In this paper, we introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $ q $-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions, and we obtain an estimation for Fekete-Szegö problem for this class.
Citation: Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan. Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial[J]. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165
In this paper, we introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $ q $-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions, and we obtain an estimation for Fekete-Szegö problem for this class.
[1] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0. doi: 10.1007/s40995-019-00815-0 |
[2] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, New York: Wiley, 1985. |
[3] | H. M. Srivastava, Certain $q$-polynomial expansions for functions of several variables. Ⅱ, IMA J. Appl. Math., 33 (1984), 205–209. doi: 10.1093/imamat/33.2.205. doi: 10.1093/imamat/33.2.205 |
[4] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Univalent functions, fractional calculus, and their applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989,329–354. |
[5] | F. H. Jackson, On $q$-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253–281, doi: 10.1017/S0080456800002751. doi: 10.1017/S0080456800002751 |
[6] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[7] | M. H. Abu Risha, M. H. Annaby, Z. S. Mansour, M. E. H. Ismail, Linear $q$-difference equations, Z. Anal. Anwend., 26 (2007), 481–494. |
[8] | F. M. Sakar, M. Naeem, S. Khan, S. Hussain, Hankel determinant for class of analytic functions involving $Q$-derivative operator, J. Adv. Math. Stud., 14 (2021), 265–278. |
[9] | T. Bulboacă, Differential subordinations and superordinations, Recent Results, House of Scientific, Cluj-Napoca, 2005. |
[10] | S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, CRC Press, 2000. |
[11] | P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, New York: Springer, 1983. |
[12] | M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. doi: 10.2307/2035225. doi: 10.2307/2035225 |
[13] | D. A. Brannan, J. Clunie, Aspects of contemporary complex analysis, Academic Press, 1980. |
[14] | E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\left\vert z\right\vert <1$, Arch. Ration. Mech. Anal., 32 (1969), 100–112. doi: 10.1007/BF00247676. doi: 10.1007/BF00247676 |
[15] | H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1843. |
[16] | H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. doi: 10.1016/j.aml.2010.05.009. doi: 10.1016/j.aml.2010.05.009 |
[17] | D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of starlike functions, Can. J. Math., 22 (1970), 476–485. |
[18] | D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl., 1988, 53–60. doi: 10.1016/B978-0-08-031636-9.50012-7. doi: 10.1016/B978-0-08-031636-9.50012-7 |
[19] | M. Çaglar, H. Orhan, N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165–1171. |
[20] | H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831–842. |
[21] | G. Faber, Ůber polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. doi: 10.1007/BF01444293. doi: 10.1007/BF01444293 |
[22] | P. G. Todorov, On the Faber polynomials of the univalent functions of class $\Sigma$, J. Math. Anal. Appl., 162 (1991), 268–276. doi: 10.1016/0022-247X(91)90193-4. doi: 10.1016/0022-247X(91)90193-4 |
[23] | S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Math., 352 (2014), 17–20. doi: 10.1016/j.crma.2013.11.005. doi: 10.1016/j.crma.2013.11.005 |
[24] | S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103–1119. |
[25] | S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient of bi-subordinate functions, C. R. Math., 354 (2016), 365–370. doi: 10.1016/j.crma.2016.01.013. doi: 10.1016/j.crma.2016.01.013 |
[26] | H. M. Srivastava, G. Murugusundaramoorthy, S. M. El-Deeb, Faber polynomial coefficient estimates of bi-close-convex functions connected with the Borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103–118. doi: 10.23952/jnva.5.2021.1.07. doi: 10.23952/jnva.5.2021.1.07 |
[27] | M. Naeem, S. Khan, F. M. Sakar, Faber polynomial coefficients estimates of bi-univalent functions, Internat. J. Maps Math., 3 (2020), 57–67. |
[28] | H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math., 5 (2020), 7087–7106. doi: 10.3934/math.2020454. doi: 10.3934/math.2020454 |
[29] | H. M. Srivastava, S. S. Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44 (2018), 149–157. doi: 10.1007/s41980-018-0011-3. doi: 10.1007/s41980-018-0011-3 |
[30] | H. M. Srivastava, A. Motamednezhad, E. A. Adegan, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1–12. doi: 10.3390/math8020172. doi: 10.3390/math8020172 |
[31] | H. M. Srivastava, F. M. Sakar, H. O. Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32 (2018), 1313–1322. doi: 10.2298/FIL1804313S. doi: 10.2298/FIL1804313S |
[32] | H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator, Stud. Univ. Babeş -Bolyai Math., 63 (2018), 419–436. doi: 10.24193/subbmath.2018.4.01. doi: 10.24193/subbmath.2018.4.01 |
[33] | S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30 (2016), 1567–1575. |
[34] | G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of mathematics and its applications, Cambridge: Cambridge University Press, 1990. |
[35] | S. M. El-Deeb, T. Bulboacă, B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the $q$-derivative, Mathematics, 8 (2020), 1–14, doi: 10.3390/math8030418. doi: 10.3390/math8030418 |
[36] | M. Arif, M. Ul Haq, J. L. Liu, A subfamily of univalent functions associated with $q$-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1–5. doi: 10.1155/2018/3818915. doi: 10.1155/2018/3818915 |
[37] | S. M. El-Deeb, T. Bulboacă, Fekete-Szegő inequalities for certain class of analytic functions connected with $q$ -anlogue of Bessel function, J. Egypt. Math. Soc., 27 (2019), 1–11. doi: 10.1186/s42787-019-0049-2. doi: 10.1186/s42787-019-0049-2 |
[38] | S. M. El-Deeb, Maclaurin Coefficient estimates for new subclasses of bi-univalent functions connected with a $q$-analogue of Bessel function, Abstr. Appl. Anal., 2020 (2020), 1–7. doi: 10.1155/2020/8368951. doi: 10.1155/2020/8368951 |
[39] | S. M. El-Deeb, T. Bulboacă, Differential sandwich-type results for symmetric functions connected with a $q$-analog integral operator, Mathematics, 7 (2019), 1–17. doi: 10.3390/math7121185. doi: 10.3390/math7121185 |
[40] | H. M. Srivastava, S. M. El-Deeb, A certain class of analytic functions of complex order with a $q$-analogue of integral operators, Miskolc Math. Notes, 21 (2020), 417–433. doi: 10.18514/MMN.2020.3102. doi: 10.18514/MMN.2020.3102 |
[41] | S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), 1–3. doi: 10.1155/2014/984135. doi: 10.1155/2014/984135 |
[42] | J. K. Prajapat, Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Model., 55 (2012), 1456–1465. doi: 10.1016/j.mcm.2011.10.024. doi: 10.1016/j.mcm.2011.10.024 |
[43] | S. M. El-Deeb, T. Bulboaca, Differential sandwich-type results for symmetric functions associated with Pascal distribution series, J. Contemp. Math. Anal., 56 (2021), 214–224. doi: 10.3103/S1068362321040105. doi: 10.3103/S1068362321040105 |
[44] | H. Aldweby, M. Darus, On a subclass of bi-univalent functions associated with the $q$-derivative operator, J. Math. Comput. Sci., 19 (2019), 58–64. doi: 10.22436/jmcs.019.01.08. doi: 10.22436/jmcs.019.01.08 |
[45] | M. Çaglar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2017), 85–91. |
[46] | S. Elhaddad, M. Darus, Coefficient estimates for a subclass of bi-univalent functions defined by $q$-derivative operator, Mathematics, 8 (2020), 306. doi: 10.3390/math8030306. doi: 10.3390/math8030306 |
[47] | W. Zhi-Gang, S. Bulut, A note on the coefficient estimates of bi-close-to-convex functions, C. R. Math., 355 (2017), 876–880. |
[48] | P. N. Kamble, M. G. Shrigan, Coefficient estimates for a subclass of bi-univalent functions defined by Sălăgean type $q$ -calculus operator, Kyungpook Math. J., 58 (2018), 677–688, doi: 10.5666/KMJ.2018.58.4.677. doi: 10.5666/KMJ.2018.58.4.677 |
[49] | H. Silverman, E. M. Silvia, Characterizations for subclasses of univalent functions, Math. Jpn., 50 (1999), 103–109. |
[50] | H. Silverman, A class of bounded starlike functions, Int. J. Math. Math. Sci., 17 (1994), 249–252. doi: 10.1155/S0161171294000360. doi: 10.1155/S0161171294000360 |
[51] | H. M. Srivastava, D. Raducanu, P. A. Zaprawa, Certain subclass of analytic functions defined by means of differential subordination, Filomat, 30 (2016), 3743–3757. |
[52] | M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc., 8 (1933), 85–89. doi: 10.1112/jlms/s1-8.2.85. doi: 10.1112/jlms/s1-8.2.85 |
[53] | P. Zaprawa, On the Fekete-Szeg$\ddot{o}$ problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. doi: 10.36045/bbms/1394544302. doi: 10.36045/bbms/1394544302 |
[54] | M. Hesam, Coefficient and Fekete-Szegö problem estimates for certain subclass of analytic and bi-univalent functions, Filomat, 34 (2020), 4637–4647. doi: 10.2298/FIL2014637M. doi: 10.2298/FIL2014637M |