The aim of this paper is to study $ h $ convex functions and present some inequalities of Caputo-Fabrizio fractional operator. Precisely speaking, we presented Hermite-Hadamard type inequality via $ h $ convex function involving Caputo-Fabrizio fractional operator. We also presented some new inequalities for the class of $ h $ convex functions. Moreover, we also presented some applications of our results in special means which play a significant role in applied and pure mathematics, especially the accuracy of a results can be confirmed by through special means.
Citation: Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan. Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator[J]. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374
The aim of this paper is to study $ h $ convex functions and present some inequalities of Caputo-Fabrizio fractional operator. Precisely speaking, we presented Hermite-Hadamard type inequality via $ h $ convex function involving Caputo-Fabrizio fractional operator. We also presented some new inequalities for the class of $ h $ convex functions. Moreover, we also presented some applications of our results in special means which play a significant role in applied and pure mathematics, especially the accuracy of a results can be confirmed by through special means.
[1] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13. |
[2] | S. Das, Functional fractional calculus, Springer Science & Business Media, 2011. |
[3] | H. Ahmad, A. R. Seadawy, T. A. Khan, P. Thounthong, Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations, J. Taibah Univ. Sci., 14 (2020), 346–358. doi: 10.1080/16583655.2020.1741943 |
[4] | I. Ahmad, H. Ahmad, A. E. Abouelregal, P. Thounthong, M. Abdel-Aty, Numerical study of integer-order hyperbolic telegraph model arising in physical and related sciences, Eur. Phys. J. Plus, 135 (2020), 1–14. doi: 10.1140/epjp/s13360-019-00059-2 |
[5] | F. Cesarone, M. Caputo, C. Cametti, Memory formalism in the passive diffusion across a biological membrane, J. Membrane Sci., 250 (2004), 79–84. |
[6] | M. Caputo, C. Cametti, Diffusion with memory in two cases of biological interest, J. Theor. Biol., 254 (2008), 697–703. doi: 10.1016/j.jtbi.2008.06.021 |
[7] | M. Caputo, F. Forte, European union and european monetary union as clubs. The unsatisfactory convergence and beyond, Sudeuropa, Quadrimestrale Civiltae Cultura Eur., 1 (2016), 1–30. |
[8] | G. Jumarie, New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Model., 44 (2006), 231–254. doi: 10.1016/j.mcm.2005.10.003 |
[9] | G. Iaffaldano, M. Caputo, S. Martino, Experimental and theoretical memory diffusion of water in sand, Hydrol. Earth Syst. Sci., 10 (2006), 93–100. doi: 10.5194/hess-10-93-2006 |
[10] | M. El-Shahed, Fractional calculus model of the semilunar heart valve vibrations, In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 37033 (2003), 711–714. |
[11] | R. L. Magin, Fractional calculus in bioengineering, Redding: Begell House, 2006. |
[12] | D. Baleanu, H. Mohammadi, S. Rezapour, A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the Rubella disease model, Adv. Differ. Equ., 2020 (2020), 1–19. doi: 10.1186/s13662-019-2438-0 |
[13] | J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier dune fonction consideree par Riemann, J. Math. Pures Appl., (1893), 171–216. |
[14] | C. Hua, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018 |
[15] | E. Set, I. Iscan, M. Z. Sarikaya, M. E. Ozdemir, On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals, Appl. Math. Comput., 259 (2015), 875–881. doi: 10.1016/j.amc.2015.03.030 |
[16] | E. Set, M. Z. Sarikaya, F. Karakoc, Hermite-Hadamard type inequalities for h-convex functions via fractional integrals, Konuralp J. Math., 4 (2016), 254–260. |
[17] | I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. stat., 43 (2014), 935–942. |
[18] | M. Gurbuz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 1–10. doi: 10.1186/s13660-019-2265-6 |
[19] | S. Varoanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. |
[20] | S. Foschi, D. Ritelli, The Lambert function, the quintic equation and the proactive discovery of the implicit function theorem, Open J. Math. Sci., 5 (2021), 94–114. |
[21] | G. Twagirumukiza, E. Singirankabo, Mathematical analysis of a delayed HIV/AIDS model with treatment and vertical transmission, Open J. Math. Sci., 5 (2021), 128–146. doi: 10.30538/oms2021.0151 |
[22] | S. E. Mukiawa, The effect of time-varying delay damping on the stability of porous elastic system, Open J. Math. Sci., 5 (2021), 147–161. |
[23] | A. Yokus, B. Kuzu, U. Demiroglu, Investigation of solitary wave solutions for the (3+1)-dimensional Zakharov-Kuznetsov equation, Int. J. Mod. Phys. B, 33 (2019), 1950350. doi: 10.1142/S0217979219503508 |
[24] | A. Yokus, H. Bulut, On the numerical investigations to the Cahn-Allen equation by using finite difference method, Int. J. Optim. Control: Theor. Appl. (IJOCTA), 9 (2018), 18–23. doi: 10.11121/ijocta.01.2019.00561 |
[25] | Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized riemann-liouville $ k $-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. doi: 10.1109/ACCESS.2018.2878266 |
[26] | G. Farid, A. U. Rehman, S. Bibi, Y. M. Chu, Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results, Open J. Math. Sci., 5 (2021), 1–10. doi: 10.30538/oms2021.0139 |
[27] | Y. C. Kwun, G. Farid, S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283–126292. doi: 10.1109/ACCESS.2019.2939166 |
[28] | V. T. Nguyen, V. K. Nguyen, P. H. Quy, A note on Jesmanowicz conjecture for non-primitive Pythagorean triples, Open J. Math. Sci., 5 (2021), 115–127. doi: 10.30538/oms2021.0150 |
[29] | X. Z. Yang, G. Farid, W. Nazeer, Y. M. Chu, C. F. Dong, Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325–6340. doi: 10.3934/math.2020407 |
[30] | G. Farid, K. Mahreen, Y. M. Chu, Study of inequalities for unified integral operators of generalized convex functions, Open J. Math. Sci., 5 (2021), 80–93. doi: 10.30538/oms2021.0147 |
[31] | A. A. Al-Gonah, W. K. Mohammed, A new forms of extended hypergeometric functions and their properties, Eng. Appl. Sci. Lett., 4 (2021), 30–41. |