In the present paper we describe Jordan matrix algebras over a field by generators and relations. We prove that the minimun number of generators of some special Jordan matrix algebras over a field is $ 2 $.
Citation: Yingyu Luo, Yu Wang, Junjie Gu, Huihui Wang. Jordan matrix algebras defined by generators and relations[J]. AIMS Mathematics, 2022, 7(2): 3047-3055. doi: 10.3934/math.2022168
In the present paper we describe Jordan matrix algebras over a field by generators and relations. We prove that the minimun number of generators of some special Jordan matrix algebras over a field is $ 2 $.
[1] | M. Brešar, Introduction to nocommutative algebras, Springer, 2014. doi: 10.1007/978-3-319-08693-4. |
[2] | L. Centrone, F. Martino, A note on cocharacter sequence of Jordan upper triangular matrix algebra, Commun. Algebra, 45 (2017), 1687–1695. doi: 10.1080/00927872.2016.1222408. doi: 10.1080/00927872.2016.1222408 |
[3] | L. Centrone, F. Martino, M. da Silva Souza, Specht property for some varieties of Jordan algebras of almost polynomial growth, J. Algebra, 521 (2019), 137–165. doi: 10.1016/j.jalgebra.2018.11.017. doi: 10.1016/j.jalgebra.2018.11.017 |
[4] | A. Cirrito, F. Martino, Ordinary and graded cocharacter of the Jordan algebra of $2\times 2$ upper triangular matrices, Linear Algebra Appl., 451 (2004), 246–259. doi: 10.1016/j.laa.2014.03.011. doi: 10.1016/j.laa.2014.03.011 |
[5] | C. Costara, Nonlinear invertibility preserving maps on matrix algebras, Linear Algebra Appl., 602 (2020), 216–222. doi: 10.1016/j.laa.2020.05.010. doi: 10.1016/j.laa.2020.05.010 |
[6] | M. Grašič, Zero product determined Jordan algebra, Linear Multilinear Algebra, 59 (2011), 671–685. doi: 10.1080/03081087.2010.485199. doi: 10.1080/03081087.2010.485199 |
[7] | N. Jacobson, Structure and representations of Jordan algebras, Colloquium Publications, Vol. 39, American Mathematical Society, 1968. |
[8] | M. Kochetov, F. Y. Yasumura, Group grading on the Lie and Jordan algebras of block-triangular matrices, J. Algebra, 537 (2019), 147–172. doi: 10.1016/j.jalgebra.2019.07.020. doi: 10.1016/j.jalgebra.2019.07.020 |
[9] | X. B. Ma, G. H. Ding, L. Wang, Square-zero determined matrix algebras, Linear Multilinear Algebra, 59 (2011), 1311–1317. doi: 10.1080/03081087.2010.539606. doi: 10.1080/03081087.2010.539606 |
[10] | K. McCrimmon, A taste of Jordan algebras, Springer, 2004. doi: 10.1007/b97489. |
[11] | H. P. Pertersson, The isotopy problem for Jordan matrix algebras, Trans. Amer. Math. Soc., 244 (1978), 185–197. doi: 10.1090/S0002-9947-1978-0506615-7. doi: 10.1090/S0002-9947-1978-0506615-7 |
[12] | C. C. Xi, J. B. Zhang, Structure of centralizer matrix algebras, Linear Algebra Appl., 622 (2021), 215–249. doi: 10.1016/j.laa.2021.03.034. doi: 10.1016/j.laa.2021.03.034 |
[13] | D. Y. Wang, Q. Hu C. G. Xia, Jordan derivation of certain Jordan matrix algebras, Linear Multilinear Algebra, 56 (2008), 581–588. doi: 10.1080/03081080701492165. doi: 10.1080/03081080701492165 |