Citation: Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Asifa Tassaddiq, Moheb Saad Abouzaid. Certain generalized fractional integral inequalities[J]. AIMS Mathematics, 2020, 5(2): 1588-1602. doi: 10.3934/math.2020108
[1] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[2] | Gauhar Rahman, Muhammad Samraiz, Saima Naheed, Artion Kashuri, Kamsing Nonlaopon . New classes of unified fractional integral inequalities. AIMS Mathematics, 2022, 7(8): 15563-15583. doi: 10.3934/math.2022853 |
[3] | Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648 |
[4] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[5] | Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198 |
[6] | Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167 |
[7] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[8] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[9] | Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232 |
[10] | Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226 |
Fractional integral inequalities (FII in short) have made a great impact on scientists and mathematicians because of its potential applications in various fields. This subject plays a vital role in the development of differential equations and related problems in applied mathematics. In recent few decades, a variety of various integral inequalities and their generalizations have been established by utilizing fractional integral, fractional derivative operators and their generalizations are found in [4,5,6,10,14,15,16,19,20,21,29,35]. Also, the applications of (k,s)-Riemann-Liouville (R-L) fractional integral is found in [30]. In the past few years, various researchers have established the generalization of some classical inequalities by using different mathematical techniques. The generalized Hermite-Hadamard type inequalities with fractional integral operators and Hermite-Hadamard type inequalities by using the generalized k-fractional integrals are given in [34] and [2] respectively. In [1], the authors established FII for a class of n decreasing positive functions where n∈N by using (k,s)-fractional integral operator. Recently, the researchers [17,18,22,23,24,25,26] have established certain inequalities by employing some recent type(proportional and conformable) of fractional integrals. Without any doubt one can state that fractional and k-fractional calculus have become a very powerful tool for the modern studies, see for example [36,37].
To move towards our main results, we recall the following definitions [9,27,31].
Definition 1.1. Let f(τ), τ≥0, real valued function, is said to be in the space Cμ([a,b]), μ∈R if there exist p∈R such that p>μ and f(τ)=τpf1(τ) where f1(τ)∈C([a,b]).
Definition 1.2. Let ν,ˊν,ξ,ˊξ∈C such that R(ϑ)>0 and x∈R. Then MSM fractional integral is defined by
(Iν,ν′,ξ,ξ′,ηa,xf)(x)=x−νΓ(η)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)f(t)dt | (1.1) |
where F3(.) represents the Appell function (or Horn function) which is given in [8] as
F3(ν,ν′,ξ,ξ′;ϑ;x;y)=∞∑m,n=0(ν)m(ν′)n(ξ)m(ξ′)n(ϑ)m+nxmynm!n!,max{|x|,|y|}<1, |
and (ν)m=ν(ν+1)⋯(ν+m−1) is the Pochhammer symbol.
The operator (1.1) is introduced in [13] and extended in [31,32]. The use of this function in connection with special functions is appeared in many recent papers [3,11,12].
In this section, we employ the MSM fractional integral operator to establish the generalization of some classical inequalities. Recalling the following Theorem which will be used to establish our main result.
Theorem 1. (see [28], Theorem 1) If ν,ν′,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0, then the following inequality holds
F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)>0, | (2.1) |
provided −1<(1−tx)<0 and 0<(1−xt)<12. Also, if f(x)>0, then
(Iν,ν′,ξ,ξ′,η0,xf)(x)>0. |
Theorem 2. Let g be a positive continuous and decreasing function on the interval [a,b]. Let ν,ν′,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0, a<x≤b, ϑ>0 and σ≥γ>0. Then for MSM fractional integral operator (1.1), we have
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]≥Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgσ(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgγ(x)], | (2.2) |
provided −1<(1−tx)<0 and 0<(1−xt)<12.
Proof. Since g be a positive continuous and decreasing functions on the interval [a,b]. Therefore, we have
((ρ−a)ϑ−(t−a)ϑ)(gσ−γ(t)−gσ−γ(ρ))≥0, | (2.3) |
where a<t,ρ≤b, ϑ>0, σ≥γ>0.
By (2.3), we have
(ρ−a)ϑgσ−γ(t)+(t−a)ϑgσ−γ(ρ)−(ρ−a)ϑgσ−γ(ρ)−(t−a)ϑgσ−γ(t)≥0. | (2.4) |
Define a function
F(x,t)=(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)=(x−t)η−1t−ν′[1+(ν′)(ξ)(η)(1−xt)+(ν)(ξ)(η)(1−tx)+⋯]. | (2.5) |
In view of Theorem 1, we observe that the function F(x,t) remain positive for all t∈(a,x), x>a, since each term of the above function is positive in view of conditions stated in Theorem 2. Therefore multiplying (2.4) by
F(x,t)gγ(t)=(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gγ(t),t∈(a,x),a<x≤b, |
we get
F(x,t)[(ρ−a)ϑgσ−γ(t)+(t−a)ϑgσ−γ(ρ)−(ρ−a)ϑgσ−γ(ρ)−(t−a)ϑgσ−γ(t)]gγ(t)=(ρ−a)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gγ(t)gσ−γ(t)+(t−a)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gγ(t)gσ−γ(ρ)−(ρ−a)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gγ(t)gσ−γ(ρ)−(t−a)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gγ(t)gσ−γ(t)≥0. | (2.6) |
Integrating (2.6) with respect to t over (a,x), we have
(ρ−a)ϑ∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gσ(t)dt+gσ−γ(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)(t−a)ϑgγ(t)dt−(ρ−a)ϑgσ−γ(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gγ(t)dt−∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)(t−a)ϑgσ(t)dt≥0. | (2.7) |
Multiplying (2.7) by x−νΓ(η), we get
(ρ−a)ϑIν,ν′,ξ,ξ′,ηa,x[gσ(x)]+gσ−γ(ρ)Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgγ(x)]−(ρ−a)ϑgσ−γ(ρ)[Iν,ν′,ξ,ξ′,ηa,xgγ(x)]−Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgσ(x)]. | (2.8) |
Multiplying (2.8) by
x−νΓ(η)F(x,ρ)gγ(ρ)=x−νΓ(η)(x−ρ)η−1ρ−ν′F3(ν,ν′,ξ,ξ′;η;1−ρx,1−xρ)gγ(ρ) |
where F(x,ρ) is defined by (2.5) and integrating the resultant identity with respect to ρ over (a,x), we get
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgγ(x)]−Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]≥0. |
It follows that
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgγ(x)]≥Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]. |
Dividing the above equation by Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgγ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)], we get the desired inequality (2.2).
Remark 2.1. The inequality in Theorem 2 will reverse if g is an increasing function on the interval [a,b].
Theorem 3. Let g be a positive continuous and decreasing function on the interval [a,b]. Let a<x≤b, ϑ>0, σ≥γ>0. Then for the MSM fractional integral (1.1), we have
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iα,β,ζ,ζ′,λa,x[(x−a)ϑgγ(x)]+Iα,β,ζ,ζ′,λa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgγ(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgσ(x)]Iα,β,ζ,ζ′,λa,x[gγ(x)]+Iα,β,ζ,ζ′,λa,x[(x−a)ϑgσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]≥1, | (2.9) |
where α,β,ζ,ζ′,λ,ν,ˊν,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0 and λ>max{ν,ν′,ξ,ξ′}>0.
Proof. By multiplying both sides of (2.8) by
x−αΓ(λ)F(x,ρ)gγ(ρ)=x−αΓ(λ)(x−ρ)λ−1ρ−βF3(α,β,ζ,ζ′;λ;1−ρx,1−xρ)gγ(ρ) |
where F(x,ρ) is defined by (2.5) and integrating the resultant identity with respect to ρ over (a,x), we have
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iα,β,ζ,ζ′,λa,x[(x−a)ϑgγ(x)]+Iα,β,ζ,ζ′,λa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgγ(x)]−Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgσ(x)]Iα,β,ζ,ζ′,λa,x[gγ(x)]−Iα,β,ζ,ζ′,λa,x[(x−a)ϑgσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]≥0. | (2.10) |
Hence, dividing (2.10) by
Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑgσ(x)]Iα,β,ζ,ζ′,λa,x[gγ(x)]+Iα,β,ζ,ζ′,λa,x[(x−a)ϑgσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)], |
we get the required results.
Remark 2.2. Applying Theorem 3 for α=ν, β=ν′, ζ=ξ, ζ′=ξ′, λ=η, we get Theorem 2.
Theorem 4. Let g and h be positive continuous functions on the interval [a,b] such that h is increasing and g be decreasing functions on the interval [a,b]. Let a<x≤b, ϑ>0, σ≥γ>0. Then for the MSM fractional integral (1.1), we have
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gγ(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]≥1, | (2.11) |
where ν,ˊν,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0.
Proof. Under the conditions stated in Theorem 4, we can write
(hϑ(ρ)−hϑ(t))(gσ−γ(t)−gσ−γ(ρ))≥0 | (2.12) |
where a<x≤b, ϑ>0, σ≥γ>0.
From (2.12), we have
hϑ(ρ)gσ−γ(t)+hϑ(t)gσ−γ(ρ)−hϑ(ρ)gσ−γ(ρ)−hϑ(t)gσ−γ(t)≥0. | (2.13) |
Multiplying both sides of (2.13)
F(x,t)gγ(t)=(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gγ(t),t∈(a,x),a<x≤b, |
where F(x,t) is defined by (2.5), we get
F(x,t)gγ(t)[hϑ(ρ)gσ−γ(t)+hϑ(t)gσ−γ(ρ)−hϑ(ρ)gσ−γ(ρ)−hϑ(t)gσ−γ(t)]=hϑ(ρ)(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gσ(t)+hϑ(t)(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gσ−γ(ρ)gσ(t)−hϑ(ρ)(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gσ−γ(ρ)gσ(t)−hϑ(t)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gσ(t)≥0. | (2.14) |
Integrating (2.14) with respect to t over (a,x), we have
hϑ(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gσ(t)dt+gσ−γpp(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)hϑ(t)gγ(t)dt−hϑ(ρ)gσ−γ(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)gγ(t)dt−∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)hϑ(t)gσ(t)dt≥0. | (2.15) |
Multiplying (2.15) by x−νΓ(η), we get
hϑ(ρ)Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]+gσ−γ(ρ)Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gγ(x)]−hϑ(ρ)gσ−γ(ρ)[Iν,ν′,ξ,ξ′,ηa,xgγ(x)]−Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gγ(x)]≥0. | (2.16) |
Again, multiplying (2.16) by
x−νΓ(η)F(x,ρ)gγ(ρ)=x−νΓ(η)(x−ρ)η−1ρ−ν′F3(ν,ν′,ξ,ξ′;η;1−ρx,1−xρ)gγ(ρ) |
and integrating the resultant identity with respect to ρ over (a,x), we get
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gγ(x)]−Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]≥0 |
which completes the desired inequality (2.11) of Theorem 4.
Theorem 5. Let g and h be positive continuous functions on the interval [a,b] such that h is increasing and g be decreasing functions on the interval [a,b]. Let a<x≤b, ϑ>0, σ≥γ>0. Then for the MSM fractional integral (1.1), we have
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iα,β,ζ,ζ′,λa,x[hϑ(x)gγ(x)]+Iα,β,ζ,ζ′,λa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gγ(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gσ(x)]Iα,β,ζ,ζ′,λa,x[gγ(x)]+Iα,β,ζ,ζ′,λa,x[hϑ(x)gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]≥1, | (2.17) |
where α,β,ζ,ζ′,λ,ν,ˊν,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0 and λ>max{ν,ν′,ξ,ξ′}>0.
Proof. Multiplying (2.16) by
x−αΓ(λ)F(x,ρ)gγ(ρ)=x−αΓ(λ)(x−ρ)λ−1ρ−βF3(α,β,ζ,ζ′;λ;1−ρx,1−xρ)gγ(ρ) |
(where F(x,ρ) is defined by (2.5)) and integrating the resultant identity with respect to ρ over (a,x), we get
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iα,β,ζ,ζ′,λa,x[hϑ(x)gγ(x)]+Iα,β,ζ,ζ′,λa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gγ(x)]−Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gσ(x)]Iα,β,ζ,ζ′,λa,x[gγ(x)]−Iα,β,ζ,ζ′,λa,x[hϑ(x)gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]≥0. |
It follows that
Iν,ν′,ξ,ξ′,ηa,x[gσ(x)]Iα,β,ζ,ζ′,λa,x[hϑ(x)gγ(x)]+Iα,β,ζ,ζ′,λa,x[gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gγ(x)]≥Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gσ(x)]Iα,β,ζ,ζ′,λa,x[gγ(x)]+Iα,β,ζ,ζ′,λa,x[hϑ(x)gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)]. |
Dividing both sides by
Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)gσ(x)]Iα,β,ζ,ζ′,λa,x[gγ(x)]+Iα,β,ζ,ζ′,λa,x[hϑ(x)gσ(x)]Iν,ν′,ξ,ξ′,ηa,x[gγ(x)], |
which gives the desired inequality (2.32).
Remark 2.3. Applying Theorem 5 for α=ν, β=ν′, ζ=ξ, ζ′=ξ′, λ=η, we get Theorem 4.
Now, we use the MSM fractional integral fractional integral operator to present some inequalities for a class of n-decreasing positive functions.
Theorem 6. Let (gi)i=1,2,3,⋯,n be n positive continuous and decreasing functions on the interval [a,b]. Let a<x≤b, ϑ>0, σ≥γp>0 for any fixed p∈{1,2,3,⋯,n}. Then for MSM fractional integral operator (1.1), we have
Iν,ν′,ξ,ξ′,ηa,x[∏ni≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[∏ni=1gγii(x)]≥Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑ∏ni≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑ∏ni=1gγii(x)], | (2.18) |
where ν,ˊν,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0.
Proof. Since (gi)i=1,2,3,⋯,n be n positive continuous and decreasing functions on the interval [a,b]. Therefore, we have
((ρ−a)ϑ−(t−a)ϑ)(gσ−γpp(t)−gσ−γpp(ρ))≥0 | (2.19) |
where a<x≤b, ϑ>0, σ≥γp>0 and for any fixed p∈{1,2,3,⋯,n}.
By (2.19), we have
(ρ−a)ϑgσ−γpp(t)+(t−a)ϑgσ−γpp(ρ)−(ρ−a)ϑgσ−γpp(ρ)−(t−a)ϑgσ−γpp(t)≥0. | (2.20) |
Therefore multiplying both sides of (2.20)
F(x,t)n∏i=1gγii(t)=(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t),t∈(a,x),a<x≤b, |
where F(x,t) is defined by (2.5), we have
F(x,t)[(ρ−a)ϑgσ−γ(t)+(t−a)ϑgσ−γ(ρ)−(ρ−a)ϑgσ−γ(ρ)−(t−a)ϑgσ−γ(t)]n∏i=1gγii(t)=(ρ−a)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(t)+(t−a)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(ρ)−(ρ−a)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(ρ)−(t−a)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(t)≥0. | (2.21) |
Integrating (2.21) with respect to t over (a,x), we have
(ρ−a)ϑ∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(t)dt+gσ−γpp(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)(t−a)ϑn∏i=1gγii(t)dt−(ρ−a)ϑgσ−γpp(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)dt−∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)(t−a)ϑn∏i=1gγii(t)gσ−γpp(t)dt≥0. | (2.22) |
Multiplying (2.22) by x−νΓ(η), we get
(ρ−a)ϑIν,ν′,ξ,ξ′,ηa,x[n∏i≠pgγiigσp(x)]+gσ−γpp(ρ)Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑn∏i=1gγii(x)]−(ρ−a)ϑgσ−γpp(ρ)[Iν,ν′,ξ,ξ′,ηa,xn∏i=1gγii(x)]−Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑn∏i≠pgγiigσp(x)]≥0. | (2.23) |
Multiplying (2.23) by
x−νΓ(η)F(x,ρ)n∏i=1gγii(ρ)=x−νΓ(η)(x−ρ)η−1ρ−ν′F3(ν,ν′,ξ,ξ′;η;1−ρx,1−xρ)n∏i=1gγii(ρ) |
(where F(x,ρ) is defined by (2.5)) and integrating the resultant identity with respect to ρ over (a,x), we get
Iν,ν′,ξ,ξ′,ηa,x[n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑn∏i=1gγii(x)]−Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑn∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[n∏i=1gγii(x)]≥0 |
which completes the desired inequality (2.18).
Remark 2.4. The inequality in Theorem 6 will reverse if (gi)i=1,2,3,⋯,n are increasing functions on the interval [a,b].
Theorem 7. Let (gi)i=1,2,3,⋯,n be n positive continuous and decreasing functions on the interval [a,b]. Let a<x≤b, ϑ>0, σ≥γp>0 for any fixed p∈{1,2,3,⋯,n}. Then for MSM fractional integral (1.1), we have
Iν,ν′,ξ,ξ′,ηa,x[∏ni≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[(x−a)ϑ∏ni=1gγii(x)]+Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑ∏ni≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[∏ni=1gγii(x)]+Iα,β,ζ,ζ′,λa,x[∏ni≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑ∏ni=1gγii(x)]Iα,β,ζ,ζ′,λa,x[(x−a)ϑ∏ni≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[∏ni=1gγii(x)]≥1, | (2.24) |
where α,β,ζ,ζ′,λ,ν,ˊν,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0 and λ>max{ν,ν′,ξ,ξ′}>0.
Proof. By multiplying both sides of (2.23) by
x−αΓ(λ)F(x,ρ)n∏i=1gγii(ρ)=x−αΓ(λ)(x−ρ)λ−1ρ−βF3(α,β,ζ,ζ′;λ;1−ρx,1−xρ)n∏i=1gγii(ρ) |
(where F(x,ρ) is defined by (2.5)) and integrating the resultant identity with respect to ρ over (a,x), we have
Iν,ν′,ξ,ξ′,ηa,x[n∏i≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[(x−a)ϑn∏i=1gγii(x)]+Iα,β,ζ,ζ′,λa,x[n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑn∏i=1gγii(x)]−Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑn∏i≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[n∏i=1gγii(x)]−Iα,β,ζ,ζ′,λa,x[(x−a)ϑn∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[n∏i=1gγii(x)]≥0. | (2.25) |
Hence, dividing (2.25) by
Iν,ν′,ξ,ξ′,ηa,x[(x−a)ϑn∏i≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[n∏i=1gγii(x)]+Iα,β,ζ,ζ′,λa,x[(x−a)ϑn∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[n∏i=1gγii(x)], |
which completes the desired proof.
Remark 2.5. Applying Theorem 7 for α=ν, β=ν′, ζ=ξ, ζ′=ξ′, λ=η, we get Theorem 6.
Theorem 8. Let (gi)i=1,2,3,⋯,n and h be positive continuous functions on the interval [a,b] such that h is increasing and (gi)i=1,2,3,⋯,n be decreasing functions on the interval [a,b]. Let a<x≤b, ϑ>0, σ≥γp>0 for any fixed p∈{1,2,3,⋯,n}. Then for the MSM fractional integral (1.1), we have
Iν,ν′,ξ,ξ′,ηa,x[∏ni≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)∏ni=1gγii(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)∏ni≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[∏ni=1gγii(x)]≥1, | (2.26) |
where ν,ˊν,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0.
Proof. Under the conditions stated in Theorem 8, we can write
(hϑ(ρ)−hϑ(t))(gσ−γpp(t)−gσ−γpp(ρ))≥0 | (2.27) |
where a<x≤b, ϑ>0, σ≥γp>0 and for any fixed p∈{1,2,3,⋯,n}.
From (2.27), we have
hϑ(ρ)gσ−γpp(t)+hϑ(t)gσ−γpp(ρ)−hϑ(ρ)gσ−γpp(ρ)−hϑ(t)gσ−γpp(t)≥0. | (2.28) |
Multiplying both sides of (2.28)
F(x,t)n∏i=1gγii(t)=(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t) |
(where F(x,ρ) is defined by (2.5)), we get
hϑ(ρ)(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(t)+hϑ(t)(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(ρ)−hϑ(ρ)(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(ρ)−hϑ(t)ϑ(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(t)≥0. | (2.29) |
Integrating (2.29) with respect to t over (a,x), we have
hϑ(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)gσ−γpp(t)dt+gσ−γpp(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)hϑ(t)ϑn∏i=1gγii(t)dt−hϑ(ρ)gσ−γpp(ρ)∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)n∏i=1gγii(t)dt−∫xa(x−t)η−1t−ν′F3(ν,ν′,ξ,ξ′;η;1−tx,1−xt)hϑ(t)n∏i=1gγii(t)gσ−γpp(t)dt≥0. | (2.30) |
Multiplying (2.30) by x−νΓ(η), we get
hϑ(ρ)Iν,ν′,ξ,ξ′,ηa,x[n∏i≠pgγiigσp(x)]+gσ−γpp(ρ)Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i=1gγii(x)]−hϑ(ρ)gσ−γpp(ρ)[Iν,ν′,ξ,ξ′,ηa,xn∏i=1gγii(x)]−Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i=1gγii(x)]≥0. | (2.31) |
Again, multiplying (2.31) by
x−νΓ(η)F(x,ρ)n∏i=1gγii(ρ)=x−νΓ(η)(x−ρ)η−1ρ−ν′F3(ν,ν′,ξ,ξ′;η;1−ρx,1−xρ)n∏i=1gγii(ρ) |
(where F(x,ρ) is defined by (2.5)) and integrating the resultant identity with respect to ρ over (a,x), we get
Iν,ν′,ξ,ξ′,ηa,x[n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i=1gγii(x)]−Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[n∏i=1gγii(x)]≥0 |
which completes the desired inequality (2.26) of Theorem 8.
Theorem 9. Let (gi)i=1,2,3,⋯,n and h be positive continuous functions on the interval [a,b] such that h is increasing and (gi)i=1,2,3,⋯,n be decreasing functions on the interval [a,b]. Let a<x≤b, ϑ>0, σ≥γp>0 for any fixed p∈{1,2,3,⋯,n}. Then for MSM fractional integral (1.1), we have
Iν,ν′,ξ,ξ′,ηa,x[∏ni≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[hϑ(x)∏ni=1gγii(x)]+Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)∏ni≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[∏ni=1gγii(x)]+Iα,β,ζ,ζ′,λa,x[∏ni≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)∏ni=1gγii(x)]Iα,β,ζ,ζ′,λa,x[hϑ(x)∏ni≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[∏ni=1gγii(x)]≥1, | (2.32) |
where α,β,ζ,ζ′,λ,ν,ˊν,ξ,ξ′,η∈R such that η>max{ν,ν′,ξ,ξ′}>0 and λ>max{ν,ν′,ξ,ξ′}>0.
Proof. Multiplying (2.31) by
x−αΓ(λ)F(x,ρ)n∏i=1gγii(ρ)=x−αΓ(λ)(x−ρ)λ−1ρ−βF3(α,β,ζ,ζ′;λ;1−ρx,1−xρ)n∏i=1gγii(ρ) |
(where F(x,ρ) is defined by (2.5)) and integrating the resultant identity with respect to ρ over (a,x), we get
Iν,ν′,ξ,ξ′,ηa,x[n∏i≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[hϑ(x)n∏i=1gγii(x)]+Iα,β,ζ,ζ′,λa,x[n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i=1gγii(x)]−Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[n∏i=1gγii(x)]−Iα,β,ζ,ζ′,λa,x[hϑ(x)n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[n∏i=1gγii(x)]≥0. |
It follows that
Iν,ν′,ξ,ξ′,ηa,x[n∏i≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[hϑ(x)n∏i=1gγii(x)]+Iα,β,ζ,ζ′,λa,x[n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i=1gγii(x)]≥Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[n∏i=1gγii(x)]+Iα,β,ζ,ζ′,λa,x[hϑ(x)n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[n∏i=1gγii(x)]. |
Dividing both sides by
Iν,ν′,ξ,ξ′,ηa,x[hϑ(x)n∏i≠pgγiigσp(x)]Iα,β,ζ,ζ′,λa,x[n∏i=1gγii(x)]+Iα,β,ζ,ζ′,λa,x[hϑ(x)n∏i≠pgγiigσp(x)]Iν,ν′,ξ,ξ′,ηa,x[n∏i=1gγii(x)], |
which gives the desired inequality (2.32).
Remark 2.6. Applying Theorem 9 for α=ν, β=ν′, ζ=ξ, ζ′=ξ′, λ=η, we get Theorem 8.
Remark 2.7. The results presented in this paper generalize some previous works cited therein.
In this present paper, the we introduced certain inequalities by employing the MSM fractional integral operator. Also, they presented some inequalities for a class of n positive continuous and decreasing functions on the interval [a,b]. The inequalities obtained in this present paper are more general than the classical inequalities available in the literature. The MSM operator defined by (1.1) was introduced by [13] as Mellin type convolution operator with a special function F3(.) in the kernel. This MSM operator was re-discovered by Saigo [31] which is the generalized form of Saigo fractional integral operator [11]. The MSM operator (1.1) will led to the Saigo fractional integral operator [31] due to the following relation Iν,0,ξ,ξ′,ηa,x(x)=Iη,ν−η,−ξa,x(x),(γ∈C). Thus, the inequalities obtained in this paper will reduce to the inequalities integral inequalities involving Saigo fractional integral operators recently defined by Houas [7].
The author K.S. Nisar thanks to Prince Sattam bin Abdulaziz University, Saudi Arabia for providing facilities and support.
All authors declare no conflicts of interest.
[1] | M. Aldhaifallah, M. Tomar, K. S. Nisar, Some new inequalities for (k, s)-fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 5374-381. |
[2] | P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 55. |
[3] |
D. Baleanu, O. G. Mustafa, On the Global Existence of Solutions to a Class of Fractional Differential Equations, Com. Math. Appl., 59 (2010), 1835-1841. doi: 10.1016/j.camwa.2009.08.028
![]() |
[4] | C. J. Huang, G. Rahman, K. S. Nisar, Some Inequalities of Hermite-Hadamard type for k-fractional conformable integrals, Aust, J. Math. Anal. Appl., 16 (2019), 1-9. |
[5] | Z. Dahmani, L. Tabharit, On weighted Gruss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31-38. |
[6] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493-497. |
[7] |
M. Houas, Some integral inequalities involving Saigo fractional integral operators, Journal of Interdisciplinary Mathematics, 21 (2018), 681-694. doi: 10.1080/09720502.2016.1160573
![]() |
[8] | H. M. Srivastava, P. W. Karlson, Multiple gaussion hypergeometric series, Ellis Horwood, New York, 1985. |
[9] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204. |
[10] | V. Kiryakova, Generalized Fractional Calculus and Applications, CRC press, 1993. |
[11] | V. Kiryakova, On two Saigo Fractional Integral Operators in the Class of Univalent Functions, Fract. Calc. Appl. Anal., 9 (2006), 159-176. |
[12] | V. Kiryakova, A Brief Story About the Operators of the Generalized Fractional Calculus, Fract. Calc. Appl. Anal., 11 (2008), 203-220. |
[13] | O. I. Marichev, Volterra equation of Mellin Convolution Type With a Horn Function in the Kernel, Izv. AN BSSR, Ser. Fiz.-Mat. Nauk, 1 (1974), 128-129. |
[14] | S. K. Ntouyas, S. D. Purohit, J. Tariboon, Certain Chebyshev type integral inequalities involving Hadamard's fractional operators, Abstr. Appl. Anal., 2014 (2014). |
[15] | K. S. Nisar, F. Qi, G. Rahman, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 2018 (2018), 135. |
[16] | K. S. Nisar, G. Rahman, J. Choi, Certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J. 34, (2018), 249-263. |
[17] | K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 245. |
[18] | K. S. Nisar, A. Tassadiq, G. Rahman, Some inequalities via fractional conformable integral operators, J. Inequal. Appl., 2019 (2019), 217. |
[19] | F. Qi, G. Rahman, S. M. Hussain, Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614. |
[20] |
G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Gruss type for conformable fractional integrals, AIMS Mathematics, 3 (2018), 575-583. doi: 10.3934/Math.2018.4.575
![]() |
[21] | G. Rahman, K. S. Nisar, S. Mubeen, Certain Inequalities involving the (k, ρ)-fractional integral operator, F. J. M. S., 103 (2018), 1879-1888. |
[22] | G. Rahman, K.S. Nisar, A. Ghaffar, Some inequalities of the Grüss type for conformable k-fractional integral operators, RACSAM. Rev. R. ACAD. A., 114 (2020), 9. |
[23] | G. Rahman, T. Abdeljawad, F. Jarad, Certain Inequalities via Generalized Proportional Hadamard Fractional Integral Operators, Adv. Diffe. Equ-NY., 2019 (2019), 454. |
[24] | G. Rahman, T. Abdeljawad, A. Khan, Some fractional proportional integral inequalities, J. Inequal. Appl., 2019 (2019), 244. |
[25] | G. Rahman, A. Khan, T. Abdeljawad, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Diffe. Equ-NY., 2019 (2019), 287. |
[26] | G. Rahman, Z. Ullah, A. Khan, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 364. |
[27] |
R. K. Raina, Solution of Abel-type integral equation involving the Appell hypergeometric function, Integral Transforms Spec. Funct., 21 (2010), 515-522. doi: 10.1080/10652460903403547
![]() |
[28] | S. Joshi, E. Mittal, R. M. Panddey, Some Grüss type inequalities involving generalized fractional integral operator, Bulletin of the Transilvania University of Braşov, 12 (2019), 41-52. |
[29] | M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Am. Math. Soc., 145 (2017), 1527-1538. |
[30] | M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89. |
[31] | M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1978), 135-143. |
[32] | M. Saigo, N. Maeda, More generalization of fractional calculus, In: Rusev, P, Dimovski, I, Kiryakova, V (eds.) Transform Methods and Special Functions, Varna, 1996, 386-400. |
[33] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania), 1993. |
[34] | E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29-34. |
[35] | E. Set, M. A. Noor, M. U. Awan, özpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 169 (2017), 10. |
[36] |
A. Tassaddiq, MHD flow of a fractional second grade fluid over an inclined heated plate, Chaos Soliton. Fract., 123 (2019), 341-346. doi: 10.1016/j.chaos.2019.04.029
![]() |
[37] | A. Tassaddiq, A new representation of k-gamma functions, Mathematics, 7 (2019), 133. |
1. | Kottakkaran Sooppy Nisar, Gauhar Rahman, Dumitru Baleanu, Muhammad Samraiz, Sajid Iqbal, On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function, 2020, 2020, 1687-1847, 10.1186/s13662-020-03075-0 | |
2. | Gauhar Rahman, Kottakkaran Sooppy Nisar, Behzad Ghanbari, Thabet Abdeljawad, On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals, 2020, 2020, 1687-1847, 10.1186/s13662-020-02830-7 | |
3. | Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Certain Hadamard Proportional Fractional Integral Inequalities, 2020, 8, 2227-7390, 504, 10.3390/math8040504 | |
4. | Asifa Tassaddiq, Gauhar Rahman, Kottakkaran Sooppy Nisar, Muhammad Samraiz, Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals, 2020, 2020, 1687-1847, 10.1186/s13662-020-2543-0 | |
5. | Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Tempered Fractional Integral Inequalities for Convex Functions, 2020, 8, 2227-7390, 500, 10.3390/math8040500 | |
6. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
7. | Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Certain new proportional and Hadamard proportional fractional integral inequalities, 2021, 2021, 1029-242X, 10.1186/s13660-021-02604-z | |
8. | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu, Some generalized fractional integral inequalities with nonsingular function as a kernel, 2021, 6, 2473-6988, 3352, 10.3934/math.2021201 | |
9. | Meenakshi Singhal, Ekta Mittal, On new fractional integral inequalities using Marichev–Saigo–Maeda operator, 2023, 46, 0170-4214, 2055, 10.1002/mma.8628 | |
10. | Asifa Tassaddiq, Rekha Srivastava, Rabab Alharbi, Ruhaila Md Kasmani, Sania Qureshi, An Application of Multiple Erdélyi–Kober Fractional Integral Operators to Establish New Inequalities Involving a General Class of Functions, 2024, 8, 2504-3110, 438, 10.3390/fractalfract8080438 |