Citation: Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar. Integral transforms of an extended generalized multi-index Bessel function[J]. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
[1] | D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096 |
[2] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266 |
[3] | A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman . Integral transforms involving the product of Humbert and Bessel functions and its application. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086 |
[4] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[5] | Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479 |
[6] | Mohamed Abdalla . On Hankel transforms of generalized Bessel matrix polynomials. AIMS Mathematics, 2021, 6(6): 6122-6139. doi: 10.3934/math.2021359 |
[7] | Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167 |
[8] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[9] | Ruma Qamar, Tabinda Nahid, Mumtaz Riyasat, Naresh Kumar, Anish Khan . Gould-Hopper matrix-Bessel and Gould-Hopper matrix-Tricomi functions and related integral representations. AIMS Mathematics, 2020, 5(5): 4613-4623. doi: 10.3934/math.2020296 |
[10] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
The Bessel function [1,2,3,4,5,6,7,8] has great importance in the field of mathematics, physics and engineering due to its applications. Researchers and mathematicians developed a new class of Bessel functions in the sense of multi-index functions, which motivate the future research work in the field of special functions and fractional calculus. The theory of multi-index multivariate Bessel function discussed by Dattoli et al. [9] in 1997.
Generalized multi-index Mittag-Leffler function was defined by Choi et al. in [10]. Kamarujjama et al. [11] introduced and studied the extended multi-index Bessel function. Suthar et al. [12] discussed a large number of results for the generalized multi-index Bessel function. Recently, many authors worked on generalized multi-index Bessel functions [13,14,15]. We describe extension of extended generalized multi-index Bessel function (E1GMBF) which is generalized version of generalized multi-index Bessel function.
Definition 1.1. [11] Kamarujjama et al. introduced and studied the extended generalized multi-index Bessel function, defined as:
J(αj)m,γ,c(βj)m,k,b,δ(z)=∑∞n=0(γ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+1+b2),m∈N. | (1.1) |
where αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0.
Definition 1.2. [16] Generalized fractional integral operator is defined for α,ˊα,β,ˊβ,λ∈C, and x>0 as follows:
Iα,ˊα,β,ˊβ,λ0+f(t)=x−αΓ(λ)∫x0(x−t)λ−1t−ˊαF3(α,ˊα,β,ˊβ;λ;1−tx;1−xt)f(t)dt, | (1.2) |
and
Iα,ˊα,β,ˊβ,λ−f(t)=x−ˊαΓ(λ)∫∞x(t−x)λ−1t−αF3(α,ˊα,β,ˊβ;λ;1−xt;1−tx)f(t)dt. | (1.3) |
where F3 is the Appell function.
Definition 1.3. [17] Appell function F3 also called the (Horn function) and defined for α,ˊα,β,ˊβ,λ∈C, as follows:
F3(α,ˊα,β,ˊβ;λ;x;y)=∞∑m,n=0(α)m(ˊα)n(β)m(ˊβ)n(λ)m+nm!n!xmyn,max{|x|,|y|}<1 | (1.4) |
Definition 1.4. [18,19] The integral representation of gamma function is defined for ℜ(s)>0, as follows:
Γ(s)=∫∞0us−1e−udu. | (1.5) |
Definition 1.5. [18,19] Classical beta function is defined for ℜ(x)>0 and ℜ(y)>0, as follows:
B(x,y)=∫10tx−1(1−t)y−1dt | (1.6) |
=Γ(x)Γ(y)Γ(x+y). | (1.7) |
Definition 1.6. [20,21] Extended beta function is defined for ℜ(x)>0, ℜ(y)>0, ℜ(p)>0 as follows:
Bp(x,y)=∫10tx−1(1−t)y−1exp(−pt(1−t))dt, | (1.8) |
if p=0, then extended beta function Bp(x,y) reduces into the classical beta function.
Definition 1.7. [22] Generalized Wright type hypergeometric function is defined as follows:
rψs(z)=rψs[(yj,hj)1,r(xi,qi)1,s|z]≡∑∞n=0∏rj=1Γ(yj+hjn)∏si=1Γ(xi+qin)znn!. | (1.9) |
where z∈C, yj,xi∈C and hj,qi∈ℜ (j=1,2⋯r;i=1,2⋯s).
Definition 1.8. [23] Laplace transform is defined ℜ(s)>0, as follows:
Ł[f(t)]=f(s)=∫∞0e−stf(t)dt. | (1.10) |
Definition 1.9. [24] Euler transform of a function f(z) is defined as follows:
B{f(z);a,b}=∫10za−1(1−z)b−1f(z)dz(ℜ(a)>0,ℜ(b)>0). | (1.11) |
Definition 1.10. [24] Mellin transform of the function f(z) is defined as follows:
M{f(z);s}=∫∞0zs−1f(z)dz=f∗(s),ℜ(s)>0, | (1.12) |
then inverse Mellin transform
f(z)=M−1[f∗(s);z]=12πi∫λ+i∞λ−i∞f∗z−sds,λ>0. | (1.13) |
Definition 1.11. The Pochhammer symbol defined as
(δ)n={1,n=0δ(δ+1)(δ+2)⋯(δ+n−1),n=1,2⋯ | (1.14) |
or
(δ)n=Γ(δ+n)Γ(δ) | (1.15) |
(δ)kn=Γ(δ+kn)Γ(δ), | (1.16) |
where δ∈C and n,k∈N.
Definition 1.12. The E1GMBF J(αj)m,γ,c(βj)m,k,b,δ(z) is defined in the following way:
Jc,b,δ(γ,d);k[(αj,βj)m;(z;p)]=Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(δ)n∏mj=1Γ(αjn+βj+1+b2). | (1.17) |
where αj,βj,b,d,δ,γ,c∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0.
Remark 1.1. The E1GMBF can also be write as
Jc,b,δ(γ,d);k[(αj,βj)m;(z;p)]=Jb,δ(γ,d);k[(αj,βj)m;(cz;p)]. | (1.18) |
In this section, we establish some particular special cases of E1GMBF as below
● if we set p=0, then E1GMBF reduce into extended multi-index Bessel function
Jc,b,δγ;k[(αj,βj)m;(z)]=J(αj)m,γ,c(βj)m,k,b,δ(z)=∞∑n=0(c)n(γ)kn(−z)n(δ)n∏mj=1Γ(αjn+βj+1+b2). | (2.1) |
● when p=0, c=b=δ=1, then
J1,1,1γ;k[(αj,βj)m;(z)]=J(αj)m,γ(βj)m,k(z)=∞∑n=0(γ)kn(−z)nn!∏mj=1Γ(αjn+βj+1). | (2.2) |
● if we put p=0, c=b=δ=m=1, then E1GMBF reduce to the generalized Bessel-Maitland function as,
J1,1,1γ;k[(α,β);(z)]=Jα,γβ,k(z)=∞∑n=0(γ)kn(−z)nn!Γ(αn+β+1). | (2.3) |
● when p=0, k=0, δ=c=b=1, then E1GMBF reduce to the Bessel-Maitland function as given below
J1,1,1γ[(α,β);(z)]=Jαβ(z)=∞∑n=0(−z)nn!Γ(αn+β+1). | (2.4) |
● if we put p=0, c=δ=1, z=−z and set βj=βj−1, then E1GMBF reduce to the multi-index Mittag Leffler function as given below
J1,b,1γ;k[(αj,βj)m;(−z)]=Eγ,k[(αj,β)j)mj=1]=∞∑n=0(γ)kn∏mj=1(αjn+βj)znn!. | (2.5) |
● if we set p=k=0, b=c=m=1, α1=δ=1, β1=ν and replace z=z24 then E1GMBF reduce into Bessel function of fist kind
J1,1,1γ;0[(1,ν)m;(z24)]=∞∑n=0(−z)nn!Γ(n+ν+1). | (2.6) |
In this section, we investigate the E1GMBF, and studied some important observations. Moreover, we develop integral and differential of E1GMBF in the form of theorems.
Theorem 3.1. The E1GMBF can be able to represent with αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0 then following relation holds
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−pt(1−t)J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt. | (3.1) |
Proof. Using the definition of Eq (1.8) in (1.17), we obtain
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=∞∑n=0{∫10tγ+kn−1(1−t)d−γ−1e−pt(1−t)}×cn(d)kn(−z)nB(γ,d−γ)(δ)n∏mj=1Γ(αjn+βj+1+b2)dt. | (3.2) |
Changing the order of summation and integration, and after simplification of Eq (3.2), we get
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−pt(1−t)∞∑n=0cn(d)kn(−tkz)n(δ)n∏mj=1Γ(αjn+βj+1+b2)dt. | (3.3) |
Using Eq (1.1) in Eq (3.3), we obtain the desired result in theorem 3.1.
Corollary 3.1. Let αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0. Taking t=r1+r in theorem 3.1, then following relation holds
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫∞0rγ−1(1+r)de−p(1+r)2rJ(αj)m,γ,c(βj)m,k,b,δ(rkz(1+r)k)dr. | (3.4) |
Corollary 3.2. Let αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0 and consider t=cos2θ in theorem 3.1, then following relation holds
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=2B(γ,d−γ)∫π20(cosθ)2γ−1(sinθ)2d−2γ−1exp(−psin2θcos2θ)×J(αj)m,γ,c(βj)m,k,b,δ(zcos2kθ)dθ. | (3.5) |
Theorem 3.2. Let α,β,b,δ,γ,c∈C be such that ℜ(α)>max{0;ℜ(k)−1}; k>0, ℜ(β)>−1, ℜ(γ)>0, ℜ(δ)>0, then the following recurrence relation holds in the definition (1.17) for j=1 as
Jk,c,(γ,d);kδ,b,α,β(z;p)=(β+b+12)Jk,c,(γ,d);kδ,b,α,β+1(z;p)+αzddzJk,c,(γ,d);kδ,b,(α,β+1)(z;p). | (3.6) |
Proof. Consider the definition of (1.17) for j=1, and the right side of the Eq (3.6), we get
(β+b+12)Jk,c,(γ,d);kδ,b,(α,β+1)(z;p)+αzddzJk,c,(γ,d);kδ,b,(α,β+1)(z;p)=(β+b+12)∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(δ)nΓ(αn+β+1+1+b2)+αzddz∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(δ)nΓ(αn+β+1+1+b2)=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(δ)n×[(β+b+12)(−z)nΓ(αn+β+1+1+b2)+αzddz(−z)nΓ(αn+β+1+1+b2)]=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(αn+β+1+b2)(δ)nΓ(αn+β+1+1+b2)=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(δ)nΓ(αn+β+1+b2)=Jk,c,(γ,d);kδ,b,(α,β)(z;p) | (3.7) |
Theorem 3.3. For the E1GMBF we have the following higher derivative formula for δ=1, is given below
dndznJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(−c)n(d)k(d+k)k⋯(d+(n−1)k)kJk,c,(γ+kn,d+kn);k1,b,(αj,βj+αjn)m(z;p). | (3.8) |
where αj,βj,b,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0.
Proof. Differentiation with respect to z in Eq (1.17), we get
ddzJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=∞∑n=1Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−1)nnzn−1n!∏mj=1Γ(αjn+βj+1+b2)=∞∑n=1Bp(γ+k(n−1)+k,d−γ)B(γ,d−γ)(−c)n(d)k(n−1)+knzn−1n(n−1)!∏mj=1Γ(αjn+βj+1+b2) | (3.9) |
we can write the pochhammer symbols as
(d)k(n−1)+k=Γ(d+k(n−1)+k)Γ(d)=Γ(d+k(n−1)+k)Γ(d+k)Γ(d+k)Γ(d)=(d+k)(n−1)k(d)k. | (3.10) |
Now, using the Eq (3.10) in Eq (3.9), we have
ddzJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(−c)(d)k∞∑n=1Bp(γ+k+k(n−1),d−γ)(−c)n−1(d+k)k(n−1)zn−1B(γ,d−γ)(n−1)!∏mj=1Γ(αj(n−1)+αj+βj+1+b2)=(−c)(d)kJk,c,(γ+k,d+k);k1,b,(αj,βj+αj)m(z;p). | (3.11) |
Again differentiation with respect to z in Eq (3.9), we have
d2dz2Jk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(−c)2(d)k(d+k)kJk,c,(γ+2k,d+2k);k1,b,(αj,βj+2αj)m(z;p), |
continue this technique up to n times, we obtain the desired result which state in the theorem 3.3.
Theorem 3.4. Let αj,βj,d,γ,c,λ∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>0, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0 then the following relation holds as:
dndzn{zβ1⋯βm−1Jk,c,(γ,d);k1,−1,(αj,βj)m(λzα1⋯αm;p)}=Jk,c,(γ,d);k1,−1,(αj,βj−n)m(λzα1⋯αm;p)zn−β1⋯−βm+1. | (3.12) |
Proof. Replacing z by λzαj⋯αj, b=−1 and δ=1 in Eq (1.17), take its product zβ1⋯βj, and after taking differentiation with respect to z up to n times, we obtain our required result.
In this section, we establish some integral transforms (Euler, Mellin and Laplace transform) of E1GMBF in the form of theorems, and also discuss its sub cases.
Theorem 4.1. Euler transform of E1GMBF holds for αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0.
B{Jk,c,(γ,d);kδ,−1,(αj,βj)m(λzαj;p);β1⋯βm,1}=Jk,c,(γ,d);kδ,−1,(αj,βj+1)m(λ;p). | (4.1) |
Proof. Apply the definition of Euler transform (1.9) in Eq (1.17), we get
B{Jk,c,(γ,d);kδ,−1,(αj,βj)m(λzαj;p);β1⋯βm,1}=∫10zβ1⋯βm−1(1−z)1−1∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)×cn(d)kn(−1)n(λzαj)n(δ)n∏mj=1Γ(αjn+βj)dz. | (4.2) |
Interchanging the order of summations and integration in Eq (4.2), we get
B{Jk,c,(γ,d);kδ,−1,(αj,βj)m(λzαj;p);β1⋯βm,1}=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−λ)n(δ)n∏mj=1Γ(αjn+βj)×∫10zβ1⋯βm+αjn−1(1−z)1−1dz. | (4.3) |
Using the Eq (1.6) and Eq (1.7) in Eq (4.3), then we obtain
B{Jk,c,(γ,d);kδ,−1,(αj,βj)m(λzαj;p);β1⋯βm,1}=∞∑n=0Bp(γ+kn,d−γ)cn(d)kn(−λ)nB(γ,d−γ)(δ)n∏mj=1Γ(αjn+βj+1)=Jk,c,(γ,d);kδ,−1,(αj,βj+1)m(λ;p). | (4.4) |
Theorem 4.2. The Mellin transform of E1GMBF is given by for αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0. Then the following relation holds
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)Γ(δ)Γ(d)Γ(d−γ+s)[Γ(γ)]2Γ(d−γ)3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|−cz]. |
Proof. By applying the definition of the Mellin transform to the E1GMBF, we have
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=∫∞0ps−1Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)dp. | (4.5) |
Using theorem 3.1 in right side of Eq (4.5), we get
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=1B(γ,d−γ)∫∞0ps−1{∫10tγ−1(1−t)d−γ−1e−pt(1−t)J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt}dp. | (4.6) |
Interchanging the order of integration in Eq (4.6), then we have
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1J(αj)m,γ,c(βj)m,k,b,δ(tkz){∫∞0ps−1e−pt(1−t)dp}dt. | (4.7) |
Now, putting pt(1−t)=u in Eq (4.7), and applying the mathematical formula of Eq (1.5), we get
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,d−γ)∫10tγ+s−1(1−t)d−γ+s−1J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt. | (4.8) |
Using Eq (1.1), and interchanging the order of integration and summation in Eq (4.8), we obtain
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,d−γ)∞∑n=0(c)n(γ)kn(−z)n(δ)n∏mj=1Γ(αjn+βj+1+b2)∫10tγ+s+kn−1(1−t)d−γ+s−1dt. | (4.9) |
Using Eq (1.6) and Eq (1.7) in Eq (4.9), we get
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,d−γ)∞∑n=0(c)n(γ)kn(−z)n(δ)n∏mj=1Γ(αjn+βj+1+b2)Γ(γ+s+kn)Γ(d−γ+s)Γ(2s+kn+d). | (4.10) |
After simplification in Eq (4.10), we get
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)Γ(δ)Γ(d)Γ(d−γ+s)[Γ(γ)]2Γ(d−γ)∞∑n=0Γ(γ+kn)(−cz)nΓ(δ+n)∏mj=1Γ(αjn+βj+1+b2)Γ(γ+s+kn)Γ(2s+kn+d)=Γ(s)Γ(δ)Γ(d)Γ(d−γ+s)[Γ(γ)]2Γ(d−γ)3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|−cz]. |
Corollary 4.1. Let αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0. Taking s=1 in theorem 4.2, then the following relation holds
∫∞0Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)dp=(d−γ)Γ(δ)Γ(γ)3ψm+2[(γ,k)(γ+1,k)(1,1)(δ,1)(d+2,k)(βj+1+b2,αj)|mj=1|−cz]. | (4.11) |
Corollary 4.2. Let αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0. Applying the inverse Mellin transform on left and right side of Eq (1.17), we gain the important complex integral representation as follows:
M−1{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=12πiΓ(γ)Γ(d−γ)∫λ+i∞λ−i∞Γ(s)Γ(δ)Γ(d−γ+s)×3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|−cz]p−sds. | (4.12) |
Theorem 4.3. The Laplace transform of E1GMBF is given as for αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0.
Ł(Jk,c,(γ,d);k1,b,(αj,βj)m(z;p))=1sJk,c,(γ,d);k1,b,(αj,βj)m(1s;p). | (4.13) |
Proof. Using the definition of Laplace transform (1.8) in Eq (1.17), we have
Ł(Jk,c,(γ,d);k1,b,(αj,βj)m(z;p))=∫∞0e−st∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−t)nn!∏mj=1Γ(αjn+βj+1+b2)dt=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−1)nn!∏mj=1Γ(αjn+βj+1+b2)∫∞0e−sttndt=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−1)nn!∏mj=1Γ(αjn+βj+1+b2)n!sn+1=1s∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−s)n∏mj=1Γ(αjn+βj+1+b2)=1sJk,c,(γ,d);k1,b,(αj,βj)m(1s;p). | (4.14) |
In this section, the authors represent the E1GMBF in terms of Laguerre polynomial, and Whittaker function in the form of theorems.
Theorem 5.1. Let αj,βj,b,d,δ,γ,c∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>0, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0, then the E1GMBF holds
e2pJk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=Γ(δ)∑∞a,b=0Lb(p)La(p)Γ(b+d−γ+1)Γ(γ)B(γ,d−γ)×3ψm+2[(γ,k)(a+γ+1,k)(1,1)(δ,1)(a+b+d+2,k)(βj+1+b2,αj)|mj=1|−cz]. | (5.1) |
Proof. We being recalling the valuable identity [25] which is
e−pt(1−t)=e−2p∞∑a,b=0Lb(p)La(p)ta+1(1−t)b+1,(0<t<1). | (5.2) |
Applying Eq (5.2) in theorem 3.1, we get
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−2p∞∑a,b=0Lb(p)La(p)ta+1(1−t)b+1J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−2p∞∑a,b=0Lb(p)La(p)ta+1(1−t)b+1×∞∑n=0(c)n(γ)kn(−tkz)n(δ)n∏mj=1Γ(αjn+βj+1+b2)dt. | (5.3) |
Interchanging the order of integration and summations in Eq (5.3), we obtain
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=e−2pB(γ,d−γ)∞∑a,b,n=0Lb(p)La(p)(γ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+1+b2)∫10ta+kn+γ(1−t)b+d−γdt. | (5.4) |
Using Eq (1.6) and Eq (1.7) in Eq (5.4), then we have
e2pJk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∞∑a,b,n=0Lb(p)La(p)(γ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+1+b2)Γ(a+kn+γ+1)Γ(b+d−γ+1)Γ(a+b+d+kn+2)=Γ(δ)∑∞a,b=0Lb(p)La(p)Γ(b+d−γ+1)Γ(γ)B(γ,d−γ)×3ψm+2[(γ,k)(a+γ+1,k)(1,1)(δ,1)(a+b+d+2,k)(βj+1+b2,αj)|mj=1|−cz]. | (5.5) |
Theorem 5.2. For the E1GMBF with αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0, we have
e3p2Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=e−pB(γ,d−γ)∞∑a,n=0La(p)(δ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+b+12)×Γ(d−γ+1)pγ+kn2W−1+γ−2d−kn2,γ+kn2. | (5.6) |
Proof. Allowing for the following equality e−pt(1−t)=e(−p1−t)e(−pt) and via generating function related to the Laguerre polynomial [25], we obtain
e−pt(1−t)=e−pe−pt(1−t)∞∑a=0La(p)tn. | (5.7) |
Using Eq (5.7) in Eq (1.17), we have
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−pe−pt(1−t)∞∑a=0La(p)tnJ(αj)m,γ,c(βj)m,k,b,δ(tkz)dt=e−pB(γ,d−γ)∞∑a,n=0La(p)(δ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+b+12)∫10tγ+kn−1(1−t)d−γe−ptdt. | (5.8) |
Now, integral representation of Whittaker function is defined [26] as follows
∫10tμ−1(1−t)ν−1e−ptdt=Γ(ν)pμ−12e−p2W1−μ−2ν2,μ2(p). | (5.9) |
Using Eq (5.9) in Eq (5.8), then we have
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=e−pB(γ,d−γ)∞∑a,n=0La(p)(δ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+b+12)×Γ(d−γ+1)pγ+kn2e−p2W−1+γ−2d−kn2,γ+kn2. | (5.10) |
Theorem 5.3. Let αj,βj,b,d,δ,γ,σ,η,c∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>0, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0 the E1GMBF holds
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)=∞∑n=0Bp(γ+kn,d−γ)(−c)nxσn−ηn+α−λ+ˊαΓ[(d+kn)(δ)(λ−ˊα−σn+ηn−α−β+1)(γ)(d−γ)(δ+n)(λ−ˊα−σn+ηn−β+1)×(1−ˊα−σn+ηn+ˊβ)(1−σn+ηn)(1−σn+ηn+ˊβ)(λ−ˊα−σn+ηn−α+1)(αjn+βj+1+b2)|mj=1]. |
Proof. Consider the composition of generalized fractional integral operator having Appell function as its kernel with the E1GMBF,
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)=x−αΓ(λ)∫x0(x−t)λ−1t−ˊαF3(α,ˊα,β,ˊβ;λ;1−tx;1−xt)∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)×cn(d)kn(−1)nt−σn+ηn(δ)n∏mj=1Γ(αjn+βj+1+b2)dt=x−α+λ−1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∫x0(1−tx)λ−1t−ˊα−σn+ηn∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!×(1−tx)m(1−xt)sdt=x−α+λ−1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!∫x0(1−tx)m+λ−1×(1−xt)st−ˊα−σn+ηndt. | (5.11) |
Putting these values tx=τ ⇒ dτ=xdt, t=x⇒τ=1 and t=0⇒τ=0 in Eq (5.11), then we have
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)=x−α+λ−1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!∫10(1−τ)m+λ−1×(1−1τ)s(xτ)−ˊα−σn+ηnxdτ=x−α−ˊα+λΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(xηxσ;p)|∞n=0∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)s(−1)sλm+sm!s!∫10(1−τ)s+m+λ−1×τ−ˊα−σn+ηn−sdτ. | (5.12) |
Using Eqs (1.6) and (1.7) in Eq (5.12), we obtain
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)−x−α+λ−ˊαJk,c,(γ,d);kδ,b,(αj,βj)m(xηxσ;p)|∞n=0=∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)s(−1)sλm+sm!s!Γ(s+m+λ)Γ(−ˊα−σn+ηn−s+1)Γ(λ)Γ(m+λ−ˊα−σn+ηn+1)=Γ(−ˊα−σn+ηn+1)Γ(λ−ˊα−σn+ηn+1)∞∑m=0(α)m(β)m(λ−ˊα−σn+ηn+1)mm!∞∑s=0(ˊα)s(ˊβ)s(ˊα+σn−ηn)ss!=Γ(−ˊα−σn+ηn+1)Γ(λ−ˊα−σn+ηn−α−β+1)Γ(ˊα+σn−ηn)Γ(σn−ηn−ˊβ)Γ(λ−ˊα−σn+ηn−α+1)Γ(λ−ˊα−σn+ηn−β+1)Γ(σn−ηn)Γ(ˊα+σn−ηn−ˊβ)=Γ(λ−ˊα−σn+ηn−α−β+1)Γ(1−ˊα−σn+ηn+ˊβ)Γ(1−σn+ηn)Γ(λ−ˊα−σn+ηn−α+1)Γ(λ−ˊα−σn+ηn−β+1)Γ(1−σn+ηn+ˊβ). | (5.13) |
we have the required result
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)=∞∑n=0Bp(γ+kn,d−γ)(−c)nxσn−ηn+α−λ+ˊαΓ[(d+kn)(δ)(λ−ˊα−σn+ηn−α−β+1)(γ)(d−γ)(δ+n)(λ−ˊα−σn+ηn−β+1)×(1−ˊα−σn+ηn+ˊβ)(1−σn+ηn)(1−σn+ηn+ˊβ)(λ−ˊα−σn+ηn−α+1)(αjn+βj+1+b2)|mj=1]. |
Theorem 5.4. Let αj,βj,b,d,δ,γ,σ,η,c∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>0, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0, then the E1GMBF holds true:
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)=∞∑n=0Bp(γ+kn,d−γ)(−c)nxσn−ηn+α−λ+ˊαΓ[(d+kn)(δ)((d−σ)n(η+b)n−β)((d−σ)n(η+b)n+α−λ+ˊβ)(γ)(d−γ)(δ+n)((d−σ)n(η+b)n)((d−σ)n(η+b)n+α−β)×((d−σ)n(η+b)n+α−λ+ˊα)((d−σ)n(η+b)n+α−λ+ˊα+ˊβ)(αjn+βj+1+b2)|mj=1]. |
Proof. Consider the composition of right side generalized fractional integral operator with the E1GMBF \newpage
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)=x−ˊαΓ(λ)∫∞x(t−x)λ−1t−αF3(α,ˊα,β,ˊβ;λ;1−xt;1−tx)∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)×cn(d)kn(−1)ntσn−dnηn+bn(δ)n∏mj=1Γ(αjn+βj+1+b2)dt=x−ˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∫∞x(1−xt)λ−1t(σ−d)n(η+b)n−α+λ−1∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!×(1−xt)m(1−tx)sdt=x−ˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!∫∞x(1−xt)λ+m−1(1−tx)s×t(σ−d)n(η+b)n−α+λ−1dt. | (5.14) |
Putting these values xt=u ⇒ −xu2du=dt, t=x⇒u=1 and t=∞⇒u=0 in Eq (5.14), then we have
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)−x−ˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0=∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!∫01(1−u)λ+m−1(1−1u)s(xu)(σ−d)n(η+b)n−α+λ−1(−xu2)du=∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)s(−1)sλm+sm!s!x(σ−d)n(η+b)n−α+λ∫10(1−u)λ+m+s−1u(d−σ)n(η+b)n+α−λ−s−1du. | (5.15) |
Using Eqs (1.6) and (1.7) in Eq (5.15), we have
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)−x−ˊα+λ−αJk,c,(γ,d);kδ,b,(αj,βj)m(xσ−dη+b;p)|∞n=0=∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)s(−1)sλm+sm!s!Γ(λ+m+s)Γ((d−σ)n(η+b)n+α−λ−s)Γ(λ)Γ((d−σ)n(η+b)n+α+m)=Γ((d−σ)n(η+b)n+α−λ)Γ((d−σ)n(η+b)n+α)∞∑m=0(α)m(β)m((d−σ)n(η+b)n+α)mm!∞∑s=o(ˊα)s(ˊβ)s(1−(d−σ)n(η+b)n−α+λ)ss!=Γ((d−σ)n(η+b)n+α−λ)Γ((d−σ)n(η+b)n−β)Γ((d−σ)n(η+b)n)Γ((d−σ)n(η+b)n+α−β)Γ(1−(d−σ)n(η+b)n−α+λ)Γ(1−(d−σ)n(η+b)n−α+λ−ˊα−ˊβ)Γ(1−(d−σ)n(η+b)n−α+λ−ˊα)Γ(1−(d−σ)n(η+b)n−α+λ−ˊβ)=Γ((d−σ)n(η+b)n−β)Γ((d−σ)n(η+b)n+α−λ+ˊβ)Γ((d−σ)n(η+b)n+α−λ+ˊα)Γ((d−σ)n(η+b)n)Γ((d−σ)n(η+b)n+α−β)Γ((d−σ)n(η+b)n+α−λ+ˊα+ˊβ). |
We have a desired result
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)=∞∑n=0Bp(γ+kn,d−γ)(−c)nxσn−ηn+α−λ+ˊαΓ[(d+kn)(δ)((d−σ)n(η+b)n−β)((d−σ)n(η+b)n+α−λ+ˊβ)(γ)(d−γ)(δ+n)((d−σ)n(η+b)n)((d−σ)n(η+b)n+α−β)×((d−σ)n(η+b)n+α−λ+ˊα)((d−σ)n(η+b)n+α−λ+ˊα+ˊβ)(αjn+βj+1+b2)|mj=1]. |
In this research, we described extension of extended generalized multi-index Bessel function (E1GMBF) and developed some results with the Laguerre polynomial and Whittaker function, integral representation, derivatives and solved integral transforms (beta transform, Laplace transform, Mellin transforms). Moreover, we discussed the composition of the generalized fractional integral operator having Appell function as a kernel with the E1GMBF and obtained results in terms of Wright functions.
The authors declare that they have no competing interests.
[1] | G. Dattoli, S. Lorenzutta, G. Maino, et al. Generalized Bessel functions and exact solutions of partial differential equations, Rend. Mat., 7 (1992), 12. |
[2] | V. S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241-259. |
[3] | M. Kamarujjama, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228-236. |
[4] | O. Khan, M. Kamarujjama, N. U. Khan, Certain integral transforms involving the product of Galue type struve function and Jacobi polynomial, Palestine J. Math., 8 (2019), 191-199. |
[5] | M. Kamarujjama, N. U. Khan, O. Khan, The generalized pk-Mittag-Leffler function and solution of fractional kinetic equations, J. Anal., 27 (2019), 1029-1046. |
[6] | N. U. Khan, M. Ghayasuddin, W. A. Khan, et al. Certain unified integral involving Generalized Bessel-Maitland function, South East Asian J. Math. Math. Sci., 11 (2015), 27-36. |
[7] | N. U. Khan, M. Ghayasuddin, Study of the unified double integral associated with generalized Bessel-Maitland function, Pure Appl. Math. Lett., 2016 (2016), 15-19. |
[8] | S. D. Purohit, P. Agarwal, et al. Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51 (2014), 995-1003. |
[9] | G. Dattoli, S. Lorenzutta, G. Maino, et al. Theory of multiindex multivariable Bessel functions and Hermite polynomials, Le Mat., 52 (1997), 179-197. |
[10] | J. Choi, P. Agarwal, A note on fractional integral operator associated with multiindex MittagLeffler functions, Filomat, 30 (2016), 1931-1939. |
[11] | M. Kamarujjama, N. U. Khan, O. Khan, Estimation of certain integrals with extended multi-index Bessel function, Malaya J. Mat. (MJM), 7 (2019), 206-212. |
[12] | D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multi-index Bessel function, Math. Nat. Sci., 1 (2017), 26-32. |
[13] | K. S. Nisar, S. D. Purohit, D. L. Suthar, et al. Fractional calculus and certain integrals of generalized multiindex Bessel function, arXiv preprint arXiv: 1706.08039, 2017. |
[14] | D. L. Suthar, T. Tsagye, Riemann-Liouville fractional integrals and differential formula involving Multi-index Bessel-function, Math. Sci. Lett., 6 (2017), 233-237. |
[15] | D. L. Suthar, D. Kumar, H. Habenom, Solutions of fractional Kinetic equation associated with the generalized multiindex Bessel function via Laplace transform, Differ. Equ. Dyn. Syst., (2019), 1-14. |
[16] | O. I. Marichev, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izv. Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauk, 1 (1974), 128-129. |
[17] | F. W. Olver, D. W. Lozier, R. F. Boisvert, et al. NIST handbook of mathematical functions hardback and CD-ROM, Cambridge university press, 2010. |
[18] | S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equ., 2019 (2019), 520. |
[19] | A. Petojevic, A note about the Pochhammer symbols, Math. Moravica, 12 (2008), 37-42. |
[20] | M. A. Chaudhry, A. Qadir, H. M. Srivastava, et al. Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589-602. |
[21] | M. A. Chaudhry, S. M. Zubair, et al. On a class of incomplete gamma functions with applications, CRC press, 2001. |
[22] | H. M. Srivastava, P. W. Karlsson, Multiple gaussian hypergeometric series, Halsted Press (Ellis Horwood Limited, Chichester), 1985. |
[23] | D. V. Widder, Laplace transform (PMS-6), Princeton university press, 2015. |
[24] | I. N. Sneddon, The use of integral transform, Tata McGraw Hill, New Delhi, 1979. |
[25] | M. A. Özarslan, B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl., 2014 (2014), 85. |
[26] | M. A. Özarslan, Some remarks on extended hypergeometric, extended confluent hypergeometric and extended Appell's functions, J. Comput. Anal. Appl., 14 (2012). |
1. | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar, Estimation of generalized fractional integral operators with nonsingular function as a kernel, 2021, 6, 2473-6988, 4492, 10.3934/math.2021266 | |
2. | Virginia Kiryakova, Unified Approach to Fractional Calculus Images of Special Functions—A Survey, 2020, 8, 2227-7390, 2260, 10.3390/math8122260 | |
3. | Mohamed Abdalla, On Hankel transforms of generalized Bessel matrix polynomials, 2021, 6, 2473-6988, 6122, 10.3934/math.2021359 | |
4. | Maged G. Bin-Saad, Mohannad J. S. Shahwan, Jihad A. Younis, Hassen Aydi, Mohamed A. Abd El Salam, Barbara Martinucci, On Gaussian Hypergeometric Functions of Three Variables: Some New Integral Representations, 2022, 2022, 2314-4785, 1, 10.1155/2022/1914498 | |
5. | Rana Safdar Ali, Aiman Mukheimer, Thabet Abdeljawad, Shahid Mubeen, Sabila Ali, Gauhar Rahman, Kottakkaran Sooppy Nisar, Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities, 2021, 5, 2504-3110, 54, 10.3390/fractalfract5020054 | |
6. | Mohamed Abdalla, Salah Boulaaras, Mohamed Akel, On Fourier–Bessel matrix transforms and applications, 2021, 44, 0170-4214, 11293, 10.1002/mma.7489 | |
7. | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya, Dynamical significance of generalized fractional integral inequalities via convexity, 2021, 6, 2473-6988, 9705, 10.3934/math.2021565 | |
8. | Rana Safdar Ali, Shahid Mubeen, Sabila Ali, Gauhar Rahman, Jihad Younis, Asad Ali, Umair Ali, Generalized Hermite–Hadamard-Type Integral Inequalities forh-Godunova–Levin Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9113745 | |
9. | Yaqun Niu, Rana Safdar Ali, Naila Talib, Shahid Mubeen, Gauhar Rahman, Çetin Yildiz, Fuad A. Awwad, Emad A. A. Ismail, Wilfredo Urbina, Exploring Advanced Versions of Hermite‐Hadamard and Trapezoid‐Type Inequalities by Implementation of Fuzzy Interval‐Valued Functions, 2024, 2024, 2314-8896, 10.1155/2024/1988187 | |
10. | Miguel Vivas-Cortez, Rana Safdar Ali, Humira Saif, Mdi Begum Jeelani, Gauhar Rahman, Yasser Elmasry, Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions, 2023, 7, 2504-3110, 580, 10.3390/fractalfract7080580 | |
11. | Rana Safdar Ali, Humira Sif, Gauhar Rehman, Ahmad Aloqaily, Nabil Mlaiki, Significant Study of Fuzzy Fractional Inequalities with Generalized Operators and Applications, 2024, 8, 2504-3110, 690, 10.3390/fractalfract8120690 |