Citation: Guoqiao You. A novel quantity for identifying the repelling structures of continuous dynamical systems[J]. AIMS Mathematics, 2021, 6(4): 3378-3392. doi: 10.3934/math.2021202
[1] | Wenya Shi, Xinpeng Yan, Zhan Huan . Faster free pseudoinverse greedy block Kaczmarz method for image recovery. Electronic Research Archive, 2024, 32(6): 3973-3988. doi: 10.3934/era.2024178 |
[2] | Ranran Li, Hao Liu . On global randomized block Kaczmarz method for image reconstruction. Electronic Research Archive, 2022, 30(4): 1442-1453. doi: 10.3934/era.2022075 |
[3] | Yimou Liao, Tianxiu Lu, Feng Yin . A two-step randomized Gauss-Seidel method for solving large-scale linear least squares problems. Electronic Research Archive, 2022, 30(2): 755-779. doi: 10.3934/era.2022040 |
[4] | Yun Ni, Jinqing Zhan, Min Liu . Topological design of continuum structures with global stress constraints considering self-weight loads. Electronic Research Archive, 2023, 31(8): 4708-4728. doi: 10.3934/era.2023241 |
[5] | Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang . Exponential projective synchronization analysis for quaternion-valued memristor-based neural networks with time delays. Electronic Research Archive, 2023, 31(9): 5609-5631. doi: 10.3934/era.2023285 |
[6] | Yanlong Zhang, Rui Zhang, Li Wang . Oblique impact dynamic analysis of wedge friction damper with Dankowicz dynamic friction. Electronic Research Archive, 2024, 32(2): 962-978. doi: 10.3934/era.2024047 |
[7] | Dongmei Yu, Yifei Yuan, Yiming Zhang . A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of H+-matrices. Electronic Research Archive, 2023, 31(1): 123-146. doi: 10.3934/era.2023007 |
[8] | Haoqing Wang, Wen Yi, Yannick Liu . Optimal assignment of infrastructure construction workers. Electronic Research Archive, 2022, 30(11): 4178-4190. doi: 10.3934/era.2022211 |
[9] | Yu Wang . Bi-shifting semantic auto-encoder for zero-shot learning. Electronic Research Archive, 2022, 30(1): 140-167. doi: 10.3934/era.2022008 |
[10] | Yaguo Guo, Shilin Yang . Projective class rings of the category of Yetter-Drinfeld modules over the 2-rank Taft algebra. Electronic Research Archive, 2023, 31(8): 5006-5024. doi: 10.3934/era.2023256 |
Fractional differential equations (FDEs) appeared as an excellent mathematical tool for, modeling of many physical phenomena appearing in various branches of science and engineering, such as viscoelasticity, statistical mechanics, dynamics of particles, etc. Fractional calculus is a recently developing work in mathematics which studies derivatives and integrals of functions of fractional order [26].
The most used fractional derivatives are the Riemann-Liouville (RL) and Caputo derivatives. These derivatives contain a non-singular derivatives but still conserves the most important peculiarity of the fractional operators [1,2,10,11,23,24]. Atangana and Baleanu described a derivative with a generalized Mittag-leffler (ML) function. This derivative is often called the Atangana-Baleanu (AB) fractional derivative. The AB-derivative in the senses of Riemman-Liouville and Caputo are denoted by ABR-derivative and ABC-derivative, respectively.
The AB fractional derivative is a nonlocal fractional derivative with nonsingular kernel which is connected with various applications [3,5,6,8,9,13,14,15,16]. Using the advantage of the non-singular ML kernal present in the AB fractional derivatives, operators, many authors from various branches of applied mathematics have developed and studied mathematical models involving AB fractional derivatives [18,22,29,30,31,32,35,36,37].
Mohamed et al. [25] considered a system of multi-derivatives for Caputo FDEs with an initial value problem, examined the existence and uniqueness results and obtained numerical results. Sutar et al. [32,33] considered multi-derivative FDEs involving the ABR derivative and examined existence, uniqueness and dependence results. Kucche et al. [12,19,20,21,34] enlarged the work of multi-derivative fractional differential equations involving the Caputo fractional derivative and studied the existence, uniqueness and continuous dependence of the solution.
Inspired by the preceding work, we perceive the multi-derivative nonlinear neutral fractional integro-differential equation with AB fractional derivative of the Riemann-Liouville sense of the problem:
dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),∫ȷ0K(ȷ,θ,V(θ))dθ,∫T0χ(ȷ,θ,V(θ))dθ),ȷ∈I | (1.1) |
V(0)=V0∈R, | (1.2) |
where ⋆0Dδȷ denotes the ABR fractional derivative of order δ∈(0,1), and φ∈C(I×R×R×R,R) is a non-linear function. Let P1V(ȷ)=∫ȷ0K(ȷ,θ,V(θ))dθ and P2V(ȷ)=∫T0χ(ȷ,θ,V(θ))dθ. Now, (1.1) becomes,
dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, | (1.3) |
V(0)=V0∈R. | (1.4) |
In this work, we derive a few supplemental results using the characteristics of the fractional integral operator εαδ,η,V;c+. The existence results are obtained by Krasnoselskii's fixed point theorem and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality.
Definition 2.1. [14] The Sobolev space Hq(X) is defined as Hq(X)={φ∈L2(X):Dβφ∈L2(X),∀|β|≤q}. Let q∈[1,∞) and X be open, X⊂R.
Definition 2.2. [11,17] The generalized ML function Eαδ,β(u) for complex δ,β,α with Re(δ)>0 is defined by
Eαδ,β(u)=∞∑t=0(α)tα(δt+β)utt!, |
and the Pochhammer symbol is (α)t, where (α)0=1,(α)t=α(α+1)...(α+t−1), t=1,2...., and E1δ,β(u)=Eδ,β(u),E1δ,1(u)=Eδ(u).
Definition 2.3. [4] The ABR fractional derivative of V of order δ is
⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=B(δ)1−δddȷ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ]V(θ)dθ, |
where V∈H1(0,1), δ∈(0,1), B(δ)>0. Here, Eδ is a one parameter ML function, which shows B(0)=B(1)=1.
Definition 2.4. [4] The ABC fractional derivative of V of order δ is
⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ]V′(θ)dθ, |
where V∈H1(0,1), δ∈(0,1), and B(δ)>0. Here, Eδ is a one parameter ML function, which shows B(0)=B(1)=1.
Lemma 2.5. [4] If L{g(ȷ);b}=ˉG(b), then L{⋆0Dδȷg(ȷ);b}=B(δ)1−δbδˉG(b)bδ+δ1−δ.
Lemma 2.6. [26] L[ȷmδ+β−1E(m)δ,β(±aȷδ);b]=m!bδ−β(bδ±a)m+1,Em(ȷ)=dmdȷmE(ȷ).
Definition 2.7. [17,27] The operator εαδ,η,V;c+ on class L(m,n) is
(εαδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))]=∫t0(ȷ−θ)α−1Eαδ,η[V(ȷ−θ)δ]Θ(θ)dθ,ȷ∈[c,d], |
where δ,η,V,α∈C(Re(δ),Re(η)>0), and n>m.
Lemma 2.8. [17,27] The operator εαδ,η,V;c+ is bounded on C[m,n], such that ‖(εαδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))]‖≤P‖Θ‖, where
P=(n−m)Re(η)∞∑t=0|(α)t||α(δt+η)|[Re(δ)t+Re(η)]|V(n−m)Re(δ)|tt!. |
Here, δ,η,V,α∈C(Re(δ),Re(η)>0), and n>m.
Lemma 2.9. [17,27] The operator εαδ,η,V;c+ is invertible in the space L(m,n) and φ∈L(m,n) its left inversion is given by
([εαδ,η,V;c+]−1)[V(ȷ)−x(ȷ,y(ȷ))]=(Dη+ςc+ε−αδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n], |
where δ,η,V,α∈C(Re(δ),Re(η)>0), and n>m.
Lemma 2.10. [17,27] Let δ,η,V,α∈C(Re(δ),Re(η)>0),n>m and suppose that the integral equation is
∫ȷ0(ȷ−θ)α−1Eαδ,η[V(ȷ−θ)δ]Θ(θ)dθ=φ(ȷ),ȷ∈(m,n], |
is solvable in the space L(m,n).Then, its unique solution Θ(ȷ) is given by
Θ(ȷ)=(Dη+ςc+ε−αδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n]. |
Lemma 2.11. [7] (Krasnoselskii's fixed point theorem) Let A be a Banach space and X be bounded, closed, convex subset of A. Let F1,F2 be maps of S into A such that F1V+F2φ∈X ∀ V,φ∈U. The equation F1V+F2V=V has a solution on S, and F1, F2 is a contraction and completely continuous.
Lemma 2.12. [28] (Gronwall-Bellman inequality) Let V and φ be continuous and non-negative functions defined on I. Let V(ȷ)≤A+∫ȷaφ(θ)V(θ)dθ,ȷ∈I; here, A is a non-negative constant.
V(ȷ)≤Aexp(∫ȷaφ(θ)dθ),ȷ∈I. |
In this part, we need some fixed-point-techniques-based hypotheses for the results:
(H1) Let V∈C[0,T], function φ∈(C[0,T]×R×R×R,R) is a continuous function, and there exist +ve constants ζ1,ζ2 and ζ. ‖φ(ȷ,V1,V2,V3)−φ(ȷ,φ1,φ2,φ3)‖≤ζ1(‖V1−φ1‖+‖V2−φ2‖+‖V3−φ3‖) for all V1,V2,V3,φ1,φ2,φ3 in Y, ζ2=maxV∈R‖f(ȷ,0,0,0)‖, and ζ=max{ζ1,ζ2}.
(H2) P1 is a continuous function, and there exist +ve constants C1,C2 and C. ‖P1(ȷ,θ,V1)−P1(ȷ,θ,φ1)‖≤C1(‖V1−φ1‖)∀V1,φ1 in Y, C2=max(ȷ,θ)∈D‖P1(ȷ,θ,0)‖, and C=max{C1,C2}.
(H3) P2 is a continuous function and there are +ve constants D1,D2 and D. ‖P2(ȷ,θ,V1)−P2(ȷ,θ,φ1)‖≤D1(‖V1−φ1‖) for all V1,φ1 in Y, D2=max(ȷ,θ)∈D‖P2(ȷ,θ,0)‖ and D=max{D1,D2}.
(H4) Let x∈c[0,I], function u∈(c[0,I]×R,R) is a continuous function, and there is a +ve constant k>0, such that ‖u(ȷ,x)−u(ȷ,y)‖≤k‖x−y‖. Let Y=C[R,X] be the set of continuous functions on R with values in the Banach space X.
Lemma 2.13. If (H2) and (H3) are satisfied the following estimates, ‖P1V(ȷ)‖≤ȷ(C1‖V‖+C2),‖P1V(ȷ)−P1φ(ȷ)‖≤Cȷ‖V−φ‖, and ‖P2V(ȷ)‖≤ȷ(D1‖V‖+D2),‖P2V(ȷ)−P2φ(ȷ)‖≤Dȷ‖V−φ‖.
Theorem 3.1. The function φ∈C(I×R×R×R,R) and V∈C(I) is a solution for the problem of Eqs (1.3) and (1.4), iff V is a solution of the fractional equation
V(ȷ)=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. | (3.1) |
Proof. (1) By using Definition 2.3 and Eq (1.3), we get
ddȷ(V(ȷ)+B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ)=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)). |
Integrating both sides of the above equation with limits 0 to ȷ, we get
V(ȷ)+B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ−V(0)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. |
Conversely, with differentiation on both sides of Eq (3.1) with respect to ȷ, we get
dVdȷ+B(δ)1−δddȷ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I. |
Using Definition 2.3, we get Eq (1.3) and substitute ȷ=0 in Eq (3.1), we get Eq (1.4).
Proof. (2) In Equation (1.3), taking the Laplace Transform on both sides, we get
L[V′(ȷ);b]+L[⋆0Dδȷ;b][V(ȷ)−x(ȷ,y(ȷ))]=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b]. |
Now, using the Laplace Transform formula for the AB fractional derivative of the RL sense, as given in Lemma 2.5, we get
bˉX(b)−[V(ȷ)−x(ȷ,y(ȷ))]−V(0)+B(δ)1−δbδˉX(b)bδ+δ1−δ=ˉG(b), |
ˉX(b)=[V(ȷ);b] and ˉG(b)=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b]. Using Eq (1.4), we get
ˉX(b)=V01b−B(δ)1−δbδ−1ˉX(b)bδ+δ1−δ[V(ȷ)−x(ȷ,y(ȷ))]+1bˉG(b). | (3.2) |
In Eq (3.2) applying the inverse Laplace Transform on both sides using Lemma 2.6 and the convolution theorem, we get
L−1[ˉX(b);ȷ]=V0L−1[1b;ȷ]−B(δ)1−δ(L−1[bδ−1bδ+δ1−δ][V(ȷ)−x(ȷ,y(ȷ))]∗L−1[ˉX(b);ȷ])+L−1[ˉG(b);ȷ]∗L−1[1b;ȷ]=V0−B(δ)1−δ(Eδ[−δ1−δȷδ][V(ȷ)−x(ȷ,y(ȷ))])+φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ.V(ȷ)=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ. | (3.3) |
Theorem 3.2. Let δ∈(0,1). Define the operator F on C(I):
(FV)(ȷ)=V0−B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],V∈C(I). | (3.4) |
(A) F is a bounded linear operator on C(I).
(B) F satisfying the hypotheses.
(C) F(X) is equicontinuous, and X is a bounded subset of C(I).
(D) F is invertible, function φ∈C(I), and the operator equation FV=φ has a unique solution in C(I).
Proof. (A) From Definition 2.7 and Lemma 2.8, the fractional integral operator ε1δ,1,−δ1−δ;0+ is a bounded linear operator on C(I), such that
‖ε1δ,1,−δ1−δ;0+‖‖[V(ȷ)−x(ȷ,y(ȷ))]‖≤P‖V‖,ȷ∈I,where |
P=T∞∑n=0(1)nα(δn+1)(δn+1)|−δ1−δTδ|nn!=T∞∑n=0(δ1−δ)nTδnα(δn+2)=TEδ,2(δ1−δTδ), |
and we have
‖FV‖=|B(δ)1−δ|‖ε1δ,1,−δ1−δ;0+‖‖[V(ȷ)−x(ȷ,y(ȷ))]‖≤PB(δ)1−δ‖V‖,∀V∈C(I). | (3.5) |
Thus, FV=φ is a bounded linear operator on C(I).
(B) We consider V,φ∈C(I). By using linear operator F and bounded operator ε1δ,1,−δ1−δ;0+, for any ȷ∈I,
|(FV)(ȷ)−(Fφ)(ȷ)|=|F(V−φ)[V(ȷ)−x(ȷ,y(ȷ))]|≤B(δ)1−δ‖(ε1δ,1,−δ1−δ;0+V−φ)[V(ȷ)−x(ȷ,y(ȷ))]‖≤PB(δ)1−δ‖V−φ‖. |
Where, P=TEδ,2(δ1−δTδ), then the operator F is satisfied the hypotheses with constant PB(δ)1−δ.
(C) Let U={V∈C(I):‖V‖≤R} be a bounded and closed subset of C(I), V∈U, and ȷ1,ȷ2∈I with ȷ1≤ȷ2.
|(FV)(ȷ1)−(FV)(ȷ2)|=|B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ1)−u(l1,x(l))]−B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ2)−u(l2,x(l))]|≤B(δ)1−δ|∫ȷ10{Eδ[−δ1−δ(ȷ1−θ)δ]−Eδ[−δ1−δ(ȷ2−θ)δ]}[V(ȷ)−x(ȷ,y(ȷ))]dθ|+B(δ)1−δ|∫ȷ2ȷ1Eδ[−δ1−δ(ȷ2−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ|≤B(δ)1−δ∞∑n=0|(−δ1−δ)n|1α(nδ+1)∫ȷ10|(ȷ1−θ)nδ−(ȷ2−θ)nδ||[V(ȷ)−x(ȷ,y(ȷ))]|dθ+B(δ)1−δ∞∑n=0|(−δ1−δ)n|1α(nδ+1)∫ȷ2ȷ1|(ȷ2−θ)nδ||[V(ȷ)−x(ȷ,y(ȷ))]|dθ≤LB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1)∫ȷ10(ȷ2−θ)nδ−(ȷ1−θ)nδdθ+LB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1)∫ȷ2ȷ1(ȷ2−θ)nδdθ≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1){−(ȷ2−ȷ1)nδ+1+ȷnδ+12−ȷnδ+11+(ȷ2−ȷ1)nδ+1}≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+2){ȷnδ+12−ȷnδ+11}|(FV)(ȷ1)−(FV)(ȷ2)|≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+2){ȷnδ+12−ȷnδ+11}. | (3.6) |
Hence, if |ȷ1−ȷ2|→0 then |(FV)(ȷ1)−(FV)(ȷ2)|→0.
∴ (FV) is equicontinuous on I.
(D) By Lemmas 2.9 and 2.10, φ∈C(I), and we get
(ε1δ,1,−δ1−δ;0+)−1[V(ȷ)−x(ȷ,y(ȷ))]=(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n). | (3.7) |
By Eqs (3.4) and (3.5), we have
(F−1)[V(ȷ)−x(ȷ,y(ȷ))]=(B(δ)1−δε1δ,1,−δ1−δ;0+)−1[V(ȷ)−x(ȷ,y(ȷ))]=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n), |
where β∈C with Re(β)>0. This shows F is invertible on C(I) and
(FV)[V(ȷ)−x(ȷ,y(ȷ))]=[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I, |
has the unique solution,
V(ȷ)=(F−1[V(ȷ)−x(ȷ,y(ȷ))])=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ)),y(ȷ))],ȷ∈(m,n). | (3.8) |
Theorem 4.1. Let φ∈C(I×R×R×R,R). Then, the ABR derivative ⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, is solvable in C(I), and the solution in C(I) is
V(ȷ)=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I, | (4.1) |
where β∈C,Re(β)>0, and ˆφ(ȷ)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I.
Proof. The corresponding fractional equation of the ABR derivative
⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, |
is given by
B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. |
Using operator F of Eq (3.4), we get
(FV)(s)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ=ˆφ(ȷ),ȷ∈I. | (4.2) |
Equations (3.7) and (4.2) are solvable, and we get
V(ȷ)=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I;β∈C,Re(β)>0. | (4.3) |
Theorem 4.2. Let φ∈C(I×R×R×R,R) satisfy (H1)–(H3) with L=supȷ∈Iω(ȷ), where ω(ȷ)=ζ(1+Cȷ+DT), if L=min{1,12T}. Then problem of (1.3) and (1.4) has a solution in C(I) provided
2B(δ)TEδ,2(δ1−δ)Tδ1−δ≤1. | (4.4) |
Proof. Define
R=‖V0‖+NφT1−LT−B(δ)TEδ,2(δ1−δ)Tδ1−δ, |
where Nφ=supȷ∈I‖φ(ȷ,0,0,0)‖. Let U={V∈C(I):‖V‖≤R}. Consider F1:X→A and F2:X→A given as
(F1V)(ȷ)=V0+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I,(F2V)(ȷ)=−(F)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I. |
Let V=F1V+F2V,V∈C(I) is the fractional Eq (3.1) to the problems (1.3) and (1.4).
Hence, the operators F1 and F2 satisfy the Krasnoselskii's fixed point theorem.
Step (ⅰ) F1 is a contraction.
By (H1)–(H3) on φ, ∀ V,φ∈C(I) and ȷ∈I,
|F1V(ȷ)−F2φ(ȷ)|≤ω(ȷ)|V(ȷ)−φ(ȷ)|≤R‖V−φ‖. | (4.5) |
This gives, ‖F1V−F2φ‖≤RT‖V−φ‖,V,φ∈C(I).
Step (ⅱ) F2 is completely continuous. By using Theorem 3.3 and Ascoli-Arzela theorem, F2=−F is completely continuous.
Step (ⅲ) F1V+F2φ∈U, for any V,φ∈U, using Theorem 3.3, we obtain
‖(F1V+F2φ)(ȷ)‖≤‖(F1V)(ȷ)‖+‖(F2φ)(ȷ)‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))‖dθ+‖ε1δ,1,−δ1−δ;0+φ‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))‖dθ+B(δ)1−δTEδ,2(δ1−δTδ)‖φ‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,0,0,0)‖dθ+∫ȷ0‖φ(θ,0,0,0)‖dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+∫ȷ0ζ(‖V‖+Cȷ‖V‖+DT‖V‖)dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+ζ(1+Cȷ+DT)∫ȷ0‖V‖dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+ω(ȷ)R∫ȷ0dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+LRT+NφT+B(δ)1−δTEδ,2(δ1−δTδ)L. | (4.6) |
By definition of R, we get
‖V0‖+NφT=L(1−RT+B(δ)TEδ,2(δ1−δTδ)1−δ). | (4.7) |
Using the Eq (4.5) in (4.7), we get condition of Eq (4.4).
‖(F1V+F2φ)(ȷ)‖≤L(2B(δ)TEδ,2(δ1−δ)Tδ1−δ),ȷ∈I. | (4.8) |
∴‖(F1V+F2φ)(ȷ)‖≤L,ȷ∈I. This gives, F1V+F2φ∈U, ∀V,φ∈X.
From Steps (ⅰ)–(ⅲ), all the conditions of Lemma 2.11 follow.
Theorem 4.3. By Theorem 4.2, the Eqs (1.3) and (1.4) have a unique solution in C(I).
Proof. (1) The problems (1.3) and (1.4) have an operator equation form as:
(ε1δ,1,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))]=ˆφ(ȷ),ȷ∈I, | (4.9) |
where,
ˆφ(ȷ)=1−δB(δ)(V0−V(ȷ)+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ),ȷ∈I. |
By Theorem 4.2, Eq (4.7) is solvable in C(I), by Lemma 2.10 we get a unique solution of Eqs (1.3) and (1.4),
V(ȷ)=(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],V∈C(I). |
Proof. (2) Let V,φ be solutions of Eqs (1.3) and (1.4). By fractional integral operators and (H1)–(H3), we find, for any ȷ∈I,
|V(ȷ)−φ(ȷ)|≤|B(δ)1−δ(ε1δ,1,−δ1−δ;0+(V−φ))[V(ȷ)−x(ȷ,y(ȷ))]|+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ≤|B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ](V(θ)−φ(θ))dθ|+∫ȷ0ζ(|V(θ)−φ(θ)|+C|V(θ)−φ(θ)|+D|V(θ)−φ(θ)|)dθ≤B(δ)1−δ∫ȷ0Eδ(|−δ1−δTδ|)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(1+C+D)|V(θ)−φ(θ)|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)−φ(θ)|dθ≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)−φ(θ)|dθ|V(ȷ)−φ(ȷ)|≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)−φ(θ)|dθ. | (4.10) |
Theorem 5.1. By Theorem 4.2, if V(ȷ) is a solution of Eqs (1.3) and (1.4), then
|V(ȷ)|≤{|V0|+NφT}exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I, | (5.1) |
where, Nφ=supȷ∈I|φ(ȷ,0,0,0)|.
Proof. If V(ȷ) is a solution of Eqs (1.3) and (1.4), for all ȷ∈I,
|V(ȷ)|≤|V0|−B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))|dθ |
≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δ(ȷ−θ)δ)|V(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,0,0,0)|dθ+∫ȷ0|φ(θ,0,0,0)|dθ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0ζ(|V(θ)|+C|V(θ)|+D|V(θ)|)dθ+Nφȷ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0ζ(1+C+D)|V(ȷ)|dθ+NφT≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)|dθ+NφT≤{|V0|+NφT}+∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)|dθ. |
By Lemma 2.12, we get
|V(ȷ)|≤{|V0|+NφT}exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. | (5.2) |
We discuss data dependence results for the problem
dφdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ)),ȷ∈I, | (6.1) |
φ(0)=φ0∈R. | (6.2) |
Theorem 6.1. Equation (4.2) holds, and ξk>0, where k=1,2 are real numbers such that,
|V0−φ0|≤ξ1,|φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))−˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ))|≤ξ2,ȷ∈I. | (6.3) |
φ(ȷ) is a solution of ABR fractional derivative Eqs (6.1) and (6.2), and V(ȷ) is a solution of Eqs (1.3) and (1.4).
Proof. Let V,φ are the solution of Eqs (1.3) and (1.4), (6.1) and (6.2) respectively. We find for any
|V(ȷ)−φ(ȷ)|≤|V0−φ0|+B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)−φ(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−˜φ(s,φ(θ),P1φ(θ),P2φ(θ))|dθ≤|V0−φ0|+B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)−φ(s)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−˜φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(|V(θ)−φ(θ)|+C|V(θ)−φ(θ)|+D|V(θ)−φ(θ)|)dθ+ξ2∫ȷ0dθ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(1+C+D)|V(θ)−φ(θ)|dθ+ξ2ȷ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)−φ(θ)|dθ+ξ2T|V(ȷ)−φ(ȷ)|≤ξ1+ξ2T+∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(ȷ)−φ(θ)|dθ. |
By Lemma 2.12, we get
|V(ȷ)−φ(ȷ)|≤(ξ1+ξ2T)exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. | (6.4) |
Let any λ,λ0∈R and
dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ),ȷ∈I, | (7.1) |
V(0)=V0∈R. | (7.2) |
dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ)]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ0),ȷ∈I, | (7.3) |
V(0)=V0∈R. | (7.4) |
Theorem 7.1. Let the function Θ satisfy Theorem 4.2. Suppose there exists ω,u∈C(I,R+) such that,
|Θ(ȷ,V,P1V,P2V,λ)−Θ(ȷ,φ,P1φ,P2φ,λ)|≤ω(ȷ)|V−φ|,|Θ(ȷ,V,P1V,P2V,λ)−Θ(ȷ,V,P1V,P2V,λ0)|≤u(ȷ)|λ−λ0|. |
If V1,V2 are the solutions of Eqs (7.1) and (7.3), then
|V1(ȷ)−V2(ȷ)|≤PT|λ−λ0|exp(∫ȷ0[B(δ)1−δEδ(−δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I, | (7.5) |
where P=supȷ∈Iu(ȷ).
Proof. Let, for any ȷ∈I,
|V1(ȷ)−V2(ȷ)|≤B(δ)1−δ|∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ](V2(θ)−V1(θ)dθ)|+∫ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθ≤B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V1(θ)−V2(θ)|dθ+∫ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)|dθ+∫ȷ0|Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δ(ȷ−θ)δ)|V1(θ)−V2(θ)|dθ+∫ȷ0ζ(|V1(θ)−V2(θ)|+C|V1(θ)−V2(θ)|+D|V1(θ)−V2(θ)|)dθ+∫ȷ0u(θ)|λ−λ0|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V1(θ)−V2(θ)|dθ+∫ȷ0ζ(1+C+D)|V1(θ)−V2(θ)|dθ+Pȷ|λ−λ0|≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V1(θ)−V2(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V1(θ)−V2(θ)|dθ+PT|λ−λ0|≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V1(θ)−V2(θ)|dθ+PT|λ−λ0|. |
By Lemma 2.12,
|V1(ȷ)−V2(ȷ)|≤PT|λ−λ0|exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. | (7.6) |
Consider a nonlinear ABR fractional derivative with neutral integro-differential equations of the form:
dVdȷ+⋆0D12ȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I=[0,2], | (8.1) |
V(0)=1∈R. | (8.2) |
φ:(I×R×R×R)→R is a continuous nonlinear function such that,
φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=|V(ȷ)|+13+M(ȷ)+N(ȷ),ȷ∈I, |
and
M(ȷ)=B(12){ȷE12,2(−ȷ12)+E12(−ȷ12)−ȷ−1},N(ȷ)=B(12){E12,2(−ȷ12)+ȷE12(−ȷ12)−1}. |
We observe that for all V,φ∈R and ȷ∈I,
|φ(ȷ,V,P1V,P2V)−φ(ȷ,φ,P1φ,P2φ)|=|(|V(ȷ)|+13+M(ȷ)+N(ȷ))−(|φ(ȷ)|+13+M(ȷ)+N(ȷ))|≤13|V−φ|. | (8.3) |
The function φ satisfies (H1)–(H4) with constant 13. From Theorem 4.2, we have δ=12 and T = 2 which is substitute in Eq (4.2), and we get
B(12)<18E12,2(212). | (8.4) |
If the function B(δ) satisfies Eq (8.4), then Eqs (8.1) and (8.2) have a unique solution.
V(ȷ)=ȷ3+1,ȷ∈[0,2]. | (8.5) |
In this research article, we explored multi-derivative nonlinear neutral fractional integro-differential equations involving the ABR fractional derivative. The elementary results of the existence, uniqueness and dependence solution on various data are based on the Prabhakar fractional integral operator εαδ,η,V;c+ involving a generalized ML function. The existence results are obtained by Krasnoselskii's fixed point theorem, and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality with continuous functions.
The research on Existence and data dependence results for neutral fractional order integro-differential equations by Khon Kaen University has received funding support from the National Science, Research and Innovation Fund.
The authors declare no conflict of interest.
[1] |
E. J. Candès, L. Ying, Fast geodesics computation with the phase flow method, J. Comput. Phys., 220 (2006), 6–18. doi: 10.1016/j.jcp.2006.07.032
![]() |
[2] |
R. Ding, J. Li, Nonlinear finite-time Lyapunov exponent and predictability, Physics Letters A, 364 (2007), 396–400. doi: 10.1016/j.physleta.2006.11.094
![]() |
[3] |
S. Gottlieb, C. W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comput., 67 (1998), 73–85. doi: 10.1090/S0025-5718-98-00913-2
![]() |
[4] |
M. A. Green, C. W. Rowley, A. J. Smiths, Using hyperbolic Lagrangian coherent structures to investigate vortices in biospired fluid flows, Chaos, 20 (2010), 017510. doi: 10.1063/1.3270045
![]() |
[5] |
G. Haller, Distinguished material surfaces and coherent structures in Three-Dimensional fluid flows, Physica D, 149 (2001), 248–277. doi: 10.1016/S0167-2789(00)00199-8
![]() |
[6] | G. Haller, Lagrangian structures and the rate of Strain in a partition of Two-Dimensional turbulence, Phys. Fluids A, 13 (2001), 3368–3385. |
[7] |
G. Haller, Lagrangian coherent structures from approximate velocity data, Physics Fluid, 14 (2002), 1851–1861. doi: 10.1063/1.1477449
![]() |
[8] |
G. Haller, A variational theory of hyperbolic Lagrangian coherent structure, Physica D, 240 (2011), 574–598. doi: 10.1016/j.physd.2010.11.010
![]() |
[9] |
G. Haller, G. Yuan, Lagrangian coherent structures and mixing in Two-Dimensional turbulence, Physica D, 147 (2000), 352–370. doi: 10.1016/S0167-2789(00)00142-1
![]() |
[10] |
D. Karrasch, G. Haller, Do finite-size Lynapunov exponents detect coherent structures? Chaos, 23 (2013), 043126. doi: 10.1063/1.4837075
![]() |
[11] | F. Lekien, N. Leonard, Dynamically consistent Lagrangian coherent structures, Experimental Chaos: 8-th Experimental Chaos Conference, 2004,132–139. |
[12] |
F. Lekien, S. D. Ross, The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds, Chaos, 20 (2010), 017505. doi: 10.1063/1.3278516
![]() |
[13] |
F. Lekien, S. C. Shadden, J. E. Marsden, Lagrangian coherent structures in n-dimensional systems, J. Math. Phys., 48 (2007), 065404. doi: 10.1063/1.2740025
![]() |
[14] |
S. Leung, An Eulerian approach for computing the finite time Lyapunov exponent, J. Comput. Phys., 230 (2011), 3500–3524. doi: 10.1016/j.jcp.2011.01.046
![]() |
[15] |
S. Leung, A backward phase flow method for the finite time Lyapunov exponent, Chaos, 23 (2013), 043132. doi: 10.1063/1.4847175
![]() |
[16] |
S. Leung, J. Qian, R. Burridge, Eulerian Gaussian Beams for high frequency wave propagation, Geophysics, 72 (2007), SM61–SM76. doi: 10.1190/1.2752136
![]() |
[17] |
D. Lipinski, K. Mohseni, Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria, J. Exp. Biology, 212 (2009), 2436–2447. doi: 10.1242/jeb.026740
![]() |
[18] |
X. D. Liu, S. J. Osher, T. Chan, Weighted essentially NonOscillatory schemes, J. Comput. Phys., 115 (1994), 200–212. doi: 10.1006/jcph.1994.1187
![]() |
[19] |
S. Lukens, X. Yang, L. Fauci, Using Lagrangian coherent structures to analyze fluid mixing by cillia, Chaos, 20 (2010), 017511. doi: 10.1063/1.3271340
![]() |
[20] |
T. Sapsis, G. Haller, Inertial particle dynamics in a hurricane, J. Atmos. Sci., 66 (2009), 2481–2492. doi: 10.1175/2009JAS2865.1
![]() |
[21] |
S. C. Shadden, F. Lekien, J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212 (2005), 271–304. doi: 10.1016/j.physd.2005.10.007
![]() |
[22] | C. W. Shu, Essentially Non-Oscillatory and weighted essentially Non-Oscillatory schemes for hyperbolic conservation laws, NASA Langley Research Center, 1997. |
[23] |
W. Tang, T. Peacock, Lagrangian coherent structures and internal wave attractors, Chaos, 20 (2010), 017508. doi: 10.1063/1.3273054
![]() |
[24] |
F. Wang, D. Zhao, L. Deng, S. Li, An accurate vortex feature extraction method for Lagrangian vortex visualization on high-order flow field data, J. Visualization, 20 (2017), 729–742. doi: 10.1007/s12650-017-0421-y
![]() |
[25] |
G. You, T. Wong, S. Leung, Eulerian methods for visualizing continuous dynamical systems using Lyapunov exponents, SIAM J. Sci. Comput., 39 (2017), A415–A437. doi: 10.1137/16M1066890
![]() |
1. | Andreas Frommer, Daniel B. Szyld, On the convergence of randomized and greedy relaxation schemes for solving nonsingular linear systems of equations, 2023, 92, 1017-1398, 639, 10.1007/s11075-022-01431-7 | |
2. | Yansheng Su, Deren Han, Yun Zeng, Jiaxin Xie, On greedy multi-step inertial randomized Kaczmarz method for solving linear systems, 2024, 61, 0008-0624, 10.1007/s10092-024-00621-0 |