Research article Special Issues

On generalized fractional integral operator associated with generalized Bessel-Maitland function

  • Received: 23 September 2021 Accepted: 07 November 2021 Published: 23 November 2021
  • MSC : 26A33, 44A10

  • In this paper, we describe generalized fractional integral operator and its inverse with generalized Bessel-Maitland function (BMF-Ⅴ) as its kernel. We discuss its convergence, boundedness, its relation with other well known fractional operators (Saigo fractional integral operator, Riemann-Liouville fractional operator), and establish its integral transform. Moreover, we have given the relationship of BMF-Ⅴ with Mittag-Leffler functions.

    Citation: Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed. On generalized fractional integral operator associated with generalized Bessel-Maitland function[J]. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167

    Related Papers:

  • In this paper, we describe generalized fractional integral operator and its inverse with generalized Bessel-Maitland function (BMF-Ⅴ) as its kernel. We discuss its convergence, boundedness, its relation with other well known fractional operators (Saigo fractional integral operator, Riemann-Liouville fractional operator), and establish its integral transform. Moreover, we have given the relationship of BMF-Ⅴ with Mittag-Leffler functions.



    加载中


    [1] P. Agarwal, Pathway fractional integral formulas involving Bessel function of the first kind, Adv. Stud. Contemp. Math., 25 (2015), 221–231.
    [2] P. Agarwal, S. Jain, M. Chand, S. K. Dwivedi, S. Kumar, Bessel functions associated with Saigo-Maeda fractional derivative operators, J. Fract. Calc. Aappl., 5 (2014), 102–112.
    [3] Y. A. Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, CRC press, 2008.
    [4] W. A. Khan, K. S. Nisar, Unified integral operator involving generalized Bessel-Maitland function, 2017, arXiv: 1704.09000.
    [5] M. S. Abouzaid, A. H. Abusufian, K. S. Nisar, Some unified integrals associated with generalized Bessel-Maitland function, 2016, arXiv: 1605.09200.
    [6] W. A. Khan, K. S. Nisar, J. Choi, An integral formula of the Mellin transform type involving the extended Wright-Bessel function, FJMS, 102 (2017), 2903–2912.
    [7] M. Ali, W. A. Khan, I. A. Khan, On certain integral transform involving generalized Bessel-Maitland function and applications, J. Fract. Calc. Appl., 11 (2020), 82–90.
    [8] M. Ali, W. A. Khan, I. A. Khan, Study on double integral operator associated with generalized Bessel-Maitland function, Palest. J. Math. 9 (2020), 991–998.
    [9] H. Srivastava, H. L. Manocha, Treatise on generating functions, New York: John Wiley and Sons, 1984,500.
    [10] E. D. Rainville, Special functions, New York: Macmillan Company, 1971.
    [11] O. A. Arqub, Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm, Calcolo, 55 (2018), 31. doi: 10.1007/s10092-018-0274-3. doi: 10.1007/s10092-018-0274-3
    [12] O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. doi: 10.1108/HFF-10-2017-0394. doi: 10.1108/HFF-10-2017-0394
    [13] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method. H., 28 (2018), 828–856. doi: 10.1108/HFF-07-2016-0278. doi: 10.1108/HFF-07-2016-0278
    [14] O. A. Arqub, Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates, J. Appl. Math. Comput., 59 (2019), 227–243. doi: 10.1007/s12190-018-1176-x. doi: 10.1007/s12190-018-1176-x
    [15] N. U. Khan, T. Usman, M. Ghayasuddin, A new class of unified integral formulas associated with whittaker functions, NTMSCI, 4 (2016), 160–167. doi: 10.20852/ntmsci.2016115851. doi: 10.20852/ntmsci.2016115851
    [16] O. Khan, M. Kamarujjama, N. U. Khan, Certain integral transforms involving the product of Galue type struve function and Jacobi polynomial, Palest. J. Math., 6 (2017), 1–9.
    [17] G. Dattoli, S. Lorenzutta, G. Maino, Generalized Bessel functions and exact solutions of partial differential equations, Rend. Mat., 7 (1992), 12.
    [18] V. S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241–259. doi: 10.1016/S0377-0427(00)00292-2. doi: 10.1016/S0377-0427(00)00292-2
    [19] M. Kamarujjama, Owais khan, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228–236. doi: 10.1016/j.cam.2018.11.014. doi: 10.1016/j.cam.2018.11.014
    [20] J. Choi, P. Agarwal, S. Mathur, S. D. Purohit, Certain new integral formulas involving the generalized Bessel functions, B. Korean Math. Soc., 51 (2014), 995–1003. doi: 10.4134/BKMS.2014.51.4.995. doi: 10.4134/BKMS.2014.51.4.995
    [21] N. U. Khan, M. Ghayasuddin, W. A. Khan, S. Zia, Certain unified integral involving generalized Bessel-Maitland function, South East Asian J. Math. Math. Sci., 11 (2015), 27–36.
    [22] D. L. Suthar, H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Appl. Appl. Math., 12 (2017), 1002–1016.
    [23] Y. L. Luke, Integrals of Bessel functions, Courier Corporation, 2014.
    [24] D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh, Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus, AIMS Mathematics, 5 (2020), 1400–1410. doi: 10.3934/math.2020096. doi: 10.3934/math.2020096
    [25] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995.
    [26] O. I. Merichev, Handbook of integral transforms and higher transcendental functions, 1983.
    [27] M. Singh, M. A. Khan, A. H. Khan, A. H. Khan, On some properties of a generalization of Bessel-Maitland function, Int. J. Math. Trends Technol., 14 (2014), 46–54.
    [28] M. Ghayasuddin, W. A. Khan, A new extension of Bessel-Maitland function and its properties, Mat. Vestn., 70 (2018), 292–302.
    [29] R. S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, K. S. Nisar, Some fractional operators with the generalized Bessel-Maitland function, Discrete Dyn. Nat. Soc., 2020 (2020), 1378457. doi: 10.1155/2020/1378457. doi: 10.1155/2020/1378457
    [30] W. A. Khan, I. A. Khan, M. Ahmad, On certain integral transforms involving generalized Bessel-Maitland function, J. Appl. Pure Math., 2 (2020), 63–78.
    [31] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Kyushu Univ., 11 (1978), 135–143.
    [32] A. A. Kilbas, I. Oleg, Marichev, S. G. Samko, Fractional integrals and derivatives (theory and application), Yverdon, Switzerland: Gordon and Breach Science publishers, 1993.
    [33] A. Petojevic, A note about the Pochhammer symbol, Math. Moravica, 12 (2008), 37–42.
    [34] S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equ., 2019 (2019), 520. doi: 10.1186/s13662-019-2458-9. doi: 10.1186/s13662-019-2458-9
    [35] E. D. Rainville, The Laplace transform: an introduction, New York: Macmillan, 1963.
    [36] S. Ahmed, On the generalized fractional integrals of the generalized Mittag-Leffler function, SpringerPlus, 3 (2014), 198. doi: 10.1186/2193-1801-3-198. doi: 10.1186/2193-1801-3-198
    [37] D. V. Widder, Laplace transform (PMS-6), Princeton university press, 2015.
    [38] T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama City University, 1971.
    [39] M. A. Khan, S. Ahmed, On some properties of the generalized Mittag-Leffler function, SpringerPlus, 2 (2013), 337. doi: 10.1186/2193-1801-2-337. doi: 10.1186/2193-1801-2-337
    [40] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1–13.
    [41] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. doi: 10.1016/j.jmaa.2007.03.018. doi: 10.1016/j.jmaa.2007.03.018
    [42] A. Wiman, Uber den fundamentalsatz in der teorie der funktionen Ea (x), Acta Math., 29 (1905), 191–201. doi: 10.1007/BF02403202. doi: 10.1007/BF02403202
    [43] G. M. Mittag-Leffler, Sur la nouvelle fonction Ea (x), Paris: C. R. Acad. Sci., 137 (1903), 554–558.
    [44] T. N. Srivastava, Y. P. Singh, On Maitland's generalised Bessel function, Can. Math. Bull., 11 (1968), 739–741. doi: 10.4153/CMB-1968-091-5. doi: 10.4153/CMB-1968-091-5
    [45] G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244–4253. doi: 10.22436/jnsa.010.08.19. doi: 10.22436/jnsa.010.08.19
    [46] A. A. Kilbas, N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Integr. Transf. Spec. F., 19 (2008), 869–883. doi: 10.1080/10652460802295978. doi: 10.1080/10652460802295978
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1946) PDF downloads(116) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog