Research article

Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator

  • Received: 19 December 2020 Accepted: 25 March 2021 Published: 12 April 2021
  • MSC : 26A51, 26A33, 26D15

  • The aim of this paper is to study $ h $ convex functions and present some inequalities of Caputo-Fabrizio fractional operator. Precisely speaking, we presented Hermite-Hadamard type inequality via $ h $ convex function involving Caputo-Fabrizio fractional operator. We also presented some new inequalities for the class of $ h $ convex functions. Moreover, we also presented some applications of our results in special means which play a significant role in applied and pure mathematics, especially the accuracy of a results can be confirmed by through special means.

    Citation: Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan. Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator[J]. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374

    Related Papers:

  • The aim of this paper is to study $ h $ convex functions and present some inequalities of Caputo-Fabrizio fractional operator. Precisely speaking, we presented Hermite-Hadamard type inequality via $ h $ convex function involving Caputo-Fabrizio fractional operator. We also presented some new inequalities for the class of $ h $ convex functions. Moreover, we also presented some applications of our results in special means which play a significant role in applied and pure mathematics, especially the accuracy of a results can be confirmed by through special means.



    加载中


    [1] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13.
    [2] S. Das, Functional fractional calculus, Springer Science & Business Media, 2011.
    [3] H. Ahmad, A. R. Seadawy, T. A. Khan, P. Thounthong, Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations, J. Taibah Univ. Sci., 14 (2020), 346–358. doi: 10.1080/16583655.2020.1741943
    [4] I. Ahmad, H. Ahmad, A. E. Abouelregal, P. Thounthong, M. Abdel-Aty, Numerical study of integer-order hyperbolic telegraph model arising in physical and related sciences, Eur. Phys. J. Plus, 135 (2020), 1–14. doi: 10.1140/epjp/s13360-019-00059-2
    [5] F. Cesarone, M. Caputo, C. Cametti, Memory formalism in the passive diffusion across a biological membrane, J. Membrane Sci., 250 (2004), 79–84.
    [6] M. Caputo, C. Cametti, Diffusion with memory in two cases of biological interest, J. Theor. Biol., 254 (2008), 697–703. doi: 10.1016/j.jtbi.2008.06.021
    [7] M. Caputo, F. Forte, European union and european monetary union as clubs. The unsatisfactory convergence and beyond, Sudeuropa, Quadrimestrale Civiltae Cultura Eur., 1 (2016), 1–30.
    [8] G. Jumarie, New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Model., 44 (2006), 231–254. doi: 10.1016/j.mcm.2005.10.003
    [9] G. Iaffaldano, M. Caputo, S. Martino, Experimental and theoretical memory diffusion of water in sand, Hydrol. Earth Syst. Sci., 10 (2006), 93–100. doi: 10.5194/hess-10-93-2006
    [10] M. El-Shahed, Fractional calculus model of the semilunar heart valve vibrations, In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 37033 (2003), 711–714.
    [11] R. L. Magin, Fractional calculus in bioengineering, Redding: Begell House, 2006.
    [12] D. Baleanu, H. Mohammadi, S. Rezapour, A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the Rubella disease model, Adv. Differ. Equ., 2020 (2020), 1–19. doi: 10.1186/s13662-019-2438-0
    [13] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier dune fonction consideree par Riemann, J. Math. Pures Appl., (1893), 171–216.
    [14] C. Hua, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018
    [15] E. Set, I. Iscan, M. Z. Sarikaya, M. E. Ozdemir, On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals, Appl. Math. Comput., 259 (2015), 875–881. doi: 10.1016/j.amc.2015.03.030
    [16] E. Set, M. Z. Sarikaya, F. Karakoc, Hermite-Hadamard type inequalities for h-convex functions via fractional integrals, Konuralp J. Math., 4 (2016), 254–260.
    [17] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. stat., 43 (2014), 935–942.
    [18] M. Gurbuz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 1–10. doi: 10.1186/s13660-019-2265-6
    [19] S. Varoanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311.
    [20] S. Foschi, D. Ritelli, The Lambert function, the quintic equation and the proactive discovery of the implicit function theorem, Open J. Math. Sci., 5 (2021), 94–114.
    [21] G. Twagirumukiza, E. Singirankabo, Mathematical analysis of a delayed HIV/AIDS model with treatment and vertical transmission, Open J. Math. Sci., 5 (2021), 128–146. doi: 10.30538/oms2021.0151
    [22] S. E. Mukiawa, The effect of time-varying delay damping on the stability of porous elastic system, Open J. Math. Sci., 5 (2021), 147–161.
    [23] A. Yokus, B. Kuzu, U. Demiroglu, Investigation of solitary wave solutions for the (3+1)-dimensional Zakharov-Kuznetsov equation, Int. J. Mod. Phys. B, 33 (2019), 1950350. doi: 10.1142/S0217979219503508
    [24] A. Yokus, H. Bulut, On the numerical investigations to the Cahn-Allen equation by using finite difference method, Int. J. Optim. Control: Theor. Appl. (IJOCTA), 9 (2018), 18–23. doi: 10.11121/ijocta.01.2019.00561
    [25] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized riemann-liouville $ k $-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. doi: 10.1109/ACCESS.2018.2878266
    [26] G. Farid, A. U. Rehman, S. Bibi, Y. M. Chu, Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results, Open J. Math. Sci., 5 (2021), 1–10. doi: 10.30538/oms2021.0139
    [27] Y. C. Kwun, G. Farid, S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283–126292. doi: 10.1109/ACCESS.2019.2939166
    [28] V. T. Nguyen, V. K. Nguyen, P. H. Quy, A note on Jesmanowicz conjecture for non-primitive Pythagorean triples, Open J. Math. Sci., 5 (2021), 115–127. doi: 10.30538/oms2021.0150
    [29] X. Z. Yang, G. Farid, W. Nazeer, Y. M. Chu, C. F. Dong, Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325–6340. doi: 10.3934/math.2020407
    [30] G. Farid, K. Mahreen, Y. M. Chu, Study of inequalities for unified integral operators of generalized convex functions, Open J. Math. Sci., 5 (2021), 80–93. doi: 10.30538/oms2021.0147
    [31] A. A. Al-Gonah, W. K. Mohammed, A new forms of extended hypergeometric functions and their properties, Eng. Appl. Sci. Lett., 4 (2021), 30–41.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2492) PDF downloads(187) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog