Processing math: 100%
Research article Special Issues

On generalized fractional integral operator associated with generalized Bessel-Maitland function

  • In this paper, we describe generalized fractional integral operator and its inverse with generalized Bessel-Maitland function (BMF-Ⅴ) as its kernel. We discuss its convergence, boundedness, its relation with other well known fractional operators (Saigo fractional integral operator, Riemann-Liouville fractional operator), and establish its integral transform. Moreover, we have given the relationship of BMF-Ⅴ with Mittag-Leffler functions.

    Citation: Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed. On generalized fractional integral operator associated with generalized Bessel-Maitland function[J]. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167

    Related Papers:

    [1] D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096
    [2] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [3] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [4] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [5] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [6] Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346
    [7] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Ather Qayyum . Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator. AIMS Mathematics, 2022, 7(3): 3303-3320. doi: 10.3934/math.2022184
    [8] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [9] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [10] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
  • In this paper, we describe generalized fractional integral operator and its inverse with generalized Bessel-Maitland function (BMF-Ⅴ) as its kernel. We discuss its convergence, boundedness, its relation with other well known fractional operators (Saigo fractional integral operator, Riemann-Liouville fractional operator), and establish its integral transform. Moreover, we have given the relationship of BMF-Ⅴ with Mittag-Leffler functions.



    In recent years, many authors developed the class of integral formula involving a variety of special functions [1,2,3,4,5,6,7,8,9,10]. Fractional integral operator having special functions as their kernel is of great use in many research fields [11,12,13,14]. One of the most valuable special function is Bessel function [15,16,17,18,19,20,21,22,23,24]. The mathematician Daniel Bernoulli first introduced the Bessel function, which was later generalized by the German astronomer Friedrich Whilhelm Bessel. The theory of Bessel function correlate with linear differential equation which is further extended by the researchers due to its wide range of applications. For more details, reader may consult the work of Watson [25].

    The Bessel-Maitland function (BMF-Ⅰ) defined by the following series representation [26], as

    Jμν(s)=n=0(s)nn!Γ(μn+ν+1)=ϕ(μ,ν+1;s). (1.1)

    The generalization of Bessel-Maitland function (BMF-Ⅱ) introduced by Singh et al. [27] as

    Jμ,γν,q(s)=n=0(γ)qn(s)nΓ(μn+ν+1)n!, (1.2)

    where μ,ν,γC, (μ)0,(ν)1,(γ)0 and q(0,1)N.

    The extended Bessel-Maitland function (BMF-Ⅲ) investigated by Ghayasuddin and Khan [28], defined as

    Jμ,q,pν,γ,δ(s)=n=0(γ)qn(s)nΓ(μn+ν+1)(δ)pn, (1.3)

    where μ,ν,γ,δC, (μ)>0,(ν)>1,(γ)>0,(δ)0; p,q>0 and q<(α)+p.

    The generalization of generalized Bessel-Maitland function (BMF-Ⅳ) is introduced by Ali [29]

    Jμ,ξ,m,σν,η,ρ,γ(s)=n=0(η)ξn(γ)σn(s)nΓ(μn+ν+1)(ρ)mn, (1.4)

    where μ,ν,η,ρ,γC, (μ)>0, (ν)1, (η)>0, (ρ)>0, (γ)>0; ξ,m,σ0 and m,ξ>(μ)+σ.

    Notation used in generalized (BMF-Ⅳ) is defined as

    γ,σμ,νQη,ξρ,m;n=n=0(η)ξn(γ)σn(1)nΓ(μn+ν+1)(ρ)mn, (1.5)

    A new extension of Bessel-Maitland function (BMF-Ⅴ) is introduced and investigated by Khan et al. [30] as

    Jμ,ρ,γ,qα,β,ν,σ,δ,p(s)=n=0(μ)ρn(γ)qn(s)nΓ(αn+β+1)(ν)σn(δ)pn, (1.6)

    where α,β,μ,ρ,ν,γ,σ,δC, (β)>0, (ρ)>0, (μ)>0, (ν)>0, (α)1, (γ)>0, (δ)>0, (σ)>0; p,q>0 and q<(α)+p.

    Saigo fractional integral operators are defined by Saigo [31], for s>0, a,c,dC, and (a)>0

    (Fa,c,d0+g)(s)=sacΓ(a)s0(sτ)a1×2F1(a+c,d;a;(1τs))g(τ)dτ, (1.7)

    and

    (Fa,c,d0g)(s)=1Γ(a)s(τs)a1τac×2F1(a+c,d;a;(1sτ))g(τ)dτ. (1.8)

    Samko et al. [32] defined the Riemann-Liouville fractional operators for (b)>0 and n=[Re(b)]+1 as

    (Fb0+g)(s)=1Γ(b)s0(sτ)b1g(τ)dτ, (1.9)

    and

    (Db0+ϕ)(s)=dndsn(Fnb0+ϕ)(s). (1.10)

    The Gauss Hypergeometric function can be considered as infinite series defined by Saigo [31], denoted by 2F1(a,b;c;s) for all a,b,cC where a,b,c are parameters and s is a variable, c0 and |s|<1.

    2F1(a,b;c;s)=n=0(a)n(b)nsn(c)nn!, (1.11)

    where (a)n,(b)n,(c)n are the Pochhammer's symbols.

    The Pochhammer's symbols defined by Petojevic [33],

    (z)n={z(z+1)(z+2)(z+n1)for n11for n=0,z0, (1.12)

    where zC and nN and in gamma form it can be write as

    (z)n=Γ(z+n)Γ(z). (1.13)

    The beta function is defined as [33,34], for (x)>0,(y)>0 and also expressed in gamma form respectively

    β(x,y)=10ux1(1u)y1du, (1.14)
    β(x,y)=Γ(x)Γ(y)Γ(x+y). (1.15)

    The gamma function is defined [33,34] for (x)>0 as

    Γ(x)=0ux1eudu. (1.16)

    The generalized hypergeometric function is defined by Rainville [35]

    kRr(p1,,pk,q1,,qr;s)=n=0(p1)n,,(pk)n(q1)n,,(qr)nsnn!, (1.17)

    where pi,qjC, qj0,1,,(i=1,2,,k;j=1,2,,r).

    The generalized Fox-Wright function [36] is defined as follows,

    rψs(τ)=rψs[(pi,qi)1,r(xj,yj)1,s|τ]n=0ri=1Γ(pi+qin)sj=1Γ(xj+yjn)τnn!, (1.18)

    where τC, pi,xjC and qj,yjR (i=1,2,,r;j=1,2,,s).

    The Gauss hypergeometric function in gamma form can be written as

    2R1(a,b;c;1)=Γ(c)Γ(cab)Γ(ca)Γ(cb), (cab)>0. (1.19)

    The Laplace transform of function f(z) is defined as [37]

    L[f(t)]=f(s)=0estf(t)dt. (1.20)

    Dirichlet formula (Fubini's theorem)[32] is given by

    cddxcxu(x,t)dt=cddttdu(x,t)dx. (1.21)

    General form of Mittag-Leffler function [38] defined for (ˊδ)>0,(ˊα)>0,(ˊβ)>0 as follows:

    Eˊδˊα,ˊβ(z)=n=0(ˊδ)nznn!Γ(ˊαn+ˊβ). (1.22)

    In this section, we discuss generalized Bessel-Maitland function, and establish its relations with generalized Mittag-Leffler functions:

    ● On setting p=0 in Eq (1.6), we get the following relation:

    Jμ,ρ,γ,qα,β,ν,σ,δ,0(s)=Jμ,ρ,γ,qα,β,ν,σ(s), (2.1)

    where Jμ,ρ,γ,qα,β,ν,σ(s) is BMF-Ⅳ investigated by Ali in [29].

    ● on setting μ=ν=σ=ρ=1 in Eq (1.6), we obtain the relation:

    J1,1,γ,qα,β,1,1,δ,p(s)=Jα,q,pβ,γ,δ(s), (2.2)

    where Jα,q,pα,γ,δ,p(s) is BMF-Ⅲ introduced and investigated by Ghayasuddin and Khan [28].

    ● On replacing μ=ν=σ=ρ=δ=p=1 in Eq (1.6), we obtain the relation:

    J1,1,γ,qα,β,1,1,1,1(s)=Jα,qβ,γ(s). (2.3)

    where Jα,qβ,γ(s) is BMF-Ⅱ defined the Singh et al. [27].

    ● On setting μ=ν=σ=δ=ρ=p=q=1 in Eq (1.6).

    J1,1,1,1α,β,1,1,1,1(s)=Jαβ(s) (2.4)

    where Jαβ(s) is BMF-Ⅰ in [26].

    ● On replacing α by α1 in Eq (1.6), we get the following interesting relation:

    Jμ,ρ,γ,qα1,β,ν,σ,δ,p(s)=Eμ,ρ,γ,qα,β,ν,σ,δ,p(s), (2.5)

    where (Eμ,ρ,γ,qα,β,ν,σ,δ,p)(s) is the Mittag-Leffler function introduced by Khan and Ahmad [39].

    ● On setting μ=ν=σ=ρ=1 and replace α by α1 in Eq (1.6), we get

    J1,1,γ,qα1,β,1,1,δ,p(s)=Eγ,δ,qα,β,p(s), (2.6)

    where Eγ,δ,qα,β,p is the Mittag-Leffler function defined by Salim and Faraz [40].

    ● On setting μ=ν=σ=ρ=δ=p=1 and replacing α by α1 in Eq (1.6), we get

    J1,1,γ,qα1,β,1,1,1,1(s)=Eγ,qα,β(s) (2.7)

    where Eγ,qα,β is the Mittag-Leffler function defined by Shukla and Prajapati [41].

    ● On setting μ=ν=σ=ρ=δ=p=q=1 and replacing α by α1 in Eq (1.6)

    (J1,1,γ,1α1,β,1,1,1,1)(s)=Eγα,β(s), (2.8)

    where Eγα,β(s) is the Mittag-leffler function defined by Prabhakar [38]

    ● On setting μ=ν=σ=ρ=δ=γ=p=q=1 and replacing α by α1 in Eq (1.6)

    (J1,1,1,1α1,β,1,1,1,1)(s)=Eα,β(s) (2.9)

    where Eα,β(s) is the Mittag-Leffler function defined by Wiman [42].

    ● On setting μ=ν=σ=ρ=δ=γ=p=q=1,α=0 and replacing α by α1in Eq (1.6) and we obtain

    J1,1,1,10,β,1,1,1,1(s)=Eβ(s) (2.10)

    where Eβ(s) is the Magnus Gösta Mittag-Leffler function [43].

    In this section, we discuss generalized fractional integral operator and its special cases.

    Definition 3.1. The generalized fractional integral operator involving the generalized Bessel-Maitland function (BMF-Ⅴ) as its kernel is defined for α,β,μ,ρ,ν,γ,σ,δ,wC, (β)>0, (ρ)>0, (μ)>0, (w)>0, (ν)>0, (α)1, (γ)>0, (δ)>0, (σ)>0; p,q>0 and q<(α)+p.

    (Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕ)(s)=sa(sτ)αJμ,ρ,γ,qα,β,ν,σ,δ,p[w(sτ)β]ϕ(τ)dτ, (3.1)

    Remark 3.1. On setting w=0 and replacing α by α1, it will become a left sided Riemann-Liouville fractional integral operator.

    Remark 3.2. If we put p=0 in (3.1), we obtain the generalized fractional integral operator defined by Ali et al. [29].

    Remark 3.3. If we put μ=ν=σ=ρ=δ=p=q=1 in (3.1), we obtain the Srivastava fractional integral operator defined in [44].

    Definition 3.2. We define the following notation which use in our results as

    μ,ρα,βQγ,qν,σ,δ,p;n=n=0(μ)ρn(γ)qn(1)nΓ(αn+β+1)(ν)σn(δ)pn. (3.2)

    Definition 3.3. The left inverse operator of integral operator (3.1) for α,β,μ,ρ,ν,γ,σ,δ,wC, (β)>0, (ρ)>0, (μ)>0, (w)>0, (ν)>0, (α)1, (γ)>0, (δ)>0, (σ)>0; p,q>0 and q<(α)+p and n=[α] as nα>0 is defined as follows:

    (Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕ)(s)=dndsn(Zμ,ρ,γ,qβ,αn,ν,σ,δ,p,w,a+ϕ)(s)=dndsnsa(sτ)nαJμ,ρ,γ,qβ,nα,ν,σ,δ,p[w(sτ)β]ϕ(τ)dτ. (3.3)

    Remark 3.4. On setting w=0 and replacing α by α+1, then (3.3) becomes the Riemann-Liouville fractional differential operator. i.e

    =dndsnsa(sτ)nα11Γ(nα)ϕ(τ)dτ=dndsnFnαa+ϕ(τ)dτ.

    In this section, we discuss the convergence and boundedness of generalized fractional integral operator involving BMF-Ⅴ as its kernel in the form of theorem.

    Theorem 4.1. Let the operator (Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕ)(s) is defined on L(a,c) with μ,ρ,γ,q,α,β,ν,σ,δ,p,wC, (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ)>0 (w)>0, (ρ)>0, p,q>0 and q<(α)+p, then

    ||Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕ||cB||ϕ||c, (4.1)

    where

    B=(ca)Re(α)n=0|(μ)ρn||(γ)qn||(δ)pn||(ν)σn||(w(ca)Re(β))n||Γ(βn+α+1)||Re(β)n+Re(α)+1|. (4.2)

    Proof. Let Kn be denote the nth term of (4.2), then

    |Kn+1Kn|=|(μ)ρn+ρ(μ)ρn||(γ)qn+q(γ)qn||(δ)pn(δ)pn+p||(ν)σn(ν)σn+σ||Γ(βn+α+1)Γ(βn+β+α+1)||Re(β)n+Re(α)+1Re(β)(n+1)+Re(α)+1||(1)n+1(1)n||w(ca)Re(β)|(ρn)ρ(qn)q|w(ca)Re(β)|(pn)p(σn)σ)|n+1||(|β|n)Re(β)| as n.

    Hence |Kn+1Kn|0 as n and q<(α)+p which means that the right hand side of (4.2) is convergent and finite under the given condition. The condition of boundedness of the integral operator (Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕ)(x) is discussed in space of Lebesgue measurable [45] L(a,c) of continuous function on (a,c) where c>a,

    L(a,c)={g(x):gc=ca|g(x)|dx<}. (4.3)

    According to Eqs (1.6) and (3.2), we have

    Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕc=ca|sa(st)α|Jμ,ρ,γ,qα,β,ν,σ,δ,p[w(st)β]|ϕ(t)dt|dsca[ct(st)α|Jμ,ρ,γ,qα,β,ν,σ,δ,p[w(st)β]|ds]|ϕ(t)|dt. (4.4)

    By putting these values st=u ds=du, s=c u=ct and s=t u=0 in Eq (4.4), we have

    Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕc=ca[ct0uRe(α)Jμ,ρ,γ,qα,β,ν,σ,δ,p[wuβ]du]|ϕ(t)|dtca[ca0uRe(α)|Jμ,ρ,γ,qα,β,ν,σ,δ,p(wuβ)|du]|ϕ(t)|dtB=ca0uRe(α)|Jμ,ρ,γ,qα,β,ν,σ,δ,p(wuβ)|du. (4.5)

    Let

    B=n=0|(μ)ρn||(γ)qn||(w)n||(ν)σn||(δ)pn||Γ(βn+α+1)ca0uRe(β)n+Re(α)du=n=0(ca)Re(α)+1|(μ)ρn||(γ)qn||(w(ca)Re(β))n||(ν)σn||(δ)pn||Γ(βn+α+1)||Re(β)n+Re(α)+1|.

    Hence

    Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕccaB|ϕ(t)|dtBϕc.Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+ϕcBϕc.

    In this section, we discuss the behavior of generalized fractional operators (Saigo and Riemann-Liouville) with BMF-Ⅴ.

    Theorem 5.1. Let a,c,d,α,β,μ,ρ,ν,γ,σ,δC with (a)>0, ρ>max[0,(cd)], (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ)>0, (ρ)>0, (w)>0, p,q>0 and q<(α)+p, then the following relation holds,

    Fa,c,d0+[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s)=sρcΓ(ν)Γ(δ)Γ(μ)Γ(γ)×5ψ5[(μ,ρ)(γ,q)(ρ+1,δ)(ρ+dc+1,δ)(1,1)(α+1,β)(ν,σ)(δ,p)(ρc+1,δ)(a+ρ+d+1,δ)|sδ]. (5.1)

    Proof. Consider the left-sided Saigo fractional integral operator (1.7) in which using the power function with BMF-Ⅴ (1.6), we get

    Fa,c,d0+[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s)=Fa,c,d0+[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s).=Fa,c,d0+[τρn=0(μ)ρn(γ)qn(τδ)nΓ(βn+α+1)(ν)σn(δ)pndτ](s).=Fa,c,d0+[τρ+δnn=0(μ)ρn(γ)qn(1)nΓ(βn+α+1)(ν)σn(δ)pndτ](s).=Fa,c,d0+τρ+δn(s)[n=0(μ)ρn(γ)qn(1)nΓ(βn+α+1)(ν)σn(δ)pn]dτ. (5.2)
    Iα,β,γ0,λzλ=Γ(λ+1)Γ(λβ+γ+1)Γ(λβ+1)Γ(λ+α+γ+1)zλβ. (5.3)

    Using the above relation in (5.2).

    Fa,c,d0+[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s)=Γ(ρ+δn+1)Γ(ρ+δnc+d+1)Γ(ρ+δnc+1)Γ(ρ+δn+a+d+1)sρ+δnc[n=0(μ)ρn(γ)qn(1)nΓ(βn+α+1)(ν)σn(δ)pn]dτ.=Γ(ρ+δn+1)Γ(ρ+δnc+d+1)sρcΓ(ρ+δnc+1)Γ(ρ+δn+a+d+1)[n=0(μ)ρn(γ)qn(sδ)nΓ(βn+α+1)(ν)σn(δ)pn]dτ. (5.4)

    By using Eq (1.13) in Eq (5.4), we get

    Fa,c,d0+[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s)=n=0sρcΓ(ν)Γ(δ)Γ(μ+ρn)Γ(γ+qn)Γ(μ)Γ(γ)Γ(ν+σn)Γ(δ+pn)Γ(βn+α+1)Γ(ρ+δn+1)Γ(ρ+δnc+d+1)(sδ)nΓ(ρ+δnc+1)Γ(ρ+δn+a+d+1).

    Hence, we attain require result

    (Fa,c,d0+[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)])(s)=sρcΓ(ν)Γ(δ)Γ(μ)Γ(γ)×5ψ5[(μ,ρ)(γ,q)(ρ+1,δ)(ρ+dc+1,δ)(1,1)(α+1,β)(ν,σ)(δ,p)(ρc+1,δ)(a+ρ+d+1,δ)|sδ]. (5.5)

    Theorem 5.2. Let a,c,d,α,β,μ,ρ,ν,γ,σ,δC with (a)>0, ρ>max[0,(cd)], (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ)>0, (w)>0, (ρ)>0, p,q>0 and q<(α)+p, then the following relation holds,

    Fa,c,d0[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s)=scρΓ(ν)Γ(δ)Γ(μ)Γ(γ)×5ψ5[(μ,ρ)(γ,q)(d+ρ,δ)(c+ρ,δ)(1,1)(α+1,β)(ν,σ)(δ,p)(ρ,δ)(a+c+d+ρ,δ)|sδ]. (5.6)

    Proof. Consider the right-sided Sagio fractional integral operator (1.8) in which using the power function with BMF-Ⅴ (1.6), then we get

    Fa,c,d0[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s)=Fa,c,d0[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s).=Fa,c,d0[τρn=0(μ)ρn(γ)qn(τδ)nΓ(βn+α+1)(ν)σn(δ)pndτ](s).=Fa,c,d0[τρδnn=0(μ)ρn(γ)qn(1)nΓ(βn+α+1)(ν)σn(δ)pndτ](s).=Fa,c,d0τρδn(s)[n=0(μ)ρn(γ)qn(1)nΓ(βn+α+1)(ν)σn(δ)pn]dτ. (5.7)

    By using the important relation defined in [46] in Eq (5.7), we have

    Fa,c,d0[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s)=Γ(c+ρ+δn)Γ(d+ρδn)Γ(ρ+δn)Γ(a+c+d+ρ+δn)sρδnc[n=0(μ)ρn(γ)qn(1)nΓ(βn+α+1)(ν)σn(δ)pn]dτ.=Γ(c+ρ+δn)Γ(d+ρ+δn)sρcΓ(ρ+δn)Γ(a+c+d+ρ+δn)[n=0(μ)ρn(γ)qn(sδ)nΓ(βn+α+1)(ν)σn(δ)pn]dτ. (5.8)

    By using Eq (1.13) in Eq (5.8), we have result

    Fa,c,d0[τρJμ,ρ,γ,qα,β,ν,σ,δ,p(τδ)](s)=n=0scρΓ(μ+ρn)Γ(βn+α+1)Γ(ν)Γ(δ)Γ(γ+qn)Γ(c+ρ+δn)Γ(d+ρ+δn)(sδ)nΓ(μ)Γ(γ)Γ(ν+σn)Γ(ρ+δn)Γ(a+c+d+ρ+δn)=scρΓ(ν)Γ(δ)Γ(μ)Γ(γ)×5ψ5[(μ,ρ)(γ,q)(d+ρ,δ)(c+ρ,δ)(1,1)(α+1,β)(ν,σ)(δ,p)(ρ,δ)(a+c+d+ρ,δ)|sδ]. (5.9)

    Theorem 5.3. Let λ,μ,ρ,γ,α,β,ν,σ,δ,wC, (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (ρ)>0, (λ), (γ)>0, (w)>0, p,q>0 and q<(α)+p, then the following relation holds,

    Fλa+[Jμ,ρ,γ,qα,β,ν,σ,δ,p(w(τa)β)(τa)α](sa)=Jμ,ρ,γ,qα+λ,β,ν,σ,δ,p(w(sa)β)(sa)λα. (5.10)

    Proof. Consider the left-sided Riemann-Liouville fractional integral operator (1.9) in which using the power function with BMF-Ⅴ (1.6), we get

    Fλa+[(τa)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(τa)β)](sa)=[μ,ρα,βQγ,qν,σ,δ,p;n]sa(τa)α(w(τa)β)nΓ(λ)(sτ)λ+1dτ=[μ,ρα,βQγ,qν,σ,δ,p;n]Γ(λ)(w)nsa(sτ)λ1(τa)α+βndτ. (5.11)

    By putting these values τasa=y dτ=(sa)dy, τ=s y=1 and τ=a y=0 in Eq (5.11), we obtain

    Fλa+[(τa)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(τa)β)](sa)=[μ,ρα,βQγ,qν,σ,δ,p;n](w)nΓ(λ)10(s(sa)ya)λ1((sa)y)βnα(sa)1dy=(sa)λ+α(w)nΓ(λ)[μ,ρα,βQγ,pν,σ,δ,p;n(sa)βn]10(1y)λ1yβn+αdy. (5.12)

    By using Eqs (1.14) and (1.15) in Eq (5.12), we have

    Fλa+[(τa)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(τa)β)](sa)=(sa)λ+α[μ,ρα,βQγ,qν,σ,δ,p;n(w)n(sa)βn]Γ(βn+α+1)Γ(λ+βn+α+1). (5.13)

    Now, by using Eq (3.2) in Eq (5.13), then obtain the required result

    Fλa+[(τa)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(τa)β)](sa)=(sa)λ+αn=0(μ)ρn(γ)qn(w(sa)β)nΓ(λ+βn+α+1)(ν)σn(δ)pn=(sa)λ+αJμ,ρ,γ,qα+λ,β,ν,σ,δ,p(w(sa)β). (5.14)

    In this section, we discuss the Riemann-Liouville fractional integral and differential operators with fractional integral operator, and results can be seen some other generalized fractional integral operator, in the form of theorems.

    Theorem 6.1. Let λ,α,β,μ,ρ,γ,ν,σ,δ,wC, (λ)>0, (w)>0, (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ)>0, (ρ)>0, p,q>0 and q<(α)+p, then the following relation holds:

    (Fλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=(Zμ,ρ,γ,qα+λ,β,ν,σ,δ,p,w,0+ϕ)(s). (6.1)

    Proof. Consider the left sided Riemann-Liouville integral operator (1.9) involving new fractional integral operator (3.1), as

    (Fλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=1Γ(λ)s0(sy)λ1y0(yτ)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(yτ)β))ϕ(τ)dτdy. (6.2)

    By using Eq (1.21) in Eq (6.2), we have

    (Fλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=1Γ(λ)s0sτ(sy)λ1(yτ)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(yτ)β)dyϕ(τ)dτ. (6.3)

    By putting these values t=yτ dt=dy, y=s t=sτ and y=τ t=0 in Eq (6.3), we get

    (Fλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=1Γ(λ)s0sτ0(t)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(t)β)(sτt)1λdtϕ(τ)dτ=s01Γ(λ)sτ0(t)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(t)β)(sτt)1λdtϕ(τ)dτ. (6.4)

    By using Eq (1.9) in Eq (6.4), we have

    (Fλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=s0[Fλ0+(t)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(t)β)](sτ)ϕ(τ)dτ. (6.5)

    By using Eq (5.11) in Eq (6.5), we obtain

    (Fλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=s0Jμ,ρ,γ,qα+λ,β,ν,σ,δ,p(w(sτ)β)(sτ)αλϕ(τ)dτ=(Zμ,ρ,γ,qα+λ,β,ν,σ,δ,p,w,0+ϕ)(s). (6.6)

    Theorem 6.2. Let λ,μ,ρ,γ,α,β,ν,σ,δ,wC, (λ)>0, (w)>0, (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ)>0, (ρ)>0, p,q>0 and q<(α)+p, then the following relation holds:

    (Dλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=(Zμ,ρ,γ,qαλ,β,ν,σ,δ,p,w,0+ϕ)(s).

    Proof. Consider the left sided Riemann-Liouville differential operator (1.10) involving new fractional integral operator (3.1), then

    (Dλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=1Γ(mλ)(dds)ms0(sy)mλ1y0Jμ,ρ,γ,qα,β,ν,σ,δ,p(w(yτ)β)(yτ)αϕ(τ)dτdy. (6.7)

    By using Eq (1.21) in Eq (6.7), we have

    (Dλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+,ϕ)(s)=1Γ(mλ)(dds)ms0sτ(yτ)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(yτ)β)(sy)λm+1dyϕ(τ)dτ. (6.8)

    By putting these values t=yτ dt=dy, y=s t=sτ and y=τ t=0 in Eq (6.8), we get

    (Dλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=1Γ(mλ)(dds)ms0sτ0(t)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(t)β)(sτt)m+λ+1dtϕ(τ)dτ=s0(dds)m1Γ(mλ)sτ0(t)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(t)β)(sτt)m+λ+1dtϕ(τ)dτ. (6.9)

    Now, by using the Eq (1.9) in Eq (6.9), we have

    (Dλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=s0(dds)mFmλ0+[(t)αJμ,ρ,γ,qα,β,ν,σ,δ,p(w(t)β)](sτ)ϕ(τ)dτ. (6.10)

    By using Eq (5.11) in Eq (6.10), we obtain

    (Dλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=s0(dds)mJμ,ρ,γ,qα,β,ν,σ,δ,p(w(sτ)β)(sτ)λmαϕ(τ)dτ. (6.11)

    By using Eq (1.6) in Eq (6.11), and taking one time derivative then

    (Dλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=n=0(w)n(βn+m+αλ)Γ(βn+m+αλ+1)(μ)ρn(γ)qn(ν)σn(δ)(pn)(dds)m1s0(sτ)λ+βn+m+α1ϕ(τ)dτ=(dds)m1s0Jμ,ρ,γ,qα+mλ1,β,ν,σ,δ,p(w(sτ)β)(sτ)mα+λ+1ϕ(τ)dτ. (6.12)

    Now, taking the (m-1), derivative of Eq (6.12), then get

    (Dλ0+Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ)(s)=s0Jμ,ρ,γ,qαλ,β,ν,σ,δ,p(w(sτ)β)(sτ)λαϕ(τ)dτ=(Zμ,ρ,γ,qαλ,β,ν,σ,δ,p,w,0+ϕ)(s). (6.13)

    Theorem 6.3. Let α,β,μ,ρ,ν,γ,σ,δ,wC, (w)>0, (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ)>0, (ρ)>0, p,q>0 and q<(α)+p, then the following relation holds:

    L[Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ]=sα1Γ(ν)Γ(δ)ϕ(s)Γ(μ)Γ(γ)×4ψ3[(μ,ρ)(γ,q)(1,1)(ν,σ)(δ,p)|(ws)β]. (6.14)

    Proof. Consider the new fractional integral operator (3.1), then

    L[Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ]=0est[t0(ty)αn=0(μ)ρn(γ)qn(w)n(ty)βnΓ(βn+α+1)(ν)σn(δ)pnϕ(y)dy]dt. (6.15)

    Now, after changing the order of integration, then we obtain

    L[Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ]=0y(ty)αestn=0(μ)ρn(γ)qn(w)n(ty)βnΓ(βn+α+1)(ν)σn(δ)pndtϕ(y)dy=n=0(μ)ρn(γ)qn(w)nΓ(βn+α+1)(ν)σn(δ)pn0y(ty)βn+αestdtϕ(y)dy. (6.16)

    By putting ty=τ, then

    L[Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+ϕ]=n=0(μ)ρn(γ)qn(w)nΓ(βn+α+1)(ν)σn(δ)pn0ϕ(y)esy0esττβn+αdτdy=n=0(μ)ρn(γ)qn(w)nΓ(βn+α+1)(ν)σn(δ)pnΓ(βn+α+1)sβn+αϕ(s)=sα1Γ(ν)Γ(δ)Γ(μ)Γ(γ)n=0Γ(μ+ρn)Γ(γ+qn)(wsβ)nϕ(s)Γ(δ+pn)Γ(ν+σn)=sα1Γ(ν)Γ(δ)ϕ(s)Γ(μ)Γ(γ)×4ψ3[(μ,ρ)(γ,q)(1,1)(ν,σ)(δ,p)|(ws)β]. (6.17)

    Theorem 6.4. Let χ,μ,ρ,γ,α,β,ν,σ,δ,wC, (w)>0, (χ)>0, (α)>0, (β)>0, (ν)>0, (σ)>0, (γ)>0, (δ)>0, (ρ)>0, p,q>0 and q<(α)+p, then the following relation holds:

    (Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+τχ)(s)=sα+χΓ(ν)Γ(δ)Γ(χ+1)Γ(μ)Γ(γ)×3ψ3[(μ,ρ)(γ,q)(1,1)(α+χ+2,β)(ν,σ)(δ,p)|wsβ]. (6.18)

    Proof. Consider the new fractional integral operator (3.1),

    (Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+τχ(s)=s0(sτ)αJμ,ρ,γ,qα,β,ν,σ,δ,p[w(sτ)β]τχdτ=n=0(μ)ρn(γ)qn(w)nsβn+αΓ(βn+α+1)(ν)σn(δ)pns0(1τs)βn+ατχdτ. (6.19)

    By putting τs=y, then we obtain required result

    (Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+τχ(s)=n=0(μ)ρn(γ)qn(w)nsβn+αΓ(βn+α+1)(ν)σn(δ)pn10(1y)βn+α(sy)χsdy=n=0(μ)ρn(γ)qn(w)nsβn+α+χΓ(βn+α+1)(ν)σn(δ)pnΓ(βn+α+1)Γ(χ+1)Γ(βn+α+χ+2)=sα+χΓ(ν)Γ(δ)Γ(μ)Γ(γ)n=0Γ(μ+ρn)Γ(γ+qn)(wsβ)nΓ(χ+1)Γ(βn+α+χ+2)Γ(ν+σn)Γ(δ+pn)=sα+χΓ(ν)Γ(δ)Γ(χ+1)Γ(μ)Γ(γ)×3ψ3[(μ,ρ)(γ,q)(1,1)(α+χ+2,β)(ν,σ)(δ,p)|(ws)β].

    In this section, we will discuss some applications of the inverse fractional operator. We derive some results of the inverse fractional operator with the Mittag-leffler function and Bessel-Maitland function.

    Theorem 7.1. Let λ,μ,ρ,γ,α,β,ν,σ,δ,wC, (λ)>0, (w)>0, (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ</italic><italic>)>0, (ρ)>0, p,q>0 and q<(α)+p, then the following relation holds:

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+(τa)ρ1Eγ,δ,qα,β,p(τa)λ](s)=Γ(ν)Γ(δ)Γ(δ)Γ(μ)Γ(γ)Γ(γ)m=0Γ(γ+qm)(sa)λm+ραΓ(αm+β)Γ(ρ+λm)Γ(δ+pm)×3ψ3[(μ,ρ)(γ,q)(1,1)(δ,p)(ν,σ)(λm+ρα+1,β)|w(sa)β]. (7.1)

    Proof. If we consider the new fractional integral operator (3.3),

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τa)ρ1Eγ,δ,qα,β,p(τa)λ](s)=(dds)psa(sτ)pαn=0(μ)ρn(γ)qn(w(sτ)β)n(τa)ρ1(ν)σn(δ)pnΓ(βn+pα+1)m=0(γ)qm(τa)λmΓ(αm+β)(δ)pmdτ=(dpdsp)μ,ρpα,βQγ,qν,σ,δ,p;n(w)nm=0(γ)qmΓ(αm+β)(δ)pmsa(sτ)p+βnα(τa)ρ+λm1dτ. (7.2)

    Substituting y=(sτsa) in Eq (7.2), we get

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τa)ρ1Eγ,δ,qα,β,p(τa)λ](s)=(dpdsp)μ,ρpα,βQγ,qν,σ,δ,p;n(w)nm=0(γ)qm(sa)pα+βn+λm+ρΓ(αm+β)(δ)pm10yp+βnα(1y)ρ+λm1dy. (7.3)

    By using Eqs (1.14) and (1.15), we get

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τa)ρ1Eγ,δ,qα,β,p(τa)λ](s)=(dpdsp)μ,ρpα,βQγ,qν,σ,δ,p;n(w)nm=0(γ)qm(sa)pα+βn+λm+ρΓ(αm+β)(δ)pmΓ(βn+pα+1)Γ(ρ+λm)Γ(βn+ρα+λm+1)dτ. (7.4)

    Now, back substituting μ,ρpα,βQγ,qν,σ,δ,p;n in Eq (7.4), we have

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τa)ρ1Eγ,δ,qα,β,p(τa)λ](s)=m,n=0(μ)ρn(γ)qn(w)n(dpdsp)(sa)pα+βn+λm+ρ(ν)σn(δ)pnΓ(βn+ρ+λm+pα+1)(γqm)Γ(ρ+λm)Γ(αm+β)(δ)pm=m,n=0(μ)ρn(γ)qn(w)n(sa)α+βn+λm+ρ(ν)σn(δ)pnΓ(βn+ρ+λmα+1)(γqm)Γ(ρ+λm)Γ(αm+β)(δ)pm=Γ(ν)Γ(δ)Γ(δ)Γ(μ)Γ(γ)Γ(γ)m=0Γ(γ+qm)(sa)λm+ραΓ(αm+β)Γ(ρ+λm)Γ(δ+pm)×3ψ3[(μ,ρ)(γ,q)(1,1)(δ,p)(ν,σ)(λm+ρα+1,β)|w(sa)β]. (7.5)

    Corollary 7.1. On setting α=α in theorem 9, we obtain

    [Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τa)ρ1Eγ,δ,qα,β,p(τa)λ](s)=Γ(ν)Γ(δ)Γ(δ)Γ(μ)Γ(γ)Γ(γ)m=0Γ(γ+qm)(sa)λm+ρ+αΓ(αm+β)Γ(ρ+λm)Γ(δ+pm)×3ψ3[(μ,ρ)(γ,q)(1,1)(δ,p)(ν,σ)(λm+p+α+1,β)|w(sa)β]. (7.6)

    Theorem 7.2. Let λ,μ,ρ,γ,α,β,ν,σ,δ,wC, (λ)>0, (w)>0, (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ)>0, (ρ)>0, p,q>0 and q<(α)+p, then the following relation holds:

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τ)1Jαβ(τ)Jα,γβ,q(τ)λ](s)=Γ(ν)Γ(δ)Γ(μ)Γ(γ)Γ(γ)m,n=0Γ(μ+ρn)Γ(γ+qn)Γ(ν+σn)Γ(δ+pn)(wsβ)n(s)m(s)αΓ(αm+β+1)m!×2ψ2[(γ,q)(m,λ)(β+1,α)(βn+mα+1,λ)|sλ]. (7.7)

    Proof. Consider the new fractional integral operator (3.3),

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+(τ)1Jα,β(τ)Jα,νβ,q(τ)λ](s)=(dds)psa(sτ)pαn=0(μ)ρn(γ)qn(w(sτ)β)n(ν)σn(δ)pnΓ(βn+pα+1)×m=0(τ)1(τ)mm!Γ(αm+β+1)w=0(γ)qw(1)w(τ)λww!Γ(αw+β+1)dτ=(dpdsp)μ,ρpα,βQγ,qν,σ,δ,p;n(w)nm,w=0(1)m+w(s)pα+βnm!Γ(αm+β+1)×(γ)qw(w)nw!Γ(αw+β+1)s0(1τs)pα+βnτ1+mλwdτ. (7.8)

    By substituting y=(τs) in Eq (7.8)

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τ)1Jαβ(τ)Jα,νβ,q(τ)λ](s)=(dpdsp)μ,ρpα,βQγ,qν,σ,δ,p;nm,w=0(w)n(1)w+m(γ)qw(s)βn(s)mλw+pαm!Γ(αm+β+1)w!Γ(αw+β+1)10(1y)pα+βny1+mλwdy. (7.9)

    By using Eqs (1.14) and (1.15), we get

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τ)1Jαβ(τ)Jα,γβ,q(τ)λ](s)=μ,ρpα,βQγ,qν,σ,δ,p;nm,w=0(w)n(1)w+m(γ)qwsβnspα+mλwΓ(pα+βn+1)Γ(mλw)m!Γ(αm+β+1)w!Γ(αw+β+1)Γ(pα+βn+mλw+1). (7.10)

    Now, back substituting μ,ρpα,βQγ,qν,σ,δ,p;n in Eq (7.10), we have

    [Dμ,ρ,γ,qα,β,ν,σ,δ,pw,a+(τ)1Jαβ(τ)Jα,γβ,q(τ)λ](s)=m,n,w=0(μ)ρn(γ)qn(w)n(dpdsp)(s)pα+βn+mλw(ν)σn(δ)pnΓ(βn+pα+ρλw+1)(γ)qwΓ(mλw)(w)n(1)m+wm!Γ(αm+β+1)w!Γ(αw+β+1)=m,n,w=0(μ)ρn(γ)qn(w)n(s)α+βn+mλw(ν)σn(δ)pnΓ(βn+mαλw+1)(γ)qwΓ(mλw)(w)n(1)m+wm!Γ(αm+β+1)w!Γ(αw+β+1)=Γ(ν)Γ(δ)Γ(μ)Γ(γ)Γ(γ)m,n=0Γ(μ+ρn)Γ(γ+qn)(wsβ)n(s)m(s)αΓ(ν+σn)Γ(δ+pn)Γ(αm+β+1)m!×2ψ2[(γ,q)(m,λ)(β+1,α)(βn+mα+1,λ)|sλ].

    Corollary 7.2. On setting α=α in theorem 10, we obtain the result,

    [Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,a+(τ)1Jαβ(τ)Jα,γβ,q(τ)λ](s)=Γ(ν)Γ(δ)Γ(μ)Γ(γ)Γ(γ)m,n=0Γ(μ+ρn)Γ(γ+qn)(wsβ)n(s)m(s)αΓ(ν+σn)Γ(δ+pn)Γ(αm+β+1)m×2ψ2[(γ,q)(m,λ)(β+1,α)(βn+m+α+1,λ)|sλ]. (7.11)

    Theorem 7.3. Let λ,η,μ,ρ,γ,α,β,ν,σ,δ,wC, (λ)>0, (w)>0, (α)>0, (β)>0, (ν)>0, (σ)>0, (δ)>0, (γ)>0, (η)>0, (ρ)>0, p,q>0 and q<(α)+p, then the following relation holds:

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+(τ)αβ12R1(αβ+u,η:αβ:τ)](s)=m,n=0((αβ)+μ)m(η)mm!(α+βn+(αβ)+1)mΓ(μ+ρn)Γ(γ+qn)sα+m+(αβ)Γ(α+βn+(αβ)+1)Γ(δ+pn)(wsβ)nΓ(ν)Γ(δ)Γ(μ)Γ(γ). (7.12)

    Proof. Consider fractional integral operator (3.1) with Gauss hypergeometric function, then the following results hold:

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+(τ)αβ12R1(αβ+u,η:αβ:τ)](s)=(dpdsp)s0(sτ)pαn=0(μ)ρn(γ)qn(w(sτ)β)n(ν)σn(δ)pnΓ(βn+pα+1)τ(αβ)1m=0((αβ)+μ)m(η)m(αβ)mm!(τ)mdτ=(dpdsp)μ,ρpα,βQγ,qν,σ,δ,p(w)nm=0((αβ)+μ)m(η)mspα+βn(αβ)mm!s0(1τs)pα+βnτm+(αβ)1dτ. (7.13)

    putting y=(τs) in Eq (7.13), we get

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+(τ)αβ12R1(αβ+u,η:αβ:τ)](s)=(dpdsp)μ,ρpα,βQγ,qν,σ,δ,p(w)nm=0((αβ)+μ)m(η)mspα+βn(αβ)mm!sm(αβ)10(1y)pα+βnym+(αβ)1dy. (7.14)

    Now using Eqs (1.14) and (1.15), we have

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+(τ)αβ12R1(αβ+u,η:αβ:τ)](s)=(dpdsp)μ,ρpα,βQγ,qν,σ,δ,p(w)nm=0((αβ)+μ)m(η)mspα+βn(αβ)mm!sm(αβ)Γ(pα+βn+1)Γ(m+(αβ))Γ(pα+βn+m+(αβ)+1). (7.15)

    By substituting μ,ρpα,βQγ,qν,σ,δ,p in Eq (7.15), we get the required result:

    [Dμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+(τ)αβ12R1(αβ+u,η:αβ:τ)](s)=m,n=0(μ)ρn(γ)qn(w)n((αβ)+μ)m(η)mΓ(m+(αβ))(ν)σn(δ)pn(αβ)mm!Γ(pα+βn+m+(αβ)+1)dpdspspα+βn+m+(αβ)=m,n=0((αβ)+μ)m(η)mm!(α+βn+(αβ)+1)m(wsβ)nΓ(ν)Γ(δ)Γ(μ)Γ(γ)Γ(μ+ρn)Γ(γ+qn)Γ(ν+σn)Γ(δ+pn)sα+m+(αβ)(wsβ)nΓ(α+βn+(αβ)+1). (7.16)

    Corollary 7.3. By putting α=α in Theorem 11, we get

    [Zμ,ρ,γ,qα,β,ν,σ,δ,p,w,0+(τ)αβ12R1(αβ+u,η:αβ:τ)](s)=n,m=0((αβ)+μ)m(η)mm!(α+βn+(αβ)+1)m(wsβ)nΓ(ν)Γ(δ)Γ(μ)Γ(γ)γ(μ+ρn)Γ(γ+qn)Γ(ν+σn)Γ(δ+pn)sα+m+(αβ)(wsβ)nΓ(α+βn+(αβ)+1). (7.17)

    We have described new generalized fractional integral operator and its inverse operator with generalized Bessel-Maitland function (BMF-Ⅴ) as its kernel. We examined the behavior of new operator's with some fractional operators (Riemann-Liouville and Saigo). We discussed the generalized fractional integral operator with some other special functions.

    This work was supported by Taif University researchers supporting project number (TURSP-2020/102), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no competing interests.



    [1] P. Agarwal, Pathway fractional integral formulas involving Bessel function of the first kind, Adv. Stud. Contemp. Math., 25 (2015), 221–231.
    [2] P. Agarwal, S. Jain, M. Chand, S. K. Dwivedi, S. Kumar, Bessel functions associated with Saigo-Maeda fractional derivative operators, J. Fract. Calc. Aappl., 5 (2014), 102–112.
    [3] Y. A. Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, CRC press, 2008.
    [4] W. A. Khan, K. S. Nisar, Unified integral operator involving generalized Bessel-Maitland function, 2017, arXiv: 1704.09000.
    [5] M. S. Abouzaid, A. H. Abusufian, K. S. Nisar, Some unified integrals associated with generalized Bessel-Maitland function, 2016, arXiv: 1605.09200.
    [6] W. A. Khan, K. S. Nisar, J. Choi, An integral formula of the Mellin transform type involving the extended Wright-Bessel function, FJMS, 102 (2017), 2903–2912.
    [7] M. Ali, W. A. Khan, I. A. Khan, On certain integral transform involving generalized Bessel-Maitland function and applications, J. Fract. Calc. Appl., 11 (2020), 82–90.
    [8] M. Ali, W. A. Khan, I. A. Khan, Study on double integral operator associated with generalized Bessel-Maitland function, Palest. J. Math. 9 (2020), 991–998.
    [9] H. Srivastava, H. L. Manocha, Treatise on generating functions, New York: John Wiley and Sons, 1984,500.
    [10] E. D. Rainville, Special functions, New York: Macmillan Company, 1971.
    [11] O. A. Arqub, Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm, Calcolo, 55 (2018), 31. doi: 10.1007/s10092-018-0274-3. doi: 10.1007/s10092-018-0274-3
    [12] O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. doi: 10.1108/HFF-10-2017-0394. doi: 10.1108/HFF-10-2017-0394
    [13] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method. H., 28 (2018), 828–856. doi: 10.1108/HFF-07-2016-0278. doi: 10.1108/HFF-07-2016-0278
    [14] O. A. Arqub, Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates, J. Appl. Math. Comput., 59 (2019), 227–243. doi: 10.1007/s12190-018-1176-x. doi: 10.1007/s12190-018-1176-x
    [15] N. U. Khan, T. Usman, M. Ghayasuddin, A new class of unified integral formulas associated with whittaker functions, NTMSCI, 4 (2016), 160–167. doi: 10.20852/ntmsci.2016115851. doi: 10.20852/ntmsci.2016115851
    [16] O. Khan, M. Kamarujjama, N. U. Khan, Certain integral transforms involving the product of Galue type struve function and Jacobi polynomial, Palest. J. Math., 6 (2017), 1–9.
    [17] G. Dattoli, S. Lorenzutta, G. Maino, Generalized Bessel functions and exact solutions of partial differential equations, Rend. Mat., 7 (1992), 12.
    [18] V. S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241–259. doi: 10.1016/S0377-0427(00)00292-2. doi: 10.1016/S0377-0427(00)00292-2
    [19] M. Kamarujjama, Owais khan, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228–236. doi: 10.1016/j.cam.2018.11.014. doi: 10.1016/j.cam.2018.11.014
    [20] J. Choi, P. Agarwal, S. Mathur, S. D. Purohit, Certain new integral formulas involving the generalized Bessel functions, B. Korean Math. Soc., 51 (2014), 995–1003. doi: 10.4134/BKMS.2014.51.4.995. doi: 10.4134/BKMS.2014.51.4.995
    [21] N. U. Khan, M. Ghayasuddin, W. A. Khan, S. Zia, Certain unified integral involving generalized Bessel-Maitland function, South East Asian J. Math. Math. Sci., 11 (2015), 27–36.
    [22] D. L. Suthar, H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Appl. Appl. Math., 12 (2017), 1002–1016.
    [23] Y. L. Luke, Integrals of Bessel functions, Courier Corporation, 2014.
    [24] D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh, Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus, AIMS Mathematics, 5 (2020), 1400–1410. doi: 10.3934/math.2020096. doi: 10.3934/math.2020096
    [25] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995.
    [26] O. I. Merichev, Handbook of integral transforms and higher transcendental functions, 1983.
    [27] M. Singh, M. A. Khan, A. H. Khan, A. H. Khan, On some properties of a generalization of Bessel-Maitland function, Int. J. Math. Trends Technol., 14 (2014), 46–54.
    [28] M. Ghayasuddin, W. A. Khan, A new extension of Bessel-Maitland function and its properties, Mat. Vestn., 70 (2018), 292–302.
    [29] R. S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, K. S. Nisar, Some fractional operators with the generalized Bessel-Maitland function, Discrete Dyn. Nat. Soc., 2020 (2020), 1378457. doi: 10.1155/2020/1378457. doi: 10.1155/2020/1378457
    [30] W. A. Khan, I. A. Khan, M. Ahmad, On certain integral transforms involving generalized Bessel-Maitland function, J. Appl. Pure Math., 2 (2020), 63–78.
    [31] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Kyushu Univ., 11 (1978), 135–143.
    [32] A. A. Kilbas, I. Oleg, Marichev, S. G. Samko, Fractional integrals and derivatives (theory and application), Yverdon, Switzerland: Gordon and Breach Science publishers, 1993.
    [33] A. Petojevic, A note about the Pochhammer symbol, Math. Moravica, 12 (2008), 37–42.
    [34] S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equ., 2019 (2019), 520. doi: 10.1186/s13662-019-2458-9. doi: 10.1186/s13662-019-2458-9
    [35] E. D. Rainville, The Laplace transform: an introduction, New York: Macmillan, 1963.
    [36] S. Ahmed, On the generalized fractional integrals of the generalized Mittag-Leffler function, SpringerPlus, 3 (2014), 198. doi: 10.1186/2193-1801-3-198. doi: 10.1186/2193-1801-3-198
    [37] D. V. Widder, Laplace transform (PMS-6), Princeton university press, 2015.
    [38] T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama City University, 1971.
    [39] M. A. Khan, S. Ahmed, On some properties of the generalized Mittag-Leffler function, SpringerPlus, 2 (2013), 337. doi: 10.1186/2193-1801-2-337. doi: 10.1186/2193-1801-2-337
    [40] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1–13.
    [41] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. doi: 10.1016/j.jmaa.2007.03.018. doi: 10.1016/j.jmaa.2007.03.018
    [42] A. Wiman, Uber den fundamentalsatz in der teorie der funktionen Ea (x), Acta Math., 29 (1905), 191–201. doi: 10.1007/BF02403202. doi: 10.1007/BF02403202
    [43] G. M. Mittag-Leffler, Sur la nouvelle fonction Ea (x), Paris: C. R. Acad. Sci., 137 (1903), 554–558.
    [44] T. N. Srivastava, Y. P. Singh, On Maitland's generalised Bessel function, Can. Math. Bull., 11 (1968), 739–741. doi: 10.4153/CMB-1968-091-5. doi: 10.4153/CMB-1968-091-5
    [45] G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244–4253. doi: 10.22436/jnsa.010.08.19. doi: 10.22436/jnsa.010.08.19
    [46] A. A. Kilbas, N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Integr. Transf. Spec. F., 19 (2008), 869–883. doi: 10.1080/10652460802295978. doi: 10.1080/10652460802295978
  • This article has been cited by:

    1. Shahid Mubeen, Rana Safdar Ali, Yasser Elmasry, Ebenezer Bonyah, Artion Kashuri, Gauhar Rahman, Çetin Yildiz, A. Hussain, On Novel Fractional Integral and Differential Operators and Their Properties, 2023, 2023, 2314-4785, 1, 10.1155/2023/4165363
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2439) PDF downloads(121) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog