Research article Special Issues

Some new Caputo fractional derivative inequalities for exponentially $ (\theta, h-m) $–convex functions

  • Received: 31 May 2021 Accepted: 09 November 2021 Published: 23 November 2021
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15

  • Firstly, we obtain some inequalities of Hadamard type for exponentially $ (\theta, h-m) $–convex functions via Caputo $ k $–fractional derivatives. Secondly, using integral identity including the $ (n+1) $–order derivative of a given function via Caputo $ k $-fractional derivatives we prove some of its related results. Some new results are given and known results are recaptured as special cases from our results.

    Citation: Imran Abbas Baloch, Thabet Abdeljawad, Sidra Bibi, Aiman Mukheimer, Ghulam Farid, Absar Ul Haq. Some new Caputo fractional derivative inequalities for exponentially $ (\theta, h-m) $–convex functions[J]. AIMS Mathematics, 2022, 7(2): 3006-3026. doi: 10.3934/math.2022166

    Related Papers:

  • Firstly, we obtain some inequalities of Hadamard type for exponentially $ (\theta, h-m) $–convex functions via Caputo $ k $–fractional derivatives. Secondly, using integral identity including the $ (n+1) $–order derivative of a given function via Caputo $ k $-fractional derivatives we prove some of its related results. Some new results are given and known results are recaptured as special cases from our results.



    加载中


    [1] M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi–convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225–232. doi: 10.1016/j.camwa.2009.08.002. doi: 10.1016/j.camwa.2009.08.002
    [2] G. A. Anastassiou, Generalized fractional Hermite Hadamard inequalities involving $m$–convexity and $(s, m)$–convexity, Facta Univ. Ser. Math. Inform, 28 (2013), 107–126.
    [3] M. U. Awan, M. A. Noor, K. I. Noor, Hermite–Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405–409.
    [4] F. X. Chen, S. H. Wu, Several complementary inequalities to inequalities of Hermite–Hadamard type for $s$–convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705–716.
    [5] F. X. Chen, On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity, Chin. J. Math., 2014 (2014), 173293. doi: 10.1155/2014/173293. doi: 10.1155/2014/173293
    [6] S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [7] G. Farid, Study of a generalized Riemann–Liouville fractional integral via convex functions, Commun. Fac. Sci. Univ., 69 (2020), 37–48. doi: 10.31801/cfsuasmas.484437. doi: 10.31801/cfsuasmas.484437
    [8] G. Farid, A. Javed, On Hadamard and Fejér–Hadamard inequalities for Caputo $k$–fractional derivatives, Int. J. Nonlinear Anal. Appl., 9 (2018), 69–81. doi: 10.22075/IJNAA.2018.10724.1521. doi: 10.22075/IJNAA.2018.10724.1521
    [9] G. Farid, A. Javed, A. U. Rehman, On Hadamard inequalities for $n$–times differentiable functions which are relative convex via Caputo $k$–fractional derivatives, Nonlinear Anal. Forum, 22 (2017), 17–28.
    [10] G. Farid, A. Javed, A. U. Rehman, M. I. Qureshi, On Hadamard type inequalities for differentiable functions via Caputo $k$–fractional derivatives, Cogent Math., 4 (2017), 1355429. doi: 10.1080/23311835.2017.1355429. doi: 10.1080/23311835.2017.1355429
    [11] W. F. He, G. Farid, K. Mahreen, M. Zahra, N. Chen, On an integral and consequent fractional integral operators via generalized convexity, AIMS Mathematics, 6 (2020), 7632–7648. doi: 10.3934/math.2020488. doi: 10.3934/math.2020488
    [12] G. Farid, A. U. Rehman, Q. U. Ain, $k$–fractional integral inequalities of Hadamard type for $(h-m)$–convex functions, Comput. Methods Differ. Equ., 8 (2020), 119–140. doi: 10.22034/CMDE.2019.9462. doi: 10.22034/CMDE.2019.9462
    [13] G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for $k$–fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478.
    [14] E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numer. Math. Math. Phys., 166 (1985), 138–142.
    [15] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Wien: Springer Verlag, 378 (1997), doi: 10.1007/978-3-7091-2664-6_5.
    [16] A. A. Mughal, H. Almusawa, A. U. Haq, I. A. Baloch, Properties and bounds of Jensen-type functionals via harmonic convex functions, J. Math., 2021 (2021), 5561611. doi: 10.1155/2021/5561611. doi: 10.1155/2021/5561611
    [17] A. A. Mughal, D. Afzal, T. Abdeljawad, A. Mukheimer, I. A. Baloch, Refined estimates and generalization of some recent results with applications, AIMS Mathematics, 6 (2021), 10728–10741. doi: 10.3934/math.2021623. doi: 10.3934/math.2021623
    [18] D. A Ion, Some estimates on the Hermite–Hadamard inequality through quasi–convex functions, Ann. Univ. Craiova Math. Comp. Sci. Ser., 34 (2007), 82–87.
    [19] S. M. Kang, G. Farid, W. Nazeer, S. Naqvi, A version of the Hadamard inequality for Caputo fractional derivatives and related results, J. Comput. Anal. Appl., 27 (2019), 962–972.
    [20] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [21] M. A. Khan, Y. M. Chu, A. Kashuri, R. Liko, G. Ali, Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations, J. Funct. Spaces, 2018 (2018), 6928130. doi: 10.1155/2018/6928130. doi: 10.1155/2018/6928130
    [22] W. J. Liu, W. S. Wen, J. Park, Hermite–Hadamard type inequalities for $MT$–convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766–777.
    [23] N. Mehreen, M. Anwar, Hermite–Hadamard type inequalities for exponentially $p$–convex functions and exponentially $s$–convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. doi: 10.1186/s13660-019-2047-1. doi: 10.1186/s13660-019-2047-1
    [24] L. N. Mishra, Q. U. Ain, G. Farid, A. U. Rehman, $k$–fractional integral inequalities for $(h-m)$–convex functions via Caputo $k$–fractional derivatives, Korean J. Math., 27 (2019), 357–374. doi: 10.11568/kjm.2019.27.2.357. doi: 10.11568/kjm.2019.27.2.357
    [25] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
    [26] O. Omotoyinbo, A. Mogbodemu, Some new Hermite–Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1 (2014), 1–12.
    [27] I. Podlubni, Fractional differential equations, New York/ London: Academic Press, 1999.
    [28] X. L. Qiang, G. Farid, J. Pečarić, S. B. Akbar, Generalized fractional integral inequalities for exponentially $(s, m)$–convex functions, J. Inequal. Appl., 2020 (2020), 70. doi: 10.1186/s13660-020-02335-7. doi: 10.1186/s13660-020-02335-7
    [29] S. Rashid, M. A. Noor, K. I. Noor, Fractional exponentially $m$–convex functions and inequalities, Int. J. Anal. Appl., 17 (2019), 464–478.
    [30] E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite–Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169. doi: 10.1186/s13660-017-1444-6. doi: 10.1186/s13660-017-1444-6
    [31] G. Toader, Some generalizations of the convexity, Univ. Cluj-Napoca, 1985,329–338.
    [32] S. Varošanec, On $h$–convexity, J. Math. Anal. Appl., 326 (2007), 303–311. doi: 10.1016/j.jmaa.2006.02.086. doi: 10.1016/j.jmaa.2006.02.086
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(73) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog