DF(ϱ,ω)+8∫ϕϱ(x)F(ϱ(x)+ω(x)2ϱ(x))dμ(x)]−DFHH(ϱ,ω)|≤(13375)12{[34|F′(1)|2∫Φ(ω(x)−ϱ(x))2ϱ(x)dμ(x)+14∫Φ(ω(x)−ϱ(x))2ϱ(x)|F′(ω(x)ϱ(x))|2dμ(x)]12+[14|F′(1)|2∫Φ(ω(x)−ϱ(x))2ϱ(x)dμ(x)+34∫Φ(ω(x)−ϱ(x))2ϱ(x)|F′(ω(x)ϱ(x))|2dμ(x)]12}. | (4.3) |
Proof. Let Φ1={x∈ϕ:ω(x)>ϱ(x)}, Φ2={x∈ϕ:ω(x)<ϱ(x)} and Φ3={x∈ϕ:ω(x)=ϱ(x)}, and let g(x)=1, η(b,a)=b−a, m=1 with q=2.
Obviously, if x∈Φ3, then inequality holds in (4.3). Now if x∈Φ1, applying the second inequality in (ⅰ) of Corollary 2 for a=1 and b=ω(x)ϱ(x), multiplying both hand sides of the obtained results by ϱ(x) and then integrating on Φ1, then we get that
|110[∫Φ1ϱ(x)F(ω(x)ϱ(x))dμ(x)+8∫Φ1ϱ(x)F(ϱ(x)+ω(x)2ϱ(x))dμ(x)]−∫Φ1ϱ(x)∫ω(x)ϱ(x)1F(t)dtω(x)ϱ(x)−1dμ(x)|≤(13375)12{[34|F′(1)|2∫Φ1(ω(x)−ϱ(x))2ϱ(x)dμ(x)+14∫Φ1(ω(x)−ϱ(x))2ϱ(x)|F′(ω(x)ϱ(x))|2dμ(x)]12+[14|F′(1)|2∫Φ1(ω(x)−ϱ(x))2ϱ(x)dμ(x)+34∫Φ1(ω(x)−ϱ(x))2ϱ(x)|F′(ω(x)ϱ(x))|2dμ(x)]12}. | (4.4) |
Similarly if x∈Φ2, applying the second inequality in (ⅰ) of Corollary 2 for a=ω(x)ϱ(x), b=1, multiplying both hand sides of the obtained results by ϱ(x) and then integrating on Φ2, then we get that
|110[∫Φ2ϱ(x)F(ω(x)ϱ(x))dμ(x)+8∫Φ2ϱ(x)F(ϱ(x)+ω(x)2ϱ(x))dμ(x)]−∫Φ2ϱ(x)∫ω(x)ϱ(x)1F(t)dtω(x)ϱ(x)−1dμ(x)|≤(13375)12{[14|F′(1)|2∫Φ2(ω(x)−ϱ(x))2ϱ(x)dμ(x)+34∫Φ2(ω(x)−ϱ(x))2ϱ(x)|F′(ω(x)ϱ(x))|2dμ(x)]12+[34|F′(1)|2∫Φ2(ω(x)−ϱ(x))2ϱ(x)dμ(x)+14∫Φ2(ω(x)−ϱ(x))2ϱ(x)|F′(ω(x) ϱ(x))|2dμ(x)]12}. | (4.5) |
Combining (4.4) and (4.5) and then using triangular inequality, we obtain the desired result.
In this study, we establish a weighted Simpson type identity and obtain some bounds involving the weighted Simpson type inequality for the first-order differentiable mappings. As applications, we apply the investigated results to an error estimate for weighted Simpson type quadrature formula, continuous random variables and F-divergence measures, respectively. With these ideas and techniques stated in this study, it is likely to discover further estimations of other form weighted integral inequalities which involve other related classes of mappings.
This work was supported by the National Natural Science Foundation of China (No.11871305).
No conflict of interest was declared by the authors.
[1] |
T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60 (2005), 1473-1484. doi: 10.1016/j.na.2004.11.005
![]() |
[2] |
M. U. Awan, M. A. Noor, M. V. Mihai, et al. Some new bounds for Simpson's rule involving special functions via harmonic h-convexity, J. Nonlinear Sci. Appl., 10 (2017), 1755-1766. doi: 10.22436/jnsa.010.04.37
![]() |
[3] |
J. H. Chen and X. J. Huang, Some new inequalities of Simpson's type for s-convex functions via fractional integrals, Filomat, 31 (2017), 4989-4997. doi: 10.2298/FIL1715989C
![]() |
[4] |
T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112-3126. doi: 10.22436/jnsa.009.05.102
![]() |
[5] | T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293 (2017), 358-369. |
[6] | T. S. Du, M. U. Awan, A. Kashuri, et al. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 2019 (2019), 1-21. |
[7] | F. Ertuǧral, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 113 (2019), 3115-3124. |
[8] | K.-C. Hsu, S.-R. Hwang, K.-L. Tseng, Some extended Simpson-type inequalities and applications, Bull. Iranian Math. Soc., 43 (2017), 409-425. |
[9] |
H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111. doi: 10.1007/BF01837981
![]() |
[10] | S. Hussain, S. Qaisar, Generalizations of Simpson's type inequalities through preinvexity and prequasiinvexity, Punjab Univ. J. Math. (Lahore), 46 (2014), 1-9. |
[11] | M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137-1145. |
[12] |
M. A. Latif, M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α, m)-preinvex functions, J. Egypt. Math. Soc., 23 (2015), 236-241. doi: 10.1016/j.joems.2014.06.006
![]() |
[13] |
M. A. Latif, S. S. Dragomir, E. Momoniat, Some weighted integral inequalities for differentiable h-preinvex functions, Georgian Math. J., 25 (2018), 441-450. doi: 10.1515/gmj-2016-0081
![]() |
[14] | Y. J. Li, T. S. Du, B. Yu, Some new integral inequalities of Hadamard-Simpson type for extended (s, m)-preinvex functions, Ital. J. Pure Appl. Math., 36 (2016), 583-600. |
[15] | W. J. Liu, Some Simpson type inequalities for h-convex and (α, m)-convex functions, J. Comput. Anal. Appl., 16 (2014), 1005-1012. |
[16] |
M. Matłoka, Weighted Simpson type inequalities for h-convex functions, J. Nonlinear Sci. Appl., 10 (2017), 5770-5780. doi: 10.22436/jnsa.010.11.15
![]() |
[17] |
M. A. Noor, K. I. Noor, M. U. Awan, Simpson-type inequalities for geometrically relative convex functions, Ukrainian Math. J., 70 (2018), 1145-1154. doi: 10.1007/s11253-018-1558-0
![]() |
[18] |
M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191-2199. doi: 10.1016/j.camwa.2010.07.033
![]() |
[19] |
E. Set, A. O. Akdemir, M. E. Özdemir, Simpson type integral inequalities for convex functions via Riemann-Liouville integrals, Filomat, 31 (2017), 4415-4420. doi: 10.2298/FIL1714415S
![]() |
[20] |
E. Set, M. E. Özdemir, M. Z. Sarikaya, On new inequalities of Simpson's type for quasi-convex functions with applications, Tamkang J. Math., 43 (2012), 357-364. doi: 10.5556/j.tkjm.43.2012.616
![]() |
[21] |
H. Shioya, T. Da-Te, A generalization of Lin divergence and the derivation of a new information divergence, Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 78 (1995), 34-40. doi: 10.1002/ecjb.4420780904
![]() |
[22] | Y. Shuang, F. Qi, Some integral inequalities for s-convex functions, Gazi Univ. J. Sci., 31 (2018), 1192-1200. |
[23] |
S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086
![]() |
1. | XIAOHUA ZHANG, YUNXIU ZHOU, TINGSONG DU, PROPERTIES AND 2α̃-FRACTAL WEIGHTED PARAMETRIC INEQUALITIES FOR THE FRACTAL (m,h)-PREINVEX MAPPINGS, 2023, 31, 0218-348X, 10.1142/S0218348X23501347 | |
2. | Hamida Ayed, Badreddine Meftah, Weighted Simpson-like type inequalities for quasi-convex functions, 2023, 29, 1425-6908, 313, 10.1515/jaa-2022-1000 | |
3. | Hasan Kara, Hüseyin Budak, Muhammad Ali, On inequalities of Simpson type for co-ordinated convex functions via generalized fractional integrals, 2023, 37, 0354-5180, 2605, 10.2298/FIL2308605K | |
4. | YUNXIU ZHOU, JIAGEN LIAO, TINGSONG DU, THE WEIGHTED PARAMETERIZED INEQUALITIES IN RELATION TO TWICE DIFFERENTIABLE MAPPINGS IN THE FRACTAL DOMAINS ALONG WITH SOME APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23500925 |