Research article Special Issues

Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial

  • Received: 27 September 2021 Accepted: 15 November 2021 Published: 23 November 2021
  • MSC : 30C45, 30C80

  • In this paper, we introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $ q $-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions, and we obtain an estimation for Fekete-Szegö problem for this class.

    Citation: Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan. Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial[J]. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165

    Related Papers:

  • In this paper, we introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $ q $-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions, and we obtain an estimation for Fekete-Szegö problem for this class.



    加载中


    [1] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0. doi: 10.1007/s40995-019-00815-0
    [2] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, New York: Wiley, 1985.
    [3] H. M. Srivastava, Certain $q$-polynomial expansions for functions of several variables. Ⅱ, IMA J. Appl. Math., 33 (1984), 205–209. doi: 10.1093/imamat/33.2.205. doi: 10.1093/imamat/33.2.205
    [4] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Univalent functions, fractional calculus, and their applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989,329–354.
    [5] F. H. Jackson, On $q$-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253–281, doi: 10.1017/S0080456800002751. doi: 10.1017/S0080456800002751
    [6] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [7] M. H. Abu Risha, M. H. Annaby, Z. S. Mansour, M. E. H. Ismail, Linear $q$-difference equations, Z. Anal. Anwend., 26 (2007), 481–494.
    [8] F. M. Sakar, M. Naeem, S. Khan, S. Hussain, Hankel determinant for class of analytic functions involving $Q$-derivative operator, J. Adv. Math. Stud., 14 (2021), 265–278.
    [9] T. Bulboacă, Differential subordinations and superordinations, Recent Results, House of Scientific, Cluj-Napoca, 2005.
    [10] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, CRC Press, 2000.
    [11] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, New York: Springer, 1983.
    [12] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. doi: 10.2307/2035225. doi: 10.2307/2035225
    [13] D. A. Brannan, J. Clunie, Aspects of contemporary complex analysis, Academic Press, 1980.
    [14] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\left\vert z\right\vert <1$, Arch. Ration. Mech. Anal., 32 (1969), 100–112. doi: 10.1007/BF00247676. doi: 10.1007/BF00247676
    [15] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1843.
    [16] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. doi: 10.1016/j.aml.2010.05.009. doi: 10.1016/j.aml.2010.05.009
    [17] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of starlike functions, Can. J. Math., 22 (1970), 476–485.
    [18] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl., 1988, 53–60. doi: 10.1016/B978-0-08-031636-9.50012-7. doi: 10.1016/B978-0-08-031636-9.50012-7
    [19] M. Çaglar, H. Orhan, N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165–1171.
    [20] H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831–842.
    [21] G. Faber, Ůber polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. doi: 10.1007/BF01444293. doi: 10.1007/BF01444293
    [22] P. G. Todorov, On the Faber polynomials of the univalent functions of class $\Sigma$, J. Math. Anal. Appl., 162 (1991), 268–276. doi: 10.1016/0022-247X(91)90193-4. doi: 10.1016/0022-247X(91)90193-4
    [23] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Math., 352 (2014), 17–20. doi: 10.1016/j.crma.2013.11.005. doi: 10.1016/j.crma.2013.11.005
    [24] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103–1119.
    [25] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient of bi-subordinate functions, C. R. Math., 354 (2016), 365–370. doi: 10.1016/j.crma.2016.01.013. doi: 10.1016/j.crma.2016.01.013
    [26] H. M. Srivastava, G. Murugusundaramoorthy, S. M. El-Deeb, Faber polynomial coefficient estimates of bi-close-convex functions connected with the Borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103–118. doi: 10.23952/jnva.5.2021.1.07. doi: 10.23952/jnva.5.2021.1.07
    [27] M. Naeem, S. Khan, F. M. Sakar, Faber polynomial coefficients estimates of bi-univalent functions, Internat. J. Maps Math., 3 (2020), 57–67.
    [28] H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math., 5 (2020), 7087–7106. doi: 10.3934/math.2020454. doi: 10.3934/math.2020454
    [29] H. M. Srivastava, S. S. Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44 (2018), 149–157. doi: 10.1007/s41980-018-0011-3. doi: 10.1007/s41980-018-0011-3
    [30] H. M. Srivastava, A. Motamednezhad, E. A. Adegan, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1–12. doi: 10.3390/math8020172. doi: 10.3390/math8020172
    [31] H. M. Srivastava, F. M. Sakar, H. O. Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32 (2018), 1313–1322. doi: 10.2298/FIL1804313S. doi: 10.2298/FIL1804313S
    [32] H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator, Stud. Univ. Babeş -Bolyai Math., 63 (2018), 419–436. doi: 10.24193/subbmath.2018.4.01. doi: 10.24193/subbmath.2018.4.01
    [33] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30 (2016), 1567–1575.
    [34] G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of mathematics and its applications, Cambridge: Cambridge University Press, 1990.
    [35] S. M. El-Deeb, T. Bulboacă, B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the $q$-derivative, Mathematics, 8 (2020), 1–14, doi: 10.3390/math8030418. doi: 10.3390/math8030418
    [36] M. Arif, M. Ul Haq, J. L. Liu, A subfamily of univalent functions associated with $q$-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1–5. doi: 10.1155/2018/3818915. doi: 10.1155/2018/3818915
    [37] S. M. El-Deeb, T. Bulboacă, Fekete-Szegő inequalities for certain class of analytic functions connected with $q$ -anlogue of Bessel function, J. Egypt. Math. Soc., 27 (2019), 1–11. doi: 10.1186/s42787-019-0049-2. doi: 10.1186/s42787-019-0049-2
    [38] S. M. El-Deeb, Maclaurin Coefficient estimates for new subclasses of bi-univalent functions connected with a $q$-analogue of Bessel function, Abstr. Appl. Anal., 2020 (2020), 1–7. doi: 10.1155/2020/8368951. doi: 10.1155/2020/8368951
    [39] S. M. El-Deeb, T. Bulboacă, Differential sandwich-type results for symmetric functions connected with a $q$-analog integral operator, Mathematics, 7 (2019), 1–17. doi: 10.3390/math7121185. doi: 10.3390/math7121185
    [40] H. M. Srivastava, S. M. El-Deeb, A certain class of analytic functions of complex order with a $q$-analogue of integral operators, Miskolc Math. Notes, 21 (2020), 417–433. doi: 10.18514/MMN.2020.3102. doi: 10.18514/MMN.2020.3102
    [41] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), 1–3. doi: 10.1155/2014/984135. doi: 10.1155/2014/984135
    [42] J. K. Prajapat, Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Model., 55 (2012), 1456–1465. doi: 10.1016/j.mcm.2011.10.024. doi: 10.1016/j.mcm.2011.10.024
    [43] S. M. El-Deeb, T. Bulboaca, Differential sandwich-type results for symmetric functions associated with Pascal distribution series, J. Contemp. Math. Anal., 56 (2021), 214–224. doi: 10.3103/S1068362321040105. doi: 10.3103/S1068362321040105
    [44] H. Aldweby, M. Darus, On a subclass of bi-univalent functions associated with the $q$-derivative operator, J. Math. Comput. Sci., 19 (2019), 58–64. doi: 10.22436/jmcs.019.01.08. doi: 10.22436/jmcs.019.01.08
    [45] M. Çaglar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2017), 85–91.
    [46] S. Elhaddad, M. Darus, Coefficient estimates for a subclass of bi-univalent functions defined by $q$-derivative operator, Mathematics, 8 (2020), 306. doi: 10.3390/math8030306. doi: 10.3390/math8030306
    [47] W. Zhi-Gang, S. Bulut, A note on the coefficient estimates of bi-close-to-convex functions, C. R. Math., 355 (2017), 876–880.
    [48] P. N. Kamble, M. G. Shrigan, Coefficient estimates for a subclass of bi-univalent functions defined by Sălăgean type $q$ -calculus operator, Kyungpook Math. J., 58 (2018), 677–688, doi: 10.5666/KMJ.2018.58.4.677. doi: 10.5666/KMJ.2018.58.4.677
    [49] H. Silverman, E. M. Silvia, Characterizations for subclasses of univalent functions, Math. Jpn., 50 (1999), 103–109.
    [50] H. Silverman, A class of bounded starlike functions, Int. J. Math. Math. Sci., 17 (1994), 249–252. doi: 10.1155/S0161171294000360. doi: 10.1155/S0161171294000360
    [51] H. M. Srivastava, D. Raducanu, P. A. Zaprawa, Certain subclass of analytic functions defined by means of differential subordination, Filomat, 30 (2016), 3743–3757.
    [52] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc., 8 (1933), 85–89. doi: 10.1112/jlms/s1-8.2.85. doi: 10.1112/jlms/s1-8.2.85
    [53] P. Zaprawa, On the Fekete-Szeg$\ddot{o}$ problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. doi: 10.36045/bbms/1394544302. doi: 10.36045/bbms/1394544302
    [54] M. Hesam, Coefficient and Fekete-Szegö problem estimates for certain subclass of analytic and bi-univalent functions, Filomat, 34 (2020), 4637–4647. doi: 10.2298/FIL2014637M. doi: 10.2298/FIL2014637M
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1699) PDF downloads(78) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog