Research article

Some generalized fractional integral inequalities with nonsingular function as a kernel

  • Received: 21 October 2020 Accepted: 06 January 2021 Published: 19 January 2021
  • MSC : 26A51, 33C10, 26D15, 26A33

  • Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as a kernel and then to obtain some significant inequalities like Hermit Hadamard Mercer inequality, exponentially $ (s-m) $-preinvex inequalities, Pólya-Szegö and Chebyshev type integral inequalities with the newly developed fractional operator. These results describe in general behave and provide the extension of fractional operator theory (FOT) in inequalities.

    Citation: Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu. Some generalized fractional integral inequalities with nonsingular function as a kernel[J]. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201

    Related Papers:

  • Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as a kernel and then to obtain some significant inequalities like Hermit Hadamard Mercer inequality, exponentially $ (s-m) $-preinvex inequalities, Pólya-Szegö and Chebyshev type integral inequalities with the newly developed fractional operator. These results describe in general behave and provide the extension of fractional operator theory (FOT) in inequalities.


    加载中


    [1] S. M. Aslani, M. R. Delavar, S. M. Vaezpour, Inequalities of Fejer Type Related to Generalized Convex Functions, Int. J. Anal. Appl., 16 (2018), 38–49.
    [2] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865.
    [3] Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, A. Kashuri, Extensions of different type parameterized inequalities for generalized (m, h) $(m, h) $-preinvex mappings via k-fractional integrals, J. Inequalities Appl., 2018 (2018), 1–30. doi: 10.1186/s13660-017-1594-6
    [4] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl., 2012 (2012), 980438.
    [5] A. Kashuri, M. A. Ali, M. Abbas, H. Budak, New inequalities for generalized m-convex functions via generalized fractional integral operators and their applications, Int. J. Nonlinear Anal. Appl., 10 (2019), 275–299.
    [6] M. R. Delavar, M. De La Sen, Some generalizations of Hermiteâ€"Hadamard type inequalities, SpringerPlus, 5 (2016), 1661. doi: 10.1186/s40064-016-3301-3
    [7] T. Du, M. U. Awan, A. Kashuri, S. Zhao, Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$(m, h)$-preinvexity, Appl. Anal., (2019), 1–21.
    [8] S. Mubeen, S. Iqbal, M. Tomar, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function and $k$-parameter, J. Inequal. Math. Appl., 1 (2016), 1–9.
    [9] A. Kashuri, R. Liko, Some new hermite-hadamard type inequalities and their applications, Studia Scientiarum Mathematicarum Hungarica, 56 (2019), 103–142. doi: 10.1556/012.2019.56.1.1418
    [10] M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79 (2010), 129–134.
    [11] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016
    [12] T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equations, 2017 (2017), 78. doi: 10.1186/s13662-017-1126-1
    [13] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les m$\widetilde {\rm{A}}$mes limites, In Proc. Math. Soc. Charkov, 2 (1882), 93–98.
    [14] M. A. Khan, N. Mohammad, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equations, 2020 (2020), 1–20. doi: 10.1186/s13662-019-2438-0
    [15] S. Khan, M. A. Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020).
    [16] M. Niezgoda, A generalization of Mercer's result on convex functions, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 2771–2779. doi: 10.1016/j.na.2009.01.120
    [17] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equations, 2020 (2020), 1–22. doi: 10.1186/s13662-019-2438-0
    [18] A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., 2020 (2020), 1–18.
    [19] P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equations, 2020 (2020), 1–19. doi: 10.1186/s13662-019-2438-0
    [20] P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. doi: 10.3390/sym12040610
    [21] E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for $k$-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34.
    [22] K. S. Nisar, G. Rahman, A. Khan, A. Tassaddiq, M. S. Abouzaid, Certain generalized fractional integral inequalities, AIMS Math., 5 (2020), 1588–1602. doi: 10.3934/math.2020108
    [23] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equations, 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z
    [24] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [25] C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some Inequalities of Hermite-Hadamard type for $k$-fractional conformable integrals, AJMAA, 16 (2019), 1–9.
    [26] F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev type for conformable $k$-fractional integral operators, Symmetry, 10 (2018), 614. doi: 10.3390/sym10110614
    [27] K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 245. doi: 10.1186/s13660-019-2197-1
    [28] K. S. Niasr, A. Tassadiq, G. Rahman, A. Khan, Some inequalities via fractional conformable integral operators, J. Inequal. Appl., 2019 (2019), 217. doi: 10.1186/s13660-019-2170-z
    [29] G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Gruss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583. doi: 10.3934/Math.2018.4.575
    [30] K. S. Nisar, G. Rahman, A. Khan, Some new inequalities for generalized fractional conformable integral operators, Adv. Differ. Equations, 2019 (2019), 427. doi: 10.1186/s13662-019-2362-3
    [31] G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable $k$-fractional integral operators, RACSAM, 114 (2020), 9. doi: 10.1007/s13398-019-00731-3
    [32] G. Rahman, Z. Ullah, A. Khan, E. Set, K. S. Nisar, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 364. doi: 10.3390/math7040364
    [33] G. Rahmnan, T. Abdeljawad, F. Jarad, K. S. Nisar, Bounds of Generalized Proportional Fractional Integrals in General Form via Convex Functions and their Applications, Mathematics, 8 (2020), 113. doi: 10.3390/math8010113
    [34] G. Rahman, K. S. Nisar, T. Abdeljawad, S. Ullah, Certain Fractional Proportional Integral Inequalities via Convex Functions, Mathematics, 8 (2020), 222. doi: 10.3390/math8020222
    [35] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equations, 2019 (2019), 454. doi: 10.1186/s13662-019-2381-0
    [36] G. Rahman, T. Abdeljawad, A. Khan, K. S. Nisar, Some fractional proportional integral inequalities, J. Inequal. Appl., 2019 (2019), 244. doi: 10.1186/s13660-019-2199-z
    [37] G. Rahman, A. Khan, T. Abdeljawad, K. S. Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differ. Equations, 2019 (2019), 287. doi: 10.1186/s13662-019-2229-7
    [38] G. Rahman, K. S. Nisar, T. Abdeljawad, Certain Hadamard Proportional Fractional Integral Inequalities, Mathematics, 8 (2020), 504. doi: 10.3390/math8040504
    [39] G. Rahman, K. S. Nisar, S. Rashid, T. Abdeljawad, Certain Grüss-type inequalities via tempered fractional integrals concerning another, J. Inequal. Appl., 2020 (2020), 147. doi: 10.1186/s13660-020-02420-x
    [40] G. Rahman, K. S. Nisar, T. Abdeljawad, Tempered Fractional Integral Inequalities for Convex Functions, Mathematics, 8 (2020), 500. doi: 10.3390/math8040500
    [41] Q. Xiaoli, G. Farid, J. Pecaric, S. B. Akbar, Generalized fractional integral inequalities for exponentially (s, m) $(s, m) $-convex functions, J. Inequalities Appl., 2020 (2020), 1–13. doi: 10.1186/s13660-019-2265-6
    [42] K. S. Nisar, G. Rahman, D. Baleanu, M. Samraiz, S. Iqbal, On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function, Adv. Differ. Equations, 2020 (2020), 1–18. doi: 10.1186/s13662-019-2438-0
    [43] P. Agarwal, J. E. Restrepo, An extension by means of $\omega$-weighted classes of the generalized Riemann-Liouville k-fractional integral inequalities, J. Math. Inequalities, 14 (2020), 35–46.
    [44] S. Rashid, I. Iscan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via n polynomials s-type convexity with applications. Adv. Differ. Equations, 2020 (2020), 1–20.
    [45] M. A. Noor, K. I. Noor, S. Rashid, Some new classes of preinvex functions and inequalities, Mathematics, 7 (2019), 29.
    [46] M. A. Noor, K. I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math., 4 (2019), 1554–1568. doi: 10.3934/math.2019.6.1554
    [47] A. Rehman, G. Farid, S. Bibi, C. Y. Jung, S. M. Kang, $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m) $-convex functions, AIMS Math., 6 (2020), 882.
    [48] S. Rashid, M. A. Latif, Z. Hammouch, Y. M. Chu, Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions, Symmetry, 11 (2019), 1448. doi: 10.3390/sym11121448
    [49] M. U. Awan, S. Talib, A. Kashuri, M. A. Noor, K. I. Noor, Y. M. Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially µ-preinvex functions. Adv. Differ. Equations, 2020 (2020), 1–12.
    [50] G. Grüss, Über das Maximum des absoluten Betrages von, Mathematische Zeitschrift, 39 (1935), 215–226. doi: 10.1007/BF01201355
    [51] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Julius Springer, 1925.
    [52] S. S. Dragomir, N. T. Diamond, Integral inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results, RGMIA Res. Rep. Collect., 5 (2002).
    [53] J. Hadamard, Étude sur les propriétés des fonctions entiéres et en particulier dune fonction considerée par Riemann, J. de mathématiques pures et appliquées, (1893), 171–216.
    [54] A. M. Mercer, A variant of Jensen's inequality, J. Ineq. Pure Appl. Math., 4 (2003).
    [55] M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405–409. doi: 10.18576/amis/120215
    [56] S. Mititelu, Invex sets, Stud. Cerc. Mat., 46 (1994), 529–532.
    [57] T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
    [58] J. Choi, P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30 (2016), 1931–1939. doi: 10.2298/FIL1607931C
    [59] T. N. Srivastava, Y. P. Singh, On Maitland's Generalised Bessel Function. Can. Math. Bull., 11 (1968), 739–741.
    [60] H. M. Srivastava, $\check{Z}$. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag -Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210.
    [61] R. S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, K. S. Nisar, Some Fractional Operators with the Generalized Bessel-Maitland Function, Discrete Dyn. Nat. Soc., 2020 (2020), 1378457.
    [62] T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokhama Math. J., 19 (1971), 7–15.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2444) PDF downloads(194) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog